top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Building back better : addressing climate change in the electricity sector and fostering economic growth : hearing before the Committee on Environment and Public Works, United States Senate, One Hundred Seventeenth Congress, first session, March 10, 2021
Building back better : addressing climate change in the electricity sector and fostering economic growth : hearing before the Committee on Environment and Public Works, United States Senate, One Hundred Seventeenth Congress, first session, March 10, 2021
Pubbl/distr/stampa Washington : , : U.S. Government Publishing Office, , 2021
Descrizione fisica 1 online resource (iv, 458 pages) : color illustrations, maps
Collana S. hrg.
Soggetto topico Climatic changes - United States
Electric power transmission - United States
Electric power distribution - United States
Economic development - United States
Infrastructure (Economics) - United States
Renewable energy sources - United States
Energy policy - United States
Climatic changes
Economic development
Electric power distribution
Electric power transmission
Energy policy
Infrastructure (Economics)
Renewable energy sources
Soggetto genere / forma Legislative hearings.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Building back better
Record Nr. UNINA-9910716631403321
Washington : , : U.S. Government Publishing Office, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
C62.82.2-2022 : IEEE Guide for the Application of Insulation Coordination - Redline / / Institute of Electrical and Electronics Engineers
C62.82.2-2022 : IEEE Guide for the Application of Insulation Coordination - Redline / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York : , : IEEE, , 2023
Descrizione fisica 1 online resource
Disciplina 621.317
Soggetto topico Electric power systems - Control
Electric power transmission
ISBN 1-5044-9915-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996575615203316
New York : , : IEEE, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Clean grid vision: a U.S. perspective
Clean grid vision: a U.S. perspective
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , September 2021
Descrizione fisica 1 online resource (5 volumes) : illustrations (some color), maps (chiefly color)
Collana NREL/TP
Soggetto topico Electric power systems
Renewable energy sources
Electric power distribution
Electric power transmission
Electric power consumption
Soggetto genere / forma Technical reports.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Ch. 1. Clean grid scenarios -- ch. 2. Distribution issues and tools -- ch. 3. Transmission grid-supporting technologies -- ch. 4. Demand-side development -- ch. 5. Global power market trends.
Altri titoli varianti Clean grid vision
Record Nr. UNINA-9910717268303321
Golden, CO : , : National Renewable Energy Laboratory, , September 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coordination and optimization of grid-tied power converters : from pulse width modulation perspective / / Feng Gao, Tao Xu
Coordination and optimization of grid-tied power converters : from pulse width modulation perspective / / Feng Gao, Tao Xu
Autore Gao Feng
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (222 pages)
Disciplina 621.313
Collana Power Systems
Soggetto topico Electric current converters - Automatic control
Electric power transmission
ISBN 981-16-7446-9
981-16-7445-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgements -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Power-Converter-Dominated Modern Power Systems -- 1.2 Renewable Generation Systems -- 1.2.1 Photovoltaic Generation Systems -- 1.2.2 Wind Generation Systems -- 1.3 Battery Energy Storage Systems -- 1.4 DC Charging Piles for Electric Vehicles -- 1.5 Summary -- Reference -- 2 Topologies and Control Schemes of Grid-Tied Power Converters -- 2.1 Topology and Modulation of Grid-Tied Power Converters -- 2.1.1 Single-Phase Voltage Source Converters -- 2.1.2 Three-Phase Two-Level Voltage Source Converter -- 2.1.3 Three-Phase Multilevel Voltage Source Converters -- 2.2 Leakage Current Attenuation of PV Inverters -- 2.2.1 Leakage Current Minimization Principle -- 2.2.2 Methods of Leakage Current Flowing Path Breaking -- 2.2.3 Methods of Common Mode Voltage Attenuation -- 2.2.4 Internal Circulation Method -- 2.3 AC Filters of Grid-Tied Power Converter -- 2.4 Typical Control Schemes of Grid-Tied Power Converters -- 2.4.1 Dual-Loop Controller -- 2.4.2 Phase Locked Loops -- 2.5 Summary -- References -- 3 Coordination Principles of Pulse Width Modulation -- 3.1 Analysis of PWM Carriers with Random Phase Shift Angles -- 3.1.1 Nonideal PWM Frequency Deviation -- 3.1.2 Random Accumulation of Total Current Harmonics -- 3.1.3 Random Circulating Leakage Currents of Multiple PV Inverters -- 3.2 Basic Principles of Multiple PWM Coordination -- 3.3 Summary -- Reference -- 4 PWM Carrier Synchronization Techniques -- 4.1 Centralized Mode -- 4.2 Master-Slave Mode -- 4.2.1 High-Bandwidth Communication Based Carrier Synchronization -- 4.2.2 Low-Bandwidth Communication Based Carrier Synchronization -- 4.3 Distributed Mode -- 4.3.1 Independent Analog Signal Transfer Method -- 4.3.2 Virtual Oscillation Based Coordination Method.
4.3.3 Grid-Voltage Zero-Crossing Based Carrier Synchronization Method -- 4.3.4 Phase Locked Loop Based Carrier Synchronization (PLL-CS) -- 4.4 Comparison -- 4.5 Summary -- References -- 5 Open-Loop Optimization Schemes -- 5.1 Basic Principle of Open-Loop Optimization Operation -- 5.2 Optimization Models -- 5.2.1 Optimization Model for Single-Objective -- 5.2.2 Optimization Model for Multi-objectives -- 5.3 Optimization Solution -- 5.3.1 Single-Objective Optimization Solution -- 5.3.2 Multi-objectives Optimization Solution -- 5.4 Improved Online Optimization Method -- 5.4.1 Calculation of φM,PWMb -- 5.4.2 Calculation of fsyn,min -- 5.4.3 Verification -- 5.5 Summary -- References -- 6 Closed-Loop Correction Strategies -- 6.1 Basic Principles of Closed-Loop Correction Strategies -- 6.2 Closed-Loop Correction Strategy for Single-Objective Optimization -- 6.2.1 Performance Analysis of Open-Loop Scheme with Inaccurate Parameters -- 6.2.2 Principle and Realization of Closed-Loop Correction -- 6.2.3 Experimental Verifications -- 6.3 Closed-Loop Correction Strategy for Multi-objectives Optimization -- 6.3.1 Limitation of Open-Loop Schemes for Circulating Leakage Current Attenuation -- 6.3.2 Closed-Loop Correction Strategy -- 6.3.3 Experimental Verifications -- 6.4 Summary -- References -- 7 Analysis and Optimized Design of Grid-Tied Power Converters -- 7.1 Basic Principles and Main Procedures of Optimized Design -- 7.2 Realization Details -- 7.3 Analysis of the Worst Operating Condition -- 7.3.1 Analysis of the Worst Operating Combination -- 7.3.2 Analysis of the Worst Synchronization Fluctuation -- 7.4 Optimized Design of AC Filter and Switching Frequency -- 7.4.1 Parameters Selection -- 7.4.2 Experimental Verifications -- 7.5 Summary -- References -- 8 Practical Demonstration of PWM Coordination and Optimization Methods in Battery Energy Storage Systems.
8.1 System Configuration -- 8.2 Problem Description -- 8.3 Precise Model -- 8.4 Open-Loop Optimization -- 8.5 PLL-Based Carrier Synchronization -- 8.6 Performance Evaluation -- 8.7 Summary -- References.
Record Nr. UNINA-9910743390903321
Gao Feng  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
DC Utility Power Conference and Exhibition (NewNEB), 2014 IEEE NewNEB / / Institute of Electrical and Electronics Engineers
DC Utility Power Conference and Exhibition (NewNEB), 2014 IEEE NewNEB / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2014
Descrizione fisica 1 online resource (various pagings) : illustrations (some color)
Disciplina 621.319
Soggetto topico Electric power transmission
ISBN 1-4799-4064-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2014 IEEE NewNEB DC Utility Power Conference and Exhibition
2014 IEEE NewNEB DC Utility Power Conference and Exhibition (NewNEB)
DC Utility Power Conference and Exhibition
Record Nr. UNISA-996279304703316
Piscataway, NJ : , : IEEE, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
DC Utility Power Conference and Exhibition (NewNEB), 2014 IEEE NewNEB / / Institute of Electrical and Electronics Engineers
DC Utility Power Conference and Exhibition (NewNEB), 2014 IEEE NewNEB / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2014
Descrizione fisica 1 online resource (various pagings) : illustrations (some color)
Disciplina 621.319
Soggetto topico Electric power transmission
ISBN 1-4799-4064-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2014 IEEE NewNEB DC Utility Power Conference and Exhibition
2014 IEEE NewNEB DC Utility Power Conference and Exhibition (NewNEB)
DC Utility Power Conference and Exhibition
Record Nr. UNINA-9910137312503321
Piscataway, NJ : , : IEEE, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design of ultra wideband power transfer networks [[electronic resource] /] / Binboga Siddik Yarman
Design of ultra wideband power transfer networks [[electronic resource] /] / Binboga Siddik Yarman
Autore Yarman Binboga Siddik
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2010
Descrizione fisica 1 online resource (777 p.)
Disciplina 621.384/135
Soggetto topico Ultra-wideband antennas - Design and construction
Broadband communication systems - Power supply - Design and construction
Telecommunication lines - Design and construction
Broadband amplifiers - Design and construction
Impedance matching
Electric power transmission
ISBN 1-282-54843-3
9786612548437
0-470-68892-0
0-470-68891-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DESIGN OF ULTRA WIDEBAND POWER TRANSFER NETWORKS; Contents; About the Author; Preface; 1 Circuit Theory for Power Transfer Networks; 1.1 Introduction; 1.2 Ideal Circuit Elements; 1.3 Average Power Dissipation and Effective Voltage and Current; 1.4 Definitions of Voltage and Current Phasors; 1.5 Definitions of Active, Passive and Lossless One-ports; 1.6 Definition of Resistor; 1.7 Definition of Capacitor; 1.8 Definition of Inductor; 1.9 Definition of an Ideal Transformer; 1.10 Coupled Coils; 1.11 Definitions: Laplace and Fourier Transformations of a Time Domain Function f(t)
1.12 Useful Mathematical Properties of Laplace and Fourier Transforms of a Causal Function 1.13 Numerical Evaluation of Hilbert Transform; 1.14 Convolution; 1.15 Signal Energy; 1.16 Definition of Impedance and Admittance; 1.17 Immittance of One-port Networks; 1.18 Definition: 'Positive Real Functions'; 2 Electromagnetic Field Theory for Power Transfer Networks: Fields,Waves and Lumped Circuit Models; 2.1 Introduction; 2.2 Coulomb's Law and Electric Fields; 2.3 Definition of Electric Field; 2.4 Definition of Electric Potential; 2.5 Units of Force, Energy and Potential
2.6 Uniform Electric Field 2.7 Units of Electric Field; 2.8 Definition of Displacement Vector or 'Electric Flux Density Vector' D; 2.9 Boundary Conditions in an Electric Field; 2.10 Differential Relation between the Potential and the Electric Field; 2.11 Parallel Plate Capacitor; 2.12 Capacitance of a Transmission Line; 2.13 Capacitance of Coaxial Cable; 2.14 Resistance of a Conductor of Length L: Ohm's Law; 2.15 Principle of Charge Conservation and the Continuity Equation; 2.16 Energy Density in an Electric Field; 2.17 The Magnetic Field
2.18 Generation of Magnetic Fields: Biot-Savart and Ampre's Law 2.19 Direction of Magnetic Field: Right Hand Rule; 2.20 Unit of Magnetic Field: Related Quantities; 2.21 Unit of Magnetic Flux Density B; 2.22 Unit of Magnetic Flux ; 2.23 Definition of Inductance L; 2.24 Permeability and its Unit; 2.25 Magnetic Force between Two Parallel Wires; 2.26 Magnetic Field Generated by a Circular Current-Carrying Wire; 2.27 Magnetic Field of a Tidily Wired Solenoid of N Turns; 2.28 The Toroid; 2.29 Inductance of N-Turn Wire Loops; 2.30 Inductance of a Coaxial Transmission Line
2.31 Parallel Wire Transmission Line 2.32 Faraday's Law; 2.33 Energy Stored in a Magnetic Field; 2.34 Magnetic Energy Density in a Given Volume; 2.35 Transformer; 2.36 Mutual Inductance; 2.37 Boundary Conditions and Maxwell Equations; 2.38 Summary of Maxwell Equations and Electromagnetic Wave Propagation; 2.39 Power Flow in Electromagnetic Fields: Poynting's Theorem; 2.40 General Form of Electromagnetic Wave Equation; 2.41 Solutions of Maxwell Equations Using Complex Phasors; 2.42 Determination of the Electromagnetic Field Distribution of a Short Current Element: Hertzian Dipole Problem
2.43 Antenna Loss
Record Nr. UNINA-9910139434803321
Yarman Binboga Siddik  
Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design of ultra wideband power transfer networks [[electronic resource] /] / Binboga Siddik Yarman
Design of ultra wideband power transfer networks [[electronic resource] /] / Binboga Siddik Yarman
Autore Yarman Binboga Siddik
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2010
Descrizione fisica 1 online resource (777 p.)
Disciplina 621.384/135
Soggetto topico Ultra-wideband antennas - Design and construction
Broadband communication systems - Power supply - Design and construction
Telecommunication lines - Design and construction
Broadband amplifiers - Design and construction
Impedance matching
Electric power transmission
ISBN 1-282-54843-3
9786612548437
0-470-68892-0
0-470-68891-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DESIGN OF ULTRA WIDEBAND POWER TRANSFER NETWORKS; Contents; About the Author; Preface; 1 Circuit Theory for Power Transfer Networks; 1.1 Introduction; 1.2 Ideal Circuit Elements; 1.3 Average Power Dissipation and Effective Voltage and Current; 1.4 Definitions of Voltage and Current Phasors; 1.5 Definitions of Active, Passive and Lossless One-ports; 1.6 Definition of Resistor; 1.7 Definition of Capacitor; 1.8 Definition of Inductor; 1.9 Definition of an Ideal Transformer; 1.10 Coupled Coils; 1.11 Definitions: Laplace and Fourier Transformations of a Time Domain Function f(t)
1.12 Useful Mathematical Properties of Laplace and Fourier Transforms of a Causal Function 1.13 Numerical Evaluation of Hilbert Transform; 1.14 Convolution; 1.15 Signal Energy; 1.16 Definition of Impedance and Admittance; 1.17 Immittance of One-port Networks; 1.18 Definition: 'Positive Real Functions'; 2 Electromagnetic Field Theory for Power Transfer Networks: Fields,Waves and Lumped Circuit Models; 2.1 Introduction; 2.2 Coulomb's Law and Electric Fields; 2.3 Definition of Electric Field; 2.4 Definition of Electric Potential; 2.5 Units of Force, Energy and Potential
2.6 Uniform Electric Field 2.7 Units of Electric Field; 2.8 Definition of Displacement Vector or 'Electric Flux Density Vector' D; 2.9 Boundary Conditions in an Electric Field; 2.10 Differential Relation between the Potential and the Electric Field; 2.11 Parallel Plate Capacitor; 2.12 Capacitance of a Transmission Line; 2.13 Capacitance of Coaxial Cable; 2.14 Resistance of a Conductor of Length L: Ohm's Law; 2.15 Principle of Charge Conservation and the Continuity Equation; 2.16 Energy Density in an Electric Field; 2.17 The Magnetic Field
2.18 Generation of Magnetic Fields: Biot-Savart and Ampre's Law 2.19 Direction of Magnetic Field: Right Hand Rule; 2.20 Unit of Magnetic Field: Related Quantities; 2.21 Unit of Magnetic Flux Density B; 2.22 Unit of Magnetic Flux ; 2.23 Definition of Inductance L; 2.24 Permeability and its Unit; 2.25 Magnetic Force between Two Parallel Wires; 2.26 Magnetic Field Generated by a Circular Current-Carrying Wire; 2.27 Magnetic Field of a Tidily Wired Solenoid of N Turns; 2.28 The Toroid; 2.29 Inductance of N-Turn Wire Loops; 2.30 Inductance of a Coaxial Transmission Line
2.31 Parallel Wire Transmission Line 2.32 Faraday's Law; 2.33 Energy Stored in a Magnetic Field; 2.34 Magnetic Energy Density in a Given Volume; 2.35 Transformer; 2.36 Mutual Inductance; 2.37 Boundary Conditions and Maxwell Equations; 2.38 Summary of Maxwell Equations and Electromagnetic Wave Propagation; 2.39 Power Flow in Electromagnetic Fields: Poynting's Theorem; 2.40 General Form of Electromagnetic Wave Equation; 2.41 Solutions of Maxwell Equations Using Complex Phasors; 2.42 Determination of the Electromagnetic Field Distribution of a Short Current Element: Hertzian Dipole Problem
2.43 Antenna Loss
Record Nr. UNINA-9910829012703321
Yarman Binboga Siddik  
Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamics and control of electric transmission and microgrids / / Professor K. R Padiyar, Professor Anil M Kulkarni
Dynamics and control of electric transmission and microgrids / / Professor K. R Padiyar, Professor Anil M Kulkarni
Autore Padiyar K. R.
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2018]
Descrizione fisica 1 online resource (661 pages)
Disciplina 621.319
Soggetto topico Electric power systems - Control
Electric power transmission
Microgrids (Smart power grids)
Soggetto genere / forma Electronic books.
ISBN 1-119-17339-6
1-119-17340-X
1-119-17341-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- Acknowledgements xv -- 1 Introduction 1 -- 1.1 Present Status of Grid Operation 1 -- 1.1.1 General 1 -- 1.1.2 HVDC Transmission 4 -- 1.1.3 Reliability of Electricity Supply 4 -- 1.2 Overview of System Dynamics and Control 4 -- 1.2.1 Power System Stability 4 -- 1.2.2 Mathematical Preliminaries 6 -- Stability of Equilibrium Point 6 -- Steady-State Behavior 8 -- 1.2.3 Power System Security 8 -- 1.3 Monitoring and Enhancing System Security 10 -- 1.4 Emergency Control and System Protection 11 -- 1.5 Recent Developments 12 -- 1.5.1 Power System Protection 12 -- 1.5.2 Development of Smart Grids 13 -- 1.5.3 Microgrids 14 -- 1.5.4 Role of System Dynamics and Control 14 -- 1.6 Outline of Chapters 14 -- References 17 -- 2 Grid Characteristics and Operation 19 -- 2.1 Description of Electric Grids 19 -- 2.2 Detailed Modeling of Three-Phase AC Lines 21 -- 2.3 Circuit Models of Symmetric Networks 22 -- 2.4 Network Equations in DQo and 𝛼𝛽o Components 23 -- 2.4.1 Transformation to Park (dqo) Components 24 -- 2.4.2 Steady-State Equations 25 -- 2.4.3 D-Q Transformation using 𝛼-𝛽 Variables 26 -- 2.5 Frequency and Power Control 28 -- 2.5.1 Tie-Line Bias Frequency Control 31 -- 2.6 Dynamic Characteristics of AC Grids 33 -- 2.6.1 Grid Response to Frequency Modulation 33 -- 2.6.2 Grid Response to Injection of Reactive Current 35 -- 2.7 Control of Power Flow in AC Grids 38 -- 2.7.1 Power Transfer Capability of a Line 38 -- 2.7.2 Power Flow in a Line connected to an AC Transmission Grid 41 -- 2.8 Analysis of Electromagnetic Transients 42 -- 2.8.1 Modeling of Lumped Parameter Components 42 -- 2.8.2 Modeling of a Single-Phase Line 43 -- 2.8.3 Approximation of Series Resistance of Line 44 -- 2.8.4 Modeling of Lossless Multiphase Line 45 -- 2.8.5 Modeling of Multiphase Networks with Lumped Parameters 46 -- 2.9 Transmission Expansion Planning 47 -- 2.10 Reliability in Distribution Systems 48 -- 2.11 Reliable Power Flows in a Transmission Network 48.
2.12 Reliability Analysis of Transmission Networks 50 -- 2.A Analysis of a Distributed Parameter Single-Phase Line in Steady State 51 -- 2.A.1 Expressions for a Lossless Line 53 -- 2.A.2 Performance of a Symmetrical Line 54 -- 2.B Computation of Electrical Torque 55 -- References 57 -- 3 Modeling and Simulation of Synchronous Generator Dynamics 59 -- 3.1 Introduction 59 -- 3.2 Detailed Model of a Synchronous Machine 59 -- 3.2.1 Flux Linkage Equations 60 -- 3.2.2 Voltage equations 61 -- 3.3 Park’s Transformation 62 -- 3.4 Per-Unit Quantities 69 -- 3.5 Equivalent Circuits of a Synchronous Machine 72 -- 3.6 Synchronous Machine Models for Stability Analysis 76 -- 3.6.1 Application of Model (2.1) 80 -- 3.6.2 Application of Model (1.1) 80 -- 3.6.3 Modeling of Saturation 82 -- 3.7 An Exact Circuit Model of a Synchronous Machine for Electromagnetic Transient Analysis 82 -- 3.7.1 Derivation of the Circuit Model 83 -- 3.7.2 Transformation of the Circuit Model 87 -- 3.7.3 Modeling of a Synchronous Generator in the Simulation of Electromagnetic Transients 91 -- 3.7.4 Treatment of Dynamic Saliency 92 -- 3.8 Excitation and Prime Mover Controllers 93 -- 3.8.1 Excitation Systems 93 -- 3.8.2 Modeling of Prime-Mover Control Systems 98 -- 3.9 Transient Instability due to Loss of Synchronism 101 -- 3.10 Extended Equal Area Criterion 103 -- 3.11 Dynamics of a Synchronous Generator 104 -- Network Equations 104 -- Calculation of Initial Conditions 106 -- System Simulation 108 -- 3.A Derivation of Electrical Torque 110 -- References 112 -- 4 Modeling and Simulation of Wind Power Generators 115 -- 4.1 Introduction 115 -- 4.2 Power Extraction byWind Turbines 116 -- 4.2.1 Wind Speed Characteristics 117 -- 4.2.2 Control of Power Extraction 118 -- 4.3 Generator and Power Electronic Configurations 120 -- 4.3.1 Wind Farm Configurations 122 -- 4.4 Modeling of the Rotating System 122 -- 4.5 Induction Generator Model 124 -- 4.5.1 Rotor Speed Instability 127 -- 4.5.2 Modeling Issues 130 -- 4.5.3 Frequency Conversion Using Voltage Source Converters 132.
4.6 Control of Type IIIWTG System 133 -- 4.6.1 Rotor-Side Converter Control 133 -- 4.6.2 Grid-Side Converter Control 136 -- 4.6.3 Overall Control Scheme for a Type III WTG system 137 -- 4.6.4 Simplified Modeling of the Controllers for Slow Transient Studies 141 -- 4.7 Control of Type IVWTG System 142 -- References 143 -- 5 Modeling and Analysis of FACTS and HVDC Controllers 145 -- 5.1 Introduction 145 -- 5.2 FACTS Controllers 146 -- 5.2.1 Description 146 -- 5.2.2 A General Equivalent Circuit for FACTS Controllers 147 -- 5.2.3 Benefits of the Application of FACTS Controllers 148 -- 5.2.4 Application of FACTS Controllers in Distribution Systems 150 -- 5.3 Reactive Power Control 150 -- Control Characteristics 153 -- 5.4 Thyristor-Controlled Series Capacitor 153 -- 5.4.1 Basic Concepts of Controlled Series Compensation 155 -- 5.4.2 Operation of a TCSC 157 -- 5.4.3 Analysis of a TCSC 158 -- 5.4.4 Computation of the TCSC Reactance (XTCSC) 159 -- 5.4.5 Control of the TCSC 161 -- 5.5 Static Synchronous Compensator 166 -- 5.5.1 General 166 -- 5.5.2 Two-Level (Graetz Bridge) Voltage Source Converter 168 -- 5.5.3 Pulse0020Width Modulation 169 -- 5.5.4 Analysis of a Voltage Source Converter 171 -- 5.5.5 Control of VSC 175 -- 5.6 HVDC Power Transmission 177 -- 5.6.1 Application of DC Transmission 178 -- 5.6.2 Description of HVDC Transmission Systems 178 -- 5.6.3 Analysis of a Line Commutated Converter 180 -- 5.6.4 Introduction of VSC-HVDC Transmission 186 -- 5.A Case Study of a VSC-HVDC Link 190 -- References 193 -- 6 Damping of Power Swings 195 -- 6.1 Introduction 195 -- 6.2 Origin of Power Swings 196 -- 6.3 SMIB Model with Field Flux Dynamics and AVR 199 -- 6.3.1 Small-Signal Model and Eigenvalue Analysis 201 -- 6.4 Damping and Synchronizing Torque Analysis 205 -- 6.5 Analysis of Multi-Machine Systems 210 -- 6.5.1 Electro-Mechanical Modes in a Multi-Machine System 210 -- 6.5.2 Analysis with Detailed Models 216 -- 6.6 Principles of Damping Controller Design 225 -- 6.6.1 Actuator Location and Choice of Feedback Signals 229.
6.6.2 Components of a PSDC 230 -- 6.6.3 PSDCs based on Generator Excitation Systems: Power System Stabilizers 231 -- 6.6.4 Adverse Torsional Interactions with the Speed/Slip Signal 237 -- 6.6.5 Damping of Swings using Grid-Connected Power Electronic Systems 237 -- 6.7 Concluding Remarks 241 -- 6.A Eigenvalues of the Stiffness matrix K of Section 6.5.1 242 -- 6.B Three-Machine Data 244 -- References 244 -- 7 Analysis and Control of Loss of Synchronism 247 -- 7.1 Introduction 247 -- 7.2 Effect of LoS 247 -- 7.3 Understanding the LoS Phenomenon 249 -- 7.4 Criteria for Assessment of Stability 251 -- 7.5 Power System Modeling and Simulation for Analysis of LoS 252 -- 7.5.1 Effect of System Model 254 -- 7.5.2 Effect of Changing Operating Conditions 255 -- 7.6 Loss of Synchronism in Multi-Machine Systems 256 -- 7.6.1 Effect of Disturbance Location on Mode of Separation: 258 -- 7.6.2 Effect of the Load Model 258 -- 7.6.3 Effect of Series Compensation in a Critical Line 260 -- 7.6.4 Effect of a Change in the Pre-fault Generation Schedule 261 -- 7.6.5 Voltage Phase Angular Differences across Critical Lines/Apparent Impedance seen by Relays 261 -- 7.7 Measures to Avoid LoS 263 -- 7.7.1 System Planning and Design 263 -- 7.7.2 Preventive Control During Actual Operation 264 -- 7.7.3 Emergency Control 264 -- 7.8 Assessment and Control of LoS Using Energy Functions 265 -- 7.8.1 Energy Function Method Applied to an SMIB System 266 -- 7.8.2 Energy Function Method Applied to Multi-Machine Systems/Detailed Models 270 -- 7.8.3 Evaluation of Critical Energy in a Multi-Machine System 274 -- 7.9 Generation Rescheduling Using Energy Margin Sensitivities 274 -- 7.9.1 Case Study: Generation Rescheduling 276 -- 7.A Simulation Methods for Transient Stability Studies 276 -- 7.A.1 Simultaneous Implicit Method 277 -- 7.A.2 Partitioned Explicit Method 277 -- 7.B Ten-Machine System Data 279 -- References 281 -- 8 Analysis of Voltage Stability and Control 283 -- 8.1 Introduction 283 -- 8.2 Definitions of Voltage Stability 284.
8.3 Comparison of Angle and Voltage Stability 286 -- 8.3.1 Analysis of the SMLB System 287 -- 8.4 Mathematical Preliminaries 290 -- 8.5 Factors Affecting Instability and Collapse 292 -- 8.5.1 Induction Motor Loads 292 -- 8.5.2 HVDC Converter 293 -- 8.5.3 Overexcitation Limiters 294 -- 8.5.4 OLTC Transformers 295 -- 8.5.5 A Nonlinear Dynamic Load Model 296 -- 8.6 Dynamics of Load Restoration 296 -- 8.7 Analysis of Voltage Stability and Collapse 298 -- 8.7.1 Simulation 298 -- 8.7.2 Small Signal (Linear) Analysis 298 -- 8.8 Integrated Analysis of Voltage and Angle Stability 301 -- 8.9 Analysis of Small Signal Voltage Instability Decoupled from Angle Instability 303 -- 8.9.1 Decoupling of Angle and Voltage Variables 304 -- 8.9.2 Incremental RCFN 305 -- 8.9.3 Nonlinear Reactive Loads 306 -- 8.9.4 Generator Model 306 -- Discussion 307 -- 8.10 Control of Voltage Instability 308 -- References 308 -- 9 Wide-AreaMeasurements and Applications 311 -- 9.1 Introduction 311 -- 9.2 Technology and Standards 311 -- 9.2.1 Synchrophasor Definition 313 -- 9.2.2 Reporting Rates 314 -- 9.2.3 Latency and Data Loss 315 -- 9.3 Modeling ofWAMS in Angular Stability Programs 315 -- 9.4 Online Monitoring of Power Swing Damping 316 -- 9.4.1 Modal Estimation based on Ringdown Analysis 317 -- 9.4.2 Modal Estimation based on Probing Signals 319 -- 9.4.3 Modal Estimation based on Ambient Data Analysis 323 -- 9.5 WAMS Applications in Power Swing Damping Controllers 327 -- 9.6 WAMS Applications in Emergency Control 330 -- 9.7 Generator Parameter Estimation 335 -- 9.8 Electro-MechanicalWave Propagation and Other Observations in Large Grids 335 -- References 338 -- 10 Analysis of Subsynchronous Resonance 341 -- 10.1 Introduction 341 -- 10.2 Analysis of Electrical Network Dynamics 342 -- 10.2.1 Equations in DQo Variables 344 -- 10.2.2 Interfacing a DQ Network Model with a Generator Model 346 -- 10.3 Torsional Dynamics of a Generator-Turbine System 353 -- 10.3.1 Damping of Torsional Oscillations 359 -- 10.3.2 Sensitivity of the Torsional Modes to the External Electrical System 360.
10.4 Generator-Turbine and Network Interactions: Subsynchronous Resonance 362 -- 10.4.1 Torsional Modes in Multi-Generator Systems 368 -- 10.4.2 Adverse Interactions with Turbine-Generator Controllers 371 -- 10.4.3 Detection of SSR/Torsional Monitoring 373 -- 10.4.4 Countermeasures for Subsynchronous Resonance and Subsynchronous Torsional Interactions 374 -- 10.4.5 Case Study: TCSC-Based SSDC 377 -- 10.5 Time-InvariantModels of Grid-Connected Power Electronic Systems 378 -- 10.5.1 Discrete-Time DynamicModels using the PoincaréMapping Technique 380 -- 10.5.2 Dynamic Phasor-Based Modeling 380 -- 10.5.3 Numerical Derivation of PES Models: A Frequency Scanning Approach 383 -- 10.A Transfer Function Representation of the Network 385 -- References 386 -- 11 Solar Power Generation and Energy Storage 391 -- 11.1 Introduction 391 -- 11.2 Solar Thermal Power Generation 392 -- 11.3 Solar PV Power Generation 392 -- 11.3.1 Solar Module I-V Characteristics 393 -- 11.3.2 Solar PV Connections and Power Extraction Strategies 393 -- 11.3.3 Power Electronic Converters for Solar PV Applications 395 -- 11.3.4 Maximum Power Point Tracking Algorithms 397 -- 11.3.5 Control of Grid-Connected Solar PV Plants 398 -- 11.3.6 Low-Voltage Ride Through and Voltage Support Capability 400 -- 11.4 Energy Storage 403 -- 11.4.1 Attributes of Energy Storage Devices 404 -- 11.4.2 Energy Storage Technologies 404 -- 11.4.3 Mapping to Applications 406 -- 11.4.4 Battery Modeling 410 -- References 412 -- 12 Microgrids: Operation and Control 415 -- 12.1 Introduction 415 -- 12.2 Microgrid Concept 416 -- 12.2.1 Definition of a Microgrid 416 -- 12.2.2 Control System 417 -- 12.3 Microgrid Architecture 419 -- 12.4 Distribution Automation and Control 420 -- 12.5 Operation and Control of Microgrids 421 -- 12.5.1 DER Units 421 -- 12.5.2 Microgrid Loads 423 -- 12.5.3 DER Controls 423 -- 12.5.4 Control Strategies under Grid-Connected Operation 425 -- 12.5.5 Control Strategy for an Islanded Microgrid 427 -- 12.6 Energy Management System 428.
12.6.1 Microgrid Supervisory Control 429 -- 12.6.2 Decentralized Microgrid Control based on a Multi-Agent System 430 -- 12.6.3 IndustrialMicrogrid Controllers 431 -- 12.7 Adaptive Network Protection in Microgrids 432 -- 12.7.1 Protection Issues 433 -- 12.7.2 Adaptive Protection 434 -- 12.8 Dynamic Modeling of Distributed Energy Resources 435 -- 12.8.1 Photovoltaic Array with MPP Tracker 435 -- 12.8.2 Fuel Cells 437 -- 12.8.3 Natural Gas Generator Set 438 -- 12.8.4 Fixed-SpeedWind Turbine Driving SCIG 439 -- 12.9 Some Operating Problems in Microgirds 442 -- 12.10 Integration of DG and DS in a Microgrid 444 -- 12.11 DC Microgrids 444 -- 12.12 Future Trends and Conclusions 445 -- 12.A A Three-Phase Model of an Induction Machine 448 -- References 452 -- A Equal Area Criterion 455 -- An Interesting Network Analogy 456 -- References 458 -- B Grid Synchronization and Current Regulation 459 -- Choice of Reference Frames 459 -- References 462 -- C Fryze-Buchbolz-Depenbrock Method for Load Compensation 463 -- C.1 Introduction 463 -- C.2 Description of FBDTheory 463 -- C.3 Power Theory in Multiconductor Circuits 466 -- Virtual Star Point 466 -- Collective Quantities 467 -- C.4 Examples 469 -- C.5 Load Characterization over a Period 470 -- C.6 Compensation of Non-Active Currents 471 -- Discussion 472 -- References 472 -- D Symmetrical Components and Per-Unit Representation 473 -- D.1 Symmetrical Component Representation of Three-Phase Systems 473 -- D.2 Per-Unit Representation 476 -- References 478 -- Index 479.
Record Nr. UNINA-9910467658403321
Padiyar K. R.  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamics and control of electric transmission and microgrids / / Professor K. R Padiyar, Professor Anil M Kulkarni
Dynamics and control of electric transmission and microgrids / / Professor K. R Padiyar, Professor Anil M Kulkarni
Autore Padiyar K. R.
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2018]
Descrizione fisica 1 online resource (661 pages)
Disciplina 621.319
Collana THEi Wiley ebooks.
Soggetto topico Electric power systems - Control
Electric power transmission
Microgrids (Smart power grids)
ISBN 1-119-17339-6
1-119-17340-X
1-119-17341-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- Acknowledgements xv -- 1 Introduction 1 -- 1.1 Present Status of Grid Operation 1 -- 1.1.1 General 1 -- 1.1.2 HVDC Transmission 4 -- 1.1.3 Reliability of Electricity Supply 4 -- 1.2 Overview of System Dynamics and Control 4 -- 1.2.1 Power System Stability 4 -- 1.2.2 Mathematical Preliminaries 6 -- Stability of Equilibrium Point 6 -- Steady-State Behavior 8 -- 1.2.3 Power System Security 8 -- 1.3 Monitoring and Enhancing System Security 10 -- 1.4 Emergency Control and System Protection 11 -- 1.5 Recent Developments 12 -- 1.5.1 Power System Protection 12 -- 1.5.2 Development of Smart Grids 13 -- 1.5.3 Microgrids 14 -- 1.5.4 Role of System Dynamics and Control 14 -- 1.6 Outline of Chapters 14 -- References 17 -- 2 Grid Characteristics and Operation 19 -- 2.1 Description of Electric Grids 19 -- 2.2 Detailed Modeling of Three-Phase AC Lines 21 -- 2.3 Circuit Models of Symmetric Networks 22 -- 2.4 Network Equations in DQo and 𝛼𝛽o Components 23 -- 2.4.1 Transformation to Park (dqo) Components 24 -- 2.4.2 Steady-State Equations 25 -- 2.4.3 D-Q Transformation using 𝛼-𝛽 Variables 26 -- 2.5 Frequency and Power Control 28 -- 2.5.1 Tie-Line Bias Frequency Control 31 -- 2.6 Dynamic Characteristics of AC Grids 33 -- 2.6.1 Grid Response to Frequency Modulation 33 -- 2.6.2 Grid Response to Injection of Reactive Current 35 -- 2.7 Control of Power Flow in AC Grids 38 -- 2.7.1 Power Transfer Capability of a Line 38 -- 2.7.2 Power Flow in a Line connected to an AC Transmission Grid 41 -- 2.8 Analysis of Electromagnetic Transients 42 -- 2.8.1 Modeling of Lumped Parameter Components 42 -- 2.8.2 Modeling of a Single-Phase Line 43 -- 2.8.3 Approximation of Series Resistance of Line 44 -- 2.8.4 Modeling of Lossless Multiphase Line 45 -- 2.8.5 Modeling of Multiphase Networks with Lumped Parameters 46 -- 2.9 Transmission Expansion Planning 47 -- 2.10 Reliability in Distribution Systems 48 -- 2.11 Reliable Power Flows in a Transmission Network 48.
2.12 Reliability Analysis of Transmission Networks 50 -- 2.A Analysis of a Distributed Parameter Single-Phase Line in Steady State 51 -- 2.A.1 Expressions for a Lossless Line 53 -- 2.A.2 Performance of a Symmetrical Line 54 -- 2.B Computation of Electrical Torque 55 -- References 57 -- 3 Modeling and Simulation of Synchronous Generator Dynamics 59 -- 3.1 Introduction 59 -- 3.2 Detailed Model of a Synchronous Machine 59 -- 3.2.1 Flux Linkage Equations 60 -- 3.2.2 Voltage equations 61 -- 3.3 Park’s Transformation 62 -- 3.4 Per-Unit Quantities 69 -- 3.5 Equivalent Circuits of a Synchronous Machine 72 -- 3.6 Synchronous Machine Models for Stability Analysis 76 -- 3.6.1 Application of Model (2.1) 80 -- 3.6.2 Application of Model (1.1) 80 -- 3.6.3 Modeling of Saturation 82 -- 3.7 An Exact Circuit Model of a Synchronous Machine for Electromagnetic Transient Analysis 82 -- 3.7.1 Derivation of the Circuit Model 83 -- 3.7.2 Transformation of the Circuit Model 87 -- 3.7.3 Modeling of a Synchronous Generator in the Simulation of Electromagnetic Transients 91 -- 3.7.4 Treatment of Dynamic Saliency 92 -- 3.8 Excitation and Prime Mover Controllers 93 -- 3.8.1 Excitation Systems 93 -- 3.8.2 Modeling of Prime-Mover Control Systems 98 -- 3.9 Transient Instability due to Loss of Synchronism 101 -- 3.10 Extended Equal Area Criterion 103 -- 3.11 Dynamics of a Synchronous Generator 104 -- Network Equations 104 -- Calculation of Initial Conditions 106 -- System Simulation 108 -- 3.A Derivation of Electrical Torque 110 -- References 112 -- 4 Modeling and Simulation of Wind Power Generators 115 -- 4.1 Introduction 115 -- 4.2 Power Extraction byWind Turbines 116 -- 4.2.1 Wind Speed Characteristics 117 -- 4.2.2 Control of Power Extraction 118 -- 4.3 Generator and Power Electronic Configurations 120 -- 4.3.1 Wind Farm Configurations 122 -- 4.4 Modeling of the Rotating System 122 -- 4.5 Induction Generator Model 124 -- 4.5.1 Rotor Speed Instability 127 -- 4.5.2 Modeling Issues 130 -- 4.5.3 Frequency Conversion Using Voltage Source Converters 132.
4.6 Control of Type IIIWTG System 133 -- 4.6.1 Rotor-Side Converter Control 133 -- 4.6.2 Grid-Side Converter Control 136 -- 4.6.3 Overall Control Scheme for a Type III WTG system 137 -- 4.6.4 Simplified Modeling of the Controllers for Slow Transient Studies 141 -- 4.7 Control of Type IVWTG System 142 -- References 143 -- 5 Modeling and Analysis of FACTS and HVDC Controllers 145 -- 5.1 Introduction 145 -- 5.2 FACTS Controllers 146 -- 5.2.1 Description 146 -- 5.2.2 A General Equivalent Circuit for FACTS Controllers 147 -- 5.2.3 Benefits of the Application of FACTS Controllers 148 -- 5.2.4 Application of FACTS Controllers in Distribution Systems 150 -- 5.3 Reactive Power Control 150 -- Control Characteristics 153 -- 5.4 Thyristor-Controlled Series Capacitor 153 -- 5.4.1 Basic Concepts of Controlled Series Compensation 155 -- 5.4.2 Operation of a TCSC 157 -- 5.4.3 Analysis of a TCSC 158 -- 5.4.4 Computation of the TCSC Reactance (XTCSC) 159 -- 5.4.5 Control of the TCSC 161 -- 5.5 Static Synchronous Compensator 166 -- 5.5.1 General 166 -- 5.5.2 Two-Level (Graetz Bridge) Voltage Source Converter 168 -- 5.5.3 Pulse0020Width Modulation 169 -- 5.5.4 Analysis of a Voltage Source Converter 171 -- 5.5.5 Control of VSC 175 -- 5.6 HVDC Power Transmission 177 -- 5.6.1 Application of DC Transmission 178 -- 5.6.2 Description of HVDC Transmission Systems 178 -- 5.6.3 Analysis of a Line Commutated Converter 180 -- 5.6.4 Introduction of VSC-HVDC Transmission 186 -- 5.A Case Study of a VSC-HVDC Link 190 -- References 193 -- 6 Damping of Power Swings 195 -- 6.1 Introduction 195 -- 6.2 Origin of Power Swings 196 -- 6.3 SMIB Model with Field Flux Dynamics and AVR 199 -- 6.3.1 Small-Signal Model and Eigenvalue Analysis 201 -- 6.4 Damping and Synchronizing Torque Analysis 205 -- 6.5 Analysis of Multi-Machine Systems 210 -- 6.5.1 Electro-Mechanical Modes in a Multi-Machine System 210 -- 6.5.2 Analysis with Detailed Models 216 -- 6.6 Principles of Damping Controller Design 225 -- 6.6.1 Actuator Location and Choice of Feedback Signals 229.
6.6.2 Components of a PSDC 230 -- 6.6.3 PSDCs based on Generator Excitation Systems: Power System Stabilizers 231 -- 6.6.4 Adverse Torsional Interactions with the Speed/Slip Signal 237 -- 6.6.5 Damping of Swings using Grid-Connected Power Electronic Systems 237 -- 6.7 Concluding Remarks 241 -- 6.A Eigenvalues of the Stiffness matrix K of Section 6.5.1 242 -- 6.B Three-Machine Data 244 -- References 244 -- 7 Analysis and Control of Loss of Synchronism 247 -- 7.1 Introduction 247 -- 7.2 Effect of LoS 247 -- 7.3 Understanding the LoS Phenomenon 249 -- 7.4 Criteria for Assessment of Stability 251 -- 7.5 Power System Modeling and Simulation for Analysis of LoS 252 -- 7.5.1 Effect of System Model 254 -- 7.5.2 Effect of Changing Operating Conditions 255 -- 7.6 Loss of Synchronism in Multi-Machine Systems 256 -- 7.6.1 Effect of Disturbance Location on Mode of Separation: 258 -- 7.6.2 Effect of the Load Model 258 -- 7.6.3 Effect of Series Compensation in a Critical Line 260 -- 7.6.4 Effect of a Change in the Pre-fault Generation Schedule 261 -- 7.6.5 Voltage Phase Angular Differences across Critical Lines/Apparent Impedance seen by Relays 261 -- 7.7 Measures to Avoid LoS 263 -- 7.7.1 System Planning and Design 263 -- 7.7.2 Preventive Control During Actual Operation 264 -- 7.7.3 Emergency Control 264 -- 7.8 Assessment and Control of LoS Using Energy Functions 265 -- 7.8.1 Energy Function Method Applied to an SMIB System 266 -- 7.8.2 Energy Function Method Applied to Multi-Machine Systems/Detailed Models 270 -- 7.8.3 Evaluation of Critical Energy in a Multi-Machine System 274 -- 7.9 Generation Rescheduling Using Energy Margin Sensitivities 274 -- 7.9.1 Case Study: Generation Rescheduling 276 -- 7.A Simulation Methods for Transient Stability Studies 276 -- 7.A.1 Simultaneous Implicit Method 277 -- 7.A.2 Partitioned Explicit Method 277 -- 7.B Ten-Machine System Data 279 -- References 281 -- 8 Analysis of Voltage Stability and Control 283 -- 8.1 Introduction 283 -- 8.2 Definitions of Voltage Stability 284.
8.3 Comparison of Angle and Voltage Stability 286 -- 8.3.1 Analysis of the SMLB System 287 -- 8.4 Mathematical Preliminaries 290 -- 8.5 Factors Affecting Instability and Collapse 292 -- 8.5.1 Induction Motor Loads 292 -- 8.5.2 HVDC Converter 293 -- 8.5.3 Overexcitation Limiters 294 -- 8.5.4 OLTC Transformers 295 -- 8.5.5 A Nonlinear Dynamic Load Model 296 -- 8.6 Dynamics of Load Restoration 296 -- 8.7 Analysis of Voltage Stability and Collapse 298 -- 8.7.1 Simulation 298 -- 8.7.2 Small Signal (Linear) Analysis 298 -- 8.8 Integrated Analysis of Voltage and Angle Stability 301 -- 8.9 Analysis of Small Signal Voltage Instability Decoupled from Angle Instability 303 -- 8.9.1 Decoupling of Angle and Voltage Variables 304 -- 8.9.2 Incremental RCFN 305 -- 8.9.3 Nonlinear Reactive Loads 306 -- 8.9.4 Generator Model 306 -- Discussion 307 -- 8.10 Control of Voltage Instability 308 -- References 308 -- 9 Wide-AreaMeasurements and Applications 311 -- 9.1 Introduction 311 -- 9.2 Technology and Standards 311 -- 9.2.1 Synchrophasor Definition 313 -- 9.2.2 Reporting Rates 314 -- 9.2.3 Latency and Data Loss 315 -- 9.3 Modeling ofWAMS in Angular Stability Programs 315 -- 9.4 Online Monitoring of Power Swing Damping 316 -- 9.4.1 Modal Estimation based on Ringdown Analysis 317 -- 9.4.2 Modal Estimation based on Probing Signals 319 -- 9.4.3 Modal Estimation based on Ambient Data Analysis 323 -- 9.5 WAMS Applications in Power Swing Damping Controllers 327 -- 9.6 WAMS Applications in Emergency Control 330 -- 9.7 Generator Parameter Estimation 335 -- 9.8 Electro-MechanicalWave Propagation and Other Observations in Large Grids 335 -- References 338 -- 10 Analysis of Subsynchronous Resonance 341 -- 10.1 Introduction 341 -- 10.2 Analysis of Electrical Network Dynamics 342 -- 10.2.1 Equations in DQo Variables 344 -- 10.2.2 Interfacing a DQ Network Model with a Generator Model 346 -- 10.3 Torsional Dynamics of a Generator-Turbine System 353 -- 10.3.1 Damping of Torsional Oscillations 359 -- 10.3.2 Sensitivity of the Torsional Modes to the External Electrical System 360.
10.4 Generator-Turbine and Network Interactions: Subsynchronous Resonance 362 -- 10.4.1 Torsional Modes in Multi-Generator Systems 368 -- 10.4.2 Adverse Interactions with Turbine-Generator Controllers 371 -- 10.4.3 Detection of SSR/Torsional Monitoring 373 -- 10.4.4 Countermeasures for Subsynchronous Resonance and Subsynchronous Torsional Interactions 374 -- 10.4.5 Case Study: TCSC-Based SSDC 377 -- 10.5 Time-InvariantModels of Grid-Connected Power Electronic Systems 378 -- 10.5.1 Discrete-Time DynamicModels using the PoincaréMapping Technique 380 -- 10.5.2 Dynamic Phasor-Based Modeling 380 -- 10.5.3 Numerical Derivation of PES Models: A Frequency Scanning Approach 383 -- 10.A Transfer Function Representation of the Network 385 -- References 386 -- 11 Solar Power Generation and Energy Storage 391 -- 11.1 Introduction 391 -- 11.2 Solar Thermal Power Generation 392 -- 11.3 Solar PV Power Generation 392 -- 11.3.1 Solar Module I-V Characteristics 393 -- 11.3.2 Solar PV Connections and Power Extraction Strategies 393 -- 11.3.3 Power Electronic Converters for Solar PV Applications 395 -- 11.3.4 Maximum Power Point Tracking Algorithms 397 -- 11.3.5 Control of Grid-Connected Solar PV Plants 398 -- 11.3.6 Low-Voltage Ride Through and Voltage Support Capability 400 -- 11.4 Energy Storage 403 -- 11.4.1 Attributes of Energy Storage Devices 404 -- 11.4.2 Energy Storage Technologies 404 -- 11.4.3 Mapping to Applications 406 -- 11.4.4 Battery Modeling 410 -- References 412 -- 12 Microgrids: Operation and Control 415 -- 12.1 Introduction 415 -- 12.2 Microgrid Concept 416 -- 12.2.1 Definition of a Microgrid 416 -- 12.2.2 Control System 417 -- 12.3 Microgrid Architecture 419 -- 12.4 Distribution Automation and Control 420 -- 12.5 Operation and Control of Microgrids 421 -- 12.5.1 DER Units 421 -- 12.5.2 Microgrid Loads 423 -- 12.5.3 DER Controls 423 -- 12.5.4 Control Strategies under Grid-Connected Operation 425 -- 12.5.5 Control Strategy for an Islanded Microgrid 427 -- 12.6 Energy Management System 428.
12.6.1 Microgrid Supervisory Control 429 -- 12.6.2 Decentralized Microgrid Control based on a Multi-Agent System 430 -- 12.6.3 IndustrialMicrogrid Controllers 431 -- 12.7 Adaptive Network Protection in Microgrids 432 -- 12.7.1 Protection Issues 433 -- 12.7.2 Adaptive Protection 434 -- 12.8 Dynamic Modeling of Distributed Energy Resources 435 -- 12.8.1 Photovoltaic Array with MPP Tracker 435 -- 12.8.2 Fuel Cells 437 -- 12.8.3 Natural Gas Generator Set 438 -- 12.8.4 Fixed-SpeedWind Turbine Driving SCIG 439 -- 12.9 Some Operating Problems in Microgirds 442 -- 12.10 Integration of DG and DS in a Microgrid 444 -- 12.11 DC Microgrids 444 -- 12.12 Future Trends and Conclusions 445 -- 12.A A Three-Phase Model of an Induction Machine 448 -- References 452 -- A Equal Area Criterion 455 -- An Interesting Network Analogy 456 -- References 458 -- B Grid Synchronization and Current Regulation 459 -- Choice of Reference Frames 459 -- References 462 -- C Fryze-Buchbolz-Depenbrock Method for Load Compensation 463 -- C.1 Introduction 463 -- C.2 Description of FBDTheory 463 -- C.3 Power Theory in Multiconductor Circuits 466 -- Virtual Star Point 466 -- Collective Quantities 467 -- C.4 Examples 469 -- C.5 Load Characterization over a Period 470 -- C.6 Compensation of Non-Active Currents 471 -- Discussion 472 -- References 472 -- D Symmetrical Components and Per-Unit Representation 473 -- D.1 Symmetrical Component Representation of Three-Phase Systems 473 -- D.2 Per-Unit Representation 476 -- References 478 -- Index 479.
Record Nr. UNINA-9910534500903321
Padiyar K. R.  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...