top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Frequency variations in power systems : modeling, state estimation and control / / Federico Milano, Álvaro Ortega Manjavacas
Frequency variations in power systems : modeling, state estimation and control / / Federico Milano, Álvaro Ortega Manjavacas
Autore Milano Federico
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , 2020
Descrizione fisica 1 online resource (356 pages)
Disciplina 621.31
Soggetto topico Electric power systems - Mathematical models
ISBN 1-119-55187-0
1-119-55189-7
1-119-55188-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frequency in power systems -- Power system model -- Dynamic state estimation -- Frequency control -- Frequency divider formula -- Frequency control -- Dynamic state estimation -- Power system model -- Frequency in power systems.
Record Nr. UNINA-9910554801603321
Milano Federico  
Hoboken, New Jersey : , : Wiley-IEEE Press, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frequency variations in power systems : modeling, state estimation and control / / Federico Milano, Álvaro Ortega Manjavacas
Frequency variations in power systems : modeling, state estimation and control / / Federico Milano, Álvaro Ortega Manjavacas
Autore Milano Federico
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , 2020
Descrizione fisica 1 online resource (356 pages)
Disciplina 621.31
Soggetto topico Electric power systems - Mathematical models
ISBN 1-119-55187-0
1-119-55189-7
1-119-55188-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frequency in power systems -- Power system model -- Dynamic state estimation -- Frequency control -- Frequency divider formula -- Frequency control -- Dynamic state estimation -- Power system model -- Frequency in power systems.
Record Nr. UNINA-9910810001803321
Milano Federico  
Hoboken, New Jersey : , : Wiley-IEEE Press, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Harmonic balance finite element method : applications in nonlinear electromagnetics and power systems / / Junwei Lu, Xiaojun Zhao, and Sotoshi Yamada
Harmonic balance finite element method : applications in nonlinear electromagnetics and power systems / / Junwei Lu, Xiaojun Zhao, and Sotoshi Yamada
Autore Lu Junwei
Pubbl/distr/stampa Solaris South Tower, Singapore : , : John Wiley & Sons, Inc., , [2016]
Descrizione fisica 1 online resource (290 p.)
Disciplina 621.3101/51825
Soggetto topico Electric power systems - Mathematical models
Harmonics (Electric waves) - Mathematics
Finite element method
ISBN 1-118-97579-0
1-118-97578-2
1-118-97577-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Preface xii -- About the Companion Website xv -- 1 Introduction to Harmonic Balance Finite Element Method (HBFEM) 1 -- 1.1 Harmonic Problems in Power Systems 1 -- 1.1.1 Harmonic Phenomena in Power Systems 2 -- 1.1.2 Sources and Problems of Harmonics in Power Systems 3 -- 1.1.3 Total Harmonic Distortion (THD) 4 -- 1.2 Definitions of Computational Electromagnetics and IEEE Standards 1597.1 and 1597.2 7 -- 1.2.1 "The Building Blocḱ of the Computational Electromagnetics Model 7 -- 1.2.2 The Geometry of the Model and the Problem Space 8 -- 1.2.3 Numerical Computation Methods 8 -- 1.2.4 High-Performance Computation and Visualization (HPCV) in CEM 9 -- 1.2.5 IEEE Standards 1597.1 and 1597.2 for Validation of CEM Computer Modeling and Simulations 9 -- 1.3 HBFEM Used in Nonlinear EM Field Problems and Power Systems 12 -- 1.3.1 HBFEM for a Nonlinear Magnetic Field With Current Driven 13 -- 1.3.2 HBFEM for Magnetic Field and Electric Circuit Coupled Problems 14 -- 1.3.3 HBFEM for a Nonlinear Magnetic Field with Voltage Driven 14 -- 1.3.4 HBFEM for a Three-Phase Magnetic Tripler Transformer 14 -- 1.3.5 HBFEM for a Three-Phase High-Speed Motor 15 -- 1.3.6 HBFEM for a DC-Biased 3D Asymmetrical Magnetic Structure Simulation 15 -- 1.3.7 HBFEM for a DC-Biased Problem in HV Power Transformers 16 -- References 17 -- 2 Nonlinear Electromagnetic Field and Its Harmonic Problems 19 -- 2.1 Harmonic Problems in Power Systems and Power Supply Transformers 19 -- 2.1.1 Nonlinear Electromagnetic Field 19 -- 2.1.2 Harmonics Problems Generated from Nonlinear Load and Power Electronics Devices 21 -- 2.1.3 Harmonics in the Time Domain and Frequency Domain 25 -- 2.1.4 Examples of Harmonic Producing Loads 28 -- 2.1.5 Harmonics in DC/DC Converter of Isolation Transformer 28 -- 2.1.6 Magnetic Tripler 33 -- 2.1.7 Harmonics in Multi-Pulse Rectifier Transformer 35 -- 2.2 DC-Biased Transformer in High-Voltage DC Power Transmission System 38 -- 2.2.1 Investigation and Suppression of DC Bias Phenomenon 38.
2.2.2 Characteristics of DC Bias Phenomenon and Problems to be Solved 40 -- 2.3 Geomagnetic Disturbance and Geomagnetic Induced Currents (GIC) 41 -- 2.3.1 Geomagnetically Induced Currents in Power Systems 42 -- 2.3.2 GIC-Induced Harmonic Currents in the Transformer 46 -- 2.4 Harmonic Problems in Renewable Energy and Microgrid Systems 47 -- 2.4.1 Power Electronic Devices - Harmonic Current and Voltage Sources 48 -- 2.4.2 Harmonic Distortion in Renewable Energy Systems 50 -- 2.4.3 Harmonics in the Microgrid and EV Charging System 52 -- 2.4.4 IEEE Standard 519-2014 56 -- References 58 -- 3 Harmonic Balance Methods Used in Computational Electromagnetics 60 -- 3.1 Harmonic Balance Methods Used in Nonlinear Circuit Problems 60 -- 3.1.1 The Basic Concept of Harmonic Balance in a Nonlinear Circuit 60 -- 3.1.2 The Theory of Harmonic Balance Used in a Nonlinear Circuit 63 -- 3.2 CEM for Harmonic Problem Solving in Frequency, Time and Harmonic Domains 65 -- 3.2.1 Computational Electromagnetics (CEM) Techniques and Validation 65 -- 3.2.2 Time Periodic Electromagnetic Problems Using the Finite Element Method (FEM) 66 -- 3.2.3 Comparison of Time-Periodic Steady-State Nonlinear EM Field Analysis Method 71 -- 3.3 The Basic Concept of Harmonic Balance in EM Fields 73 -- 3.3.1 Definition of Harmonic Balance 73 -- 3.3.2 Harmonic Balance in EM Fields 73 -- 3.3.3 Nonlinear Medium Description 75 -- 3.3.4 Boundary Conditions 76 -- 3.3.5 The Theory of HB-FEM in Nonlinear Magnetic Fields 76 -- 3.3.6 The Generalized HBFEM 83 -- 3.4 HBFEM for Electromagnetic Field and Electric Circuit Coupled Problems 85 -- 3.4.1 HBFEM in Voltage Source-Driven Magnetic Field 85 -- 3.4.2 Generalized Voltage Source-Driven Magnetic Field 86 -- 3.5 HBFEM for a DC-Biased Problem in High-Voltage Power Transformers 91 -- 3.5.1 DC-Biased Problem in HVDC Transformers 91 -- 3.5.2 HBFEM Model of HVDC Transformer 91 -- References 95 -- 4 HBFEM for Nonlinear Magnetic Field Problems 96 -- 4.1 HBFEM for a Nonlinear Magnetic Field with Current-Driven Source 96.
4.1.1 Numerical Model of Current Source to Magnetic Field 97 -- 4.1.2 Example of Current-Source Excitation to Nonlinear Magnetic Field 99 -- 4.2 Harmonic Analysis of Switching Mode Transformer Using Voltage-Driven Source 99 -- 4.2.1 Numerical Model of Voltage Source to Magnetic System 99 -- 4.2.2 Example of Voltage-Source Excitation to Nonlinear Magnetic Field 106 -- 4.3 Three-Phase Magnetic Frequency Tripler Analysis 107 -- 4.3.1 Magnetic Frequency Tripler 107 -- 4.3.2 Nonlinear Magnetic Material and its Saturation Characteristics 107 -- 4.3.3 Voltage Source-Driven Connected to the Magnetic Field 109 -- 4.4 Design of High-Speed and Hybrid Induction Machine using HBFEM 115 -- 4.4.1 Construction of High-Speed and Hybrid Induction Machine 115 -- 4.4.2 Numerical Model of High-Speed and Hybrid Induction Machine using HBFEM, Taking Account of Motion Effect 117 -- 4.4.3 Numerical Analysis of High Speed and Hybrid Induction Machine using HBFEM 126 -- 4.5 Three-Dimensional Axi-Symmetrical Transformer with DC-Biased Excitation 131 -- 4.5.1 Numerical Simulation of 3-D Axi-Symmetrical Structure 133 -- 4.5.2 Numerical Analysis of the Three-Dimensional Axi-Symmetrical Model 136 -- 4.5.3 Eddy Current Calculation of DC-Biased Switch Mode Transformer 138 -- References 139 -- 5 Advanced Numerical Approach using HBFEM 141 -- 5.1 HBFEM for DC-Biased Problems in HVDC Power Transformers 141 -- 5.1.1 DC Bias Phenomena in HVDC 141 -- 5.1.2 HBFEM for DC-Biased Magnetic Field 142 -- 5.1.3 High-Voltage DC (HVDC) Transformer 160 -- 5.2 Decomposed Algorithm of HBFEM 165 -- 5.2.1 Introduction 165 -- 5.2.2 Decomposed Harmonic Balanced System Equation 166 -- 5.2.3 Magnetic Field Coupled with Electric Circuits 169 -- 5.2.4 Computational Procedure Based on the Block Gauss-Seidel Algorithm 170 -- 5.2.5 DC-Biasing Test on the LCM and Computational Results 172 -- 5.2.6 Analysis of the Flux Density and Flux Distribution Under DC Bias Conditions 176 -- 5.3 HBFEM with Fixed-Point Technique 178 -- 5.3.1 Introduction 178.
5.3.2 DC-Biasing Magnetization Curve 180 -- 5.3.3 Fixed-Point Harmonic-Balanced Theory 182 -- 5.3.4 Electromagnetic Coupling 184 -- 5.3.5 Validation and Discussion 184 -- 5.4 Hysteresis Model Based on Neural Network and Consuming Function 188 -- 5.4.1 Introduction 188 -- 5.4.2 Hysteresis Model Based on Consuming Function 189 -- 5.4.3 Hysteresis Loops and Simulation 191 -- 5.4.4 Hysteresis Model Based on a Neural Network 194 -- 5.4.5 Simulation and Validation 196 -- 5.5 Analysis of Hysteretic Characteristics Under Sinusoidal and DC-Biased Excitation 199 -- 5.5.1 Globally Convergent Fixed-Point Harmonic-Balanced Method 199 -- 5.5.2 Hysteretic Characteristic Analysis of the Laminated Core 202 -- 5.5.3 Computation of the Nonlinear Magnetic Field Based on the Combination of the Two Hysteresis Models 206 -- 5.6 Parallel Computing of HBFEM in Multi-Frequency Domain 210 -- 5.6.1 HBFEM in Multi-Frequency Domain 210 -- 5.6.2 Parallel Computing of HBFEM 212 -- 5.6.3 Domain Decomposition 212 -- 5.6.4 Reordering and Multi-Coloring 213 -- 5.6.5 Loads Division in Frequency Domain 214 -- 5.6.6 Two Layers Hybrid Computing 217 -- References 217 -- 6 HBFEM and Its Future Applications 222 -- 6.1 HBFEM Model of Three-Phase Power Transformer 222 -- 6.1.1 Three-Phase Transformer 222 -- 6.1.2 Nonlinear Magnetic Material and its Saturation Characteristics 223 -- 6.1.3 Voltage Source-Driven Model Connected to the Magnetic Field 224 -- 6.1.4 HBFEM Matrix Equations, Taking Account of Extended Circuits 225 -- 6.2 Magnetic Model of a Single-Phase Transformer and a Magnetically Controlled Shunt Reactor 231 -- 6.2.1 Electromagnetic Coupling Model of a Single-Phase Transformer 231 -- 6.2.2 Solutions of the Nonlinear Magnetic Circuit Model by the Harmonic Balance Method 233 -- 6.2.3 Magnetically Controlled Shunt Reactor 235 -- 6.2.4 Experiment and Computation 237 -- 6.3 Computation Taking Account of Hysteresis Effects Based on Fixed-Point Reluctance 240 -- 6.3.1 Fixed-Point Reluctance 240 -- 6.3.2 Computational Procedure in the Frequency Domain 242.
6.3.3 Computational Results and Analysis 243 -- 6.4 HBFEM Modeling of the DC-Biased Transformer in GIC Event 245 -- 6.4.1 GIC Effects on the Transformer 245 -- 6.4.2 GIC Modeling and Harmonic Analysis 248 -- 6.4.3 GIC Modeling Using HBFEM Model 249 -- 6.5 HBFEM Used in Renewable Energy Systems and Microgrids 253 -- 6.5.1 Harmonics in Renewable Energy Systems and Microgrids 253 -- 6.5.2 Harmonic Analysis of the Transformer in Renewable Energy Systems and Microgrids 254 -- 6.5.3 Harmonic Analysis of the Transformer Using a Voltage Driven Source 256 -- 6.5.4 Harmonic Analysis of the Transformer Using a Current-Driven Source 258 -- References 261 -- Appendix 263 -- Appendix I & II 263 -- Matlab Program and the Laminated Core Model for Computation 263 -- Appendix III 265 -- FORTRAN-Based 3D Axi-Symmetrical Transformer with DC-Biased Excitation 265 -- Index 267.
Record Nr. UNINA-9910135042403321
Lu Junwei  
Solaris South Tower, Singapore : , : John Wiley & Sons, Inc., , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Harmonic balance finite element method : applications in nonlinear electromagnetics and power systems / / Junwei Lu, Xiaojun Zhao, and Sotoshi Yamada
Harmonic balance finite element method : applications in nonlinear electromagnetics and power systems / / Junwei Lu, Xiaojun Zhao, and Sotoshi Yamada
Autore Lu Junwei
Pubbl/distr/stampa Solaris South Tower, Singapore : , : John Wiley & Sons, Inc., , [2016]
Descrizione fisica 1 online resource (290 p.)
Disciplina 621.3101/51825
Soggetto topico Electric power systems - Mathematical models
Harmonics (Electric waves) - Mathematics
Finite element method
ISBN 1-118-97579-0
1-118-97578-2
1-118-97577-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Preface xii -- About the Companion Website xv -- 1 Introduction to Harmonic Balance Finite Element Method (HBFEM) 1 -- 1.1 Harmonic Problems in Power Systems 1 -- 1.1.1 Harmonic Phenomena in Power Systems 2 -- 1.1.2 Sources and Problems of Harmonics in Power Systems 3 -- 1.1.3 Total Harmonic Distortion (THD) 4 -- 1.2 Definitions of Computational Electromagnetics and IEEE Standards 1597.1 and 1597.2 7 -- 1.2.1 "The Building Blocḱ of the Computational Electromagnetics Model 7 -- 1.2.2 The Geometry of the Model and the Problem Space 8 -- 1.2.3 Numerical Computation Methods 8 -- 1.2.4 High-Performance Computation and Visualization (HPCV) in CEM 9 -- 1.2.5 IEEE Standards 1597.1 and 1597.2 for Validation of CEM Computer Modeling and Simulations 9 -- 1.3 HBFEM Used in Nonlinear EM Field Problems and Power Systems 12 -- 1.3.1 HBFEM for a Nonlinear Magnetic Field With Current Driven 13 -- 1.3.2 HBFEM for Magnetic Field and Electric Circuit Coupled Problems 14 -- 1.3.3 HBFEM for a Nonlinear Magnetic Field with Voltage Driven 14 -- 1.3.4 HBFEM for a Three-Phase Magnetic Tripler Transformer 14 -- 1.3.5 HBFEM for a Three-Phase High-Speed Motor 15 -- 1.3.6 HBFEM for a DC-Biased 3D Asymmetrical Magnetic Structure Simulation 15 -- 1.3.7 HBFEM for a DC-Biased Problem in HV Power Transformers 16 -- References 17 -- 2 Nonlinear Electromagnetic Field and Its Harmonic Problems 19 -- 2.1 Harmonic Problems in Power Systems and Power Supply Transformers 19 -- 2.1.1 Nonlinear Electromagnetic Field 19 -- 2.1.2 Harmonics Problems Generated from Nonlinear Load and Power Electronics Devices 21 -- 2.1.3 Harmonics in the Time Domain and Frequency Domain 25 -- 2.1.4 Examples of Harmonic Producing Loads 28 -- 2.1.5 Harmonics in DC/DC Converter of Isolation Transformer 28 -- 2.1.6 Magnetic Tripler 33 -- 2.1.7 Harmonics in Multi-Pulse Rectifier Transformer 35 -- 2.2 DC-Biased Transformer in High-Voltage DC Power Transmission System 38 -- 2.2.1 Investigation and Suppression of DC Bias Phenomenon 38.
2.2.2 Characteristics of DC Bias Phenomenon and Problems to be Solved 40 -- 2.3 Geomagnetic Disturbance and Geomagnetic Induced Currents (GIC) 41 -- 2.3.1 Geomagnetically Induced Currents in Power Systems 42 -- 2.3.2 GIC-Induced Harmonic Currents in the Transformer 46 -- 2.4 Harmonic Problems in Renewable Energy and Microgrid Systems 47 -- 2.4.1 Power Electronic Devices - Harmonic Current and Voltage Sources 48 -- 2.4.2 Harmonic Distortion in Renewable Energy Systems 50 -- 2.4.3 Harmonics in the Microgrid and EV Charging System 52 -- 2.4.4 IEEE Standard 519-2014 56 -- References 58 -- 3 Harmonic Balance Methods Used in Computational Electromagnetics 60 -- 3.1 Harmonic Balance Methods Used in Nonlinear Circuit Problems 60 -- 3.1.1 The Basic Concept of Harmonic Balance in a Nonlinear Circuit 60 -- 3.1.2 The Theory of Harmonic Balance Used in a Nonlinear Circuit 63 -- 3.2 CEM for Harmonic Problem Solving in Frequency, Time and Harmonic Domains 65 -- 3.2.1 Computational Electromagnetics (CEM) Techniques and Validation 65 -- 3.2.2 Time Periodic Electromagnetic Problems Using the Finite Element Method (FEM) 66 -- 3.2.3 Comparison of Time-Periodic Steady-State Nonlinear EM Field Analysis Method 71 -- 3.3 The Basic Concept of Harmonic Balance in EM Fields 73 -- 3.3.1 Definition of Harmonic Balance 73 -- 3.3.2 Harmonic Balance in EM Fields 73 -- 3.3.3 Nonlinear Medium Description 75 -- 3.3.4 Boundary Conditions 76 -- 3.3.5 The Theory of HB-FEM in Nonlinear Magnetic Fields 76 -- 3.3.6 The Generalized HBFEM 83 -- 3.4 HBFEM for Electromagnetic Field and Electric Circuit Coupled Problems 85 -- 3.4.1 HBFEM in Voltage Source-Driven Magnetic Field 85 -- 3.4.2 Generalized Voltage Source-Driven Magnetic Field 86 -- 3.5 HBFEM for a DC-Biased Problem in High-Voltage Power Transformers 91 -- 3.5.1 DC-Biased Problem in HVDC Transformers 91 -- 3.5.2 HBFEM Model of HVDC Transformer 91 -- References 95 -- 4 HBFEM for Nonlinear Magnetic Field Problems 96 -- 4.1 HBFEM for a Nonlinear Magnetic Field with Current-Driven Source 96.
4.1.1 Numerical Model of Current Source to Magnetic Field 97 -- 4.1.2 Example of Current-Source Excitation to Nonlinear Magnetic Field 99 -- 4.2 Harmonic Analysis of Switching Mode Transformer Using Voltage-Driven Source 99 -- 4.2.1 Numerical Model of Voltage Source to Magnetic System 99 -- 4.2.2 Example of Voltage-Source Excitation to Nonlinear Magnetic Field 106 -- 4.3 Three-Phase Magnetic Frequency Tripler Analysis 107 -- 4.3.1 Magnetic Frequency Tripler 107 -- 4.3.2 Nonlinear Magnetic Material and its Saturation Characteristics 107 -- 4.3.3 Voltage Source-Driven Connected to the Magnetic Field 109 -- 4.4 Design of High-Speed and Hybrid Induction Machine using HBFEM 115 -- 4.4.1 Construction of High-Speed and Hybrid Induction Machine 115 -- 4.4.2 Numerical Model of High-Speed and Hybrid Induction Machine using HBFEM, Taking Account of Motion Effect 117 -- 4.4.3 Numerical Analysis of High Speed and Hybrid Induction Machine using HBFEM 126 -- 4.5 Three-Dimensional Axi-Symmetrical Transformer with DC-Biased Excitation 131 -- 4.5.1 Numerical Simulation of 3-D Axi-Symmetrical Structure 133 -- 4.5.2 Numerical Analysis of the Three-Dimensional Axi-Symmetrical Model 136 -- 4.5.3 Eddy Current Calculation of DC-Biased Switch Mode Transformer 138 -- References 139 -- 5 Advanced Numerical Approach using HBFEM 141 -- 5.1 HBFEM for DC-Biased Problems in HVDC Power Transformers 141 -- 5.1.1 DC Bias Phenomena in HVDC 141 -- 5.1.2 HBFEM for DC-Biased Magnetic Field 142 -- 5.1.3 High-Voltage DC (HVDC) Transformer 160 -- 5.2 Decomposed Algorithm of HBFEM 165 -- 5.2.1 Introduction 165 -- 5.2.2 Decomposed Harmonic Balanced System Equation 166 -- 5.2.3 Magnetic Field Coupled with Electric Circuits 169 -- 5.2.4 Computational Procedure Based on the Block Gauss-Seidel Algorithm 170 -- 5.2.5 DC-Biasing Test on the LCM and Computational Results 172 -- 5.2.6 Analysis of the Flux Density and Flux Distribution Under DC Bias Conditions 176 -- 5.3 HBFEM with Fixed-Point Technique 178 -- 5.3.1 Introduction 178.
5.3.2 DC-Biasing Magnetization Curve 180 -- 5.3.3 Fixed-Point Harmonic-Balanced Theory 182 -- 5.3.4 Electromagnetic Coupling 184 -- 5.3.5 Validation and Discussion 184 -- 5.4 Hysteresis Model Based on Neural Network and Consuming Function 188 -- 5.4.1 Introduction 188 -- 5.4.2 Hysteresis Model Based on Consuming Function 189 -- 5.4.3 Hysteresis Loops and Simulation 191 -- 5.4.4 Hysteresis Model Based on a Neural Network 194 -- 5.4.5 Simulation and Validation 196 -- 5.5 Analysis of Hysteretic Characteristics Under Sinusoidal and DC-Biased Excitation 199 -- 5.5.1 Globally Convergent Fixed-Point Harmonic-Balanced Method 199 -- 5.5.2 Hysteretic Characteristic Analysis of the Laminated Core 202 -- 5.5.3 Computation of the Nonlinear Magnetic Field Based on the Combination of the Two Hysteresis Models 206 -- 5.6 Parallel Computing of HBFEM in Multi-Frequency Domain 210 -- 5.6.1 HBFEM in Multi-Frequency Domain 210 -- 5.6.2 Parallel Computing of HBFEM 212 -- 5.6.3 Domain Decomposition 212 -- 5.6.4 Reordering and Multi-Coloring 213 -- 5.6.5 Loads Division in Frequency Domain 214 -- 5.6.6 Two Layers Hybrid Computing 217 -- References 217 -- 6 HBFEM and Its Future Applications 222 -- 6.1 HBFEM Model of Three-Phase Power Transformer 222 -- 6.1.1 Three-Phase Transformer 222 -- 6.1.2 Nonlinear Magnetic Material and its Saturation Characteristics 223 -- 6.1.3 Voltage Source-Driven Model Connected to the Magnetic Field 224 -- 6.1.4 HBFEM Matrix Equations, Taking Account of Extended Circuits 225 -- 6.2 Magnetic Model of a Single-Phase Transformer and a Magnetically Controlled Shunt Reactor 231 -- 6.2.1 Electromagnetic Coupling Model of a Single-Phase Transformer 231 -- 6.2.2 Solutions of the Nonlinear Magnetic Circuit Model by the Harmonic Balance Method 233 -- 6.2.3 Magnetically Controlled Shunt Reactor 235 -- 6.2.4 Experiment and Computation 237 -- 6.3 Computation Taking Account of Hysteresis Effects Based on Fixed-Point Reluctance 240 -- 6.3.1 Fixed-Point Reluctance 240 -- 6.3.2 Computational Procedure in the Frequency Domain 242.
6.3.3 Computational Results and Analysis 243 -- 6.4 HBFEM Modeling of the DC-Biased Transformer in GIC Event 245 -- 6.4.1 GIC Effects on the Transformer 245 -- 6.4.2 GIC Modeling and Harmonic Analysis 248 -- 6.4.3 GIC Modeling Using HBFEM Model 249 -- 6.5 HBFEM Used in Renewable Energy Systems and Microgrids 253 -- 6.5.1 Harmonics in Renewable Energy Systems and Microgrids 253 -- 6.5.2 Harmonic Analysis of the Transformer in Renewable Energy Systems and Microgrids 254 -- 6.5.3 Harmonic Analysis of the Transformer Using a Voltage Driven Source 256 -- 6.5.4 Harmonic Analysis of the Transformer Using a Current-Driven Source 258 -- References 261 -- Appendix 263 -- Appendix I & II 263 -- Matlab Program and the Laminated Core Model for Computation 263 -- Appendix III 265 -- FORTRAN-Based 3D Axi-Symmetrical Transformer with DC-Biased Excitation 265 -- Index 267.
Record Nr. UNINA-9910830113803321
Lu Junwei  
Solaris South Tower, Singapore : , : John Wiley & Sons, Inc., , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 1707-2015 : IEEE Recommended Practice for the Investigation of Events at Nuclear Facilities / / Institute of Electrical and Electronics Engineers
IEEE Std 1707-2015 : IEEE Recommended Practice for the Investigation of Events at Nuclear Facilities / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : IEEE, , 2015
Descrizione fisica 1 online resource (37 pages)
Disciplina 621.31015118
Soggetto topico Electric power systems - Mathematical models
Electric power systems - Reliability
ISBN 0-7381-9983-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1707-2015
Record Nr. UNINA-9910137358303321
Piscataway, New Jersey : , : IEEE, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 1707-2015 : IEEE Recommended Practice for the Investigation of Events at Nuclear Facilities / / Institute of Electrical and Electronics Engineers
IEEE Std 1707-2015 : IEEE Recommended Practice for the Investigation of Events at Nuclear Facilities / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : IEEE, , 2015
Descrizione fisica 1 online resource (37 pages)
Disciplina 621.31015118
Soggetto topico Electric power systems - Mathematical models
Electric power systems - Reliability
ISBN 0-7381-9983-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1707-2015
Record Nr. UNISA-996278290903316
Piscataway, New Jersey : , : IEEE, , 2015
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Interval methods for uncertain power system analysis / / Alfredo Vaccaro
Interval methods for uncertain power system analysis / / Alfredo Vaccaro
Autore Vaccaro Alfredo
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (147 pages)
Disciplina 621.3101/5118
Collana IEEE Press Series on Power and Energy Systems Series
Soggetto topico Electric power systems
Electric power systems - Mathematical models
Electric power systems - Reliability
System analysis
Soggetto non controllato Power Resources
Electric Power
Technology & Engineering
ISBN 1-119-85507-1
1-119-85505-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830944403321
Vaccaro Alfredo  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical programming for power systems operation : from theory to applications in Python / / Alejandro Garcés Ruiz
Mathematical programming for power systems operation : from theory to applications in Python / / Alejandro Garcés Ruiz
Autore Ruiz Alejandro Garcés <1981->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2022]
Descrizione fisica 1 online resource (298 pages)
Disciplina 621.31
Collana IEEE Press Ser.
Soggetto topico Electric power systems - Mathematical models
Convex programming
Python (Computer program language)
Soggetto genere / forma Electronic books.
ISBN 1-119-74728-7
1-119-74729-5
1-119-74727-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Mathematical Programming for Power Systems Operation -- Contents -- Acknowledgment -- Introduction -- 1 Power systems operation -- 1.1 Mathematical programming for power systems operation -- 1.2 Continuous models -- 1.2.1 Economic and environmental dispatch -- 1.2.2 Hydrothermal dispatch -- 1.2.3 Effect of the grid constraints -- 1.2.4 Optimal power flow -- 1.2.5 Hosting capacity -- 1.2.6 Demand-side management -- 1.2.7 Energy storage management -- 1.2.8 State estimation and grid identification -- 1.3 Binary problems in power systems operation -- 1.3.1 Unit commitment -- 1.3.2 Optimal placement of distributed generation and capacitors -- 1.3.3 Primary feeder reconfiguration and topology identification -- 1.3.4 Phase balancing -- 1.4 Real-time implementation -- 1.5 Using Python -- Part I Mathematical programming -- 2 A brief introduction to mathematical optimization -- 2.1 About sets and functions -- 2.2 Norms -- 2.3 Global and local optimum -- 2.4 Maximum and minimum values of continuous functions -- 2.5 The gradient method -- 2.6 Lagrange multipliers -- 2.7 The Newton's method -- 2.8 Further readings -- 2.9 Exercises -- 3 Convex optimization -- 3.1 Convex sets -- 3.2 Convex functions -- 3.3 Convex optimization problems -- 3.4 Global optimum and uniqueness of the solution -- 3.5 Duality -- 3.6 Further readings -- 3.7 Exercises -- 4 Convex Programming in Python -- 4.1 Python for convex optimization -- 4.2 Linear programming -- 4.3 Quadratic forms -- 4.4 Semidefinite matrices -- 4.5 Solving quadratic programming problems -- 4.6 Complex variables -- 4.7 What is inside the box? -- 4.8 Mixed-integer programming problems -- 4.9 Transforming MINLP into MILP -- 4.10 Further readings -- 4.11 Exercises -- 5 Conic optimization -- 5.1 Convex cones -- 5.2 Second-order cone optimization -- 5.2.1 Duality in SOC problems -- 5.3 Semidefinite programming.
5.3.1 Trace, determinant, and the Shur complement -- 5.3.2 Cone of semidefinite matrices -- 5.3.3 Duality in SDP -- 5.4 Semidefinite approximations -- 5.5 Polynomial optimization -- 5.6 Further readings -- 5.7 Exercises -- 6 Robust optimization -- 6.1 Stochastic vs robust optimization -- 6.1.1 Stochastic approach -- 6.1.2 Robust approach -- 6.2 Polyhedral uncertainty -- 6.3 Linear problems with norm uncertainty -- 6.4 Defining the uncertainty set -- 6.5 Further readings -- 6.6 Exercises -- Part II Power systems operation -- 7 Economic dispatch of thermal units -- 7.1 Economic dispatch -- 7.2 Environmental dispatch -- 7.3 Effect of the grid -- 7.4 Loss equation -- 7.5 Further readings -- 7.6 Exercises -- 8 Unit commitment -- 8.1 Problem definition -- 8.2 Basic unit commitment model -- 8.3 Additional constraints -- 8.4 Effect of the grid -- 8.5 Further readings -- 8.6 Exercises -- 9 Hydrothermal scheduling -- 9.1 Short-term hydrothermal coordination -- 9.2 Basic hydrothermal coordination -- 9.3 Non-linear models -- 9.4 Hydraulic chains -- 9.5 Pumped hydroelectric storage -- 9.6 Further readings -- 9.7 Exercises -- 10 Optimal power flow -- 10.1 OPF in power distribution grids -- 10.1.1 A brief review of power flow analysis -- 10.2 Complex linearization -- 10.2.1 Sequential linearization -- 10.2.2 Exponential models of the load -- 10.3 Second-order cone approximation -- 10.4 Semidefinite approximation -- 10.5 Further readings -- 10.6 Exercises -- 11 Active distribution networks -- 11.1 Modern distribution networks -- 11.2 Primary feeder reconfiguration -- 11.3 Optimal placement of capacitors -- 11.4 Optimal placement of distributed generation -- 11.5 Hosting capacity of solar energy -- 11.6 Harmonics and reactive power compensation -- 11.7 Further readings -- 11.8 Exercises -- 12 State estimation and grid identification -- 12.1 Measurement units.
12.2 State estimation -- 12.3 Topology identification -- 12.4 Ybus estimation -- 12.5 Load model estimation -- 12.6 Further readings -- 12.7 Exercises -- 13 Demand-side management -- 13.1 Shifting loads -- 13.2 Phase balancing -- 13.3 Energy storage management -- 13.4 Further readings -- 13.5 Exercises -- A The nodal admittance matrix -- B Complex linearization -- C Some Python examples -- C.1 Basic Python -- C.2 NumPy -- C.3 MatplotLib -- C.4 Pandas -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9910555012803321
Ruiz Alejandro Garcés <1981->  
Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical programming for power systems operation : from theory to applications in Python / / Alejandro Garcés Ruiz
Mathematical programming for power systems operation : from theory to applications in Python / / Alejandro Garcés Ruiz
Autore Ruiz Alejandro Garcés <1981->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2022]
Descrizione fisica 1 online resource (298 pages)
Disciplina 621.31
Collana IEEE Press
Soggetto topico Electric power systems - Mathematical models
Convex programming
Python (Computer program language)
ISBN 1-119-74728-7
1-119-74729-5
1-119-74727-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Mathematical Programming for Power Systems Operation -- Contents -- Acknowledgment -- Introduction -- 1 Power systems operation -- 1.1 Mathematical programming for power systems operation -- 1.2 Continuous models -- 1.2.1 Economic and environmental dispatch -- 1.2.2 Hydrothermal dispatch -- 1.2.3 Effect of the grid constraints -- 1.2.4 Optimal power flow -- 1.2.5 Hosting capacity -- 1.2.6 Demand-side management -- 1.2.7 Energy storage management -- 1.2.8 State estimation and grid identification -- 1.3 Binary problems in power systems operation -- 1.3.1 Unit commitment -- 1.3.2 Optimal placement of distributed generation and capacitors -- 1.3.3 Primary feeder reconfiguration and topology identification -- 1.3.4 Phase balancing -- 1.4 Real-time implementation -- 1.5 Using Python -- Part I Mathematical programming -- 2 A brief introduction to mathematical optimization -- 2.1 About sets and functions -- 2.2 Norms -- 2.3 Global and local optimum -- 2.4 Maximum and minimum values of continuous functions -- 2.5 The gradient method -- 2.6 Lagrange multipliers -- 2.7 The Newton's method -- 2.8 Further readings -- 2.9 Exercises -- 3 Convex optimization -- 3.1 Convex sets -- 3.2 Convex functions -- 3.3 Convex optimization problems -- 3.4 Global optimum and uniqueness of the solution -- 3.5 Duality -- 3.6 Further readings -- 3.7 Exercises -- 4 Convex Programming in Python -- 4.1 Python for convex optimization -- 4.2 Linear programming -- 4.3 Quadratic forms -- 4.4 Semidefinite matrices -- 4.5 Solving quadratic programming problems -- 4.6 Complex variables -- 4.7 What is inside the box? -- 4.8 Mixed-integer programming problems -- 4.9 Transforming MINLP into MILP -- 4.10 Further readings -- 4.11 Exercises -- 5 Conic optimization -- 5.1 Convex cones -- 5.2 Second-order cone optimization -- 5.2.1 Duality in SOC problems -- 5.3 Semidefinite programming.
5.3.1 Trace, determinant, and the Shur complement -- 5.3.2 Cone of semidefinite matrices -- 5.3.3 Duality in SDP -- 5.4 Semidefinite approximations -- 5.5 Polynomial optimization -- 5.6 Further readings -- 5.7 Exercises -- 6 Robust optimization -- 6.1 Stochastic vs robust optimization -- 6.1.1 Stochastic approach -- 6.1.2 Robust approach -- 6.2 Polyhedral uncertainty -- 6.3 Linear problems with norm uncertainty -- 6.4 Defining the uncertainty set -- 6.5 Further readings -- 6.6 Exercises -- Part II Power systems operation -- 7 Economic dispatch of thermal units -- 7.1 Economic dispatch -- 7.2 Environmental dispatch -- 7.3 Effect of the grid -- 7.4 Loss equation -- 7.5 Further readings -- 7.6 Exercises -- 8 Unit commitment -- 8.1 Problem definition -- 8.2 Basic unit commitment model -- 8.3 Additional constraints -- 8.4 Effect of the grid -- 8.5 Further readings -- 8.6 Exercises -- 9 Hydrothermal scheduling -- 9.1 Short-term hydrothermal coordination -- 9.2 Basic hydrothermal coordination -- 9.3 Non-linear models -- 9.4 Hydraulic chains -- 9.5 Pumped hydroelectric storage -- 9.6 Further readings -- 9.7 Exercises -- 10 Optimal power flow -- 10.1 OPF in power distribution grids -- 10.1.1 A brief review of power flow analysis -- 10.2 Complex linearization -- 10.2.1 Sequential linearization -- 10.2.2 Exponential models of the load -- 10.3 Second-order cone approximation -- 10.4 Semidefinite approximation -- 10.5 Further readings -- 10.6 Exercises -- 11 Active distribution networks -- 11.1 Modern distribution networks -- 11.2 Primary feeder reconfiguration -- 11.3 Optimal placement of capacitors -- 11.4 Optimal placement of distributed generation -- 11.5 Hosting capacity of solar energy -- 11.6 Harmonics and reactive power compensation -- 11.7 Further readings -- 11.8 Exercises -- 12 State estimation and grid identification -- 12.1 Measurement units.
12.2 State estimation -- 12.3 Topology identification -- 12.4 Ybus estimation -- 12.5 Load model estimation -- 12.6 Further readings -- 12.7 Exercises -- 13 Demand-side management -- 13.1 Shifting loads -- 13.2 Phase balancing -- 13.3 Energy storage management -- 13.4 Further readings -- 13.5 Exercises -- A The nodal admittance matrix -- B Complex linearization -- C Some Python examples -- C.1 Basic Python -- C.2 NumPy -- C.3 MatplotLib -- C.4 Pandas -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9910677364103321
Ruiz Alejandro Garcés <1981->  
Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modelling and analysing the market integration of flexible demand and storage resources / / Ye Yujian
Modelling and analysing the market integration of flexible demand and storage resources / / Ye Yujian
Autore Yujian Ye
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (188 pages)
Disciplina 333.7932015118
Soggetto topico Demand-side management (Electric utilities)
Electric power systems - Mathematical models
Energy industries
ISBN 9789811919640
9789811919633
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Monograph Context -- 1.2 Monograph Motivation -- 1.2.1 Role of Flexible Demand and Energy Storage in the Emerging Power System Setting -- 1.2.2 Market-Based Realization of Flexible Demand and Energy Storage Flexibility -- 1.3 Monograph Scope and Original Contributions -- 1.3.1 Monograph Scope -- 1.3.2 Monograph Original Contributions -- 1.4 Monograph Outline -- References -- 2 Current Trends on Market Integration of Flexible Demand and Energy Storage -- 2.1 Introduction -- 2.2 Modelling Approaches for Flexible Demand and Energy Storage -- 2.3 Market Arrangements for Flexible Demand and Energy Storage -- 2.3.1 Centralized Market Clearing Mechanism -- 2.3.2 Decentralized Dynamic Pricing-Based Mechanism -- 2.4 Participation of Flexible Demand and Energy Storage in Different Market Segments -- 2.5 Centralized Market Clearing Mechanism with Flexible Demand and Energy Storage Participation -- 2.5.1 Assumptions on Examined Electricity Market Model -- 2.5.2 Model of Centralized Market Clearing Mechanism -- References -- 3 Factoring Flexible Demand Non-convexities in Electricity Markets -- 3.1 Introduction -- 3.2 Literature Review -- 3.3 Centralized Market Clearing Under Flexible Demand Participation -- 3.3.1 Modelling Generation Participants -- 3.3.2 Modelling Flexible Demand Participants -- 3.3.3 Centralized Market Clearing Solutions -- 3.4 Surplus Sub-Optimality Effects and Their Relation to Participants' Non-convexities -- 3.4.1 Surplus Sub-Optimality -- 3.4.2 Generation Non-Convexities and Impact on Surplus Optimality -- 3.4.3 Flexible Demand Non-convexities and Impact on Surplus Optimality -- 3.5 Generalized Uplifts Under Flexible Demand Participation -- 3.5.1 Lump-Sum Uplifts -- 3.5.2 Generalized Uplifts -- 3.5.3 Formulation of Minimum Discrimination Problem.
3.5.4 Solution Techniques of the Minimum Discrimination Problem -- 3.6 Convex Hull Pricing Under Flexible Demand Participation -- 3.6.1 Concept of Convex Hull Pricing -- 3.6.2 Lagrangian Formulation of Convex Hull Pricing Problem -- 3.6.3 Solution Techniques of the Lagrangian Dual Problem -- 3.7 Case Studies -- 3.7.1 Test Data and Implementation -- 3.7.2 Impact of Flexible Demand Non-Convexities -- 3.7.3 Generalized Uplift Approach -- 3.7.4 Convex Hull Pricing Approach -- 3.8 Conclusions -- References -- 4 Investigating the Impact of Flexible Demand and Energy Storage on the Exercise of Market Power by Strategic Producers in Imperfect Electricity Markets -- 4.1 Introduction -- 4.2 Literature Review -- 4.2.1 Modelling Imperfect Markets with Strategic Electricity Producers -- 4.2.2 Generation Market Power Mitigation -- 4.3 Modelling Market Participants -- 4.3.1 Strategic Generation Participants -- 4.3.2 Demand Participants -- 4.3.3 Energy Storage -- 4.4 Theoretical Analysis of Impact of Demand Side and Energy Storage on Market Power -- 4.4.1 Impact of Demand Own-Price Elasticity -- 4.4.2 Impact of Demand Shifting and Energy Storage -- 4.5 Modelling Oligopolistic Electricity Markets with Demand Shifting and Energy Storage -- 4.5.1 Bi-Level Optimization Model -- 4.5.2 MPEC Formulation -- 4.5.3 MILP Formulation -- 4.5.4 Determining the Oligopolistic Market Equilibrium -- 4.6 Case Studies -- 4.6.1 Test Data and Implementation -- 4.6.2 Impact of Demand Shifting and Energy Storage: Uncongested Network -- 4.6.3 Impact of Demand Shifting and Energy Storage: Congested Network -- 4.7 Conclusions -- References -- 5 Investigating the Exercise of Market Power by Strategic Flexible Demand and Energy Storage in Imperfect Electricity Markets -- 5.1 Introduction -- 5.2 Literature Review -- 5.2.1 Modelling Strategic Behaviour of Demand Participants.
5.2.2 Modelling Strategic Behaviour of Energy Storage Participants -- 5.3 Modelling Market Participants -- 5.3.1 Generation Participants -- 5.3.2 Demand Participants -- 5.3.3 Strategic Energy Storage -- 5.4 Qualitative Analysis of Demand Side and Energy Storage Market Power Capability -- 5.4.1 Market Power Potential of the Demand Side -- 5.4.2 Market Power Potential of Energy Storage -- 5.5 Optimizing Capacity Withholding Strategies of Energy Storage -- 5.5.1 Bi-Level Optimization Model -- 5.5.2 MPEC Formulation -- 5.5.3 MILP Formulation -- 5.6 Case Studies -- 5.6.1 Test Data and Implementation -- 5.6.2 Quantifying the Optimal Extent of Capacity Withholding by Energy Storage -- 5.6.3 Impact of Storage Size -- 5.6.4 Impact of the Characteristics of the Demand Side -- 5.6.5 Impact of the Characteristics of Wind Generation -- 5.6.6 Impact of Storage Location -- 5.7 Conclusions -- References -- 6 Conclusions and Future Work -- 6.1 Conclusions -- 6.2 Further Work -- 6.2.1 Modelling and Pricing Flexible Demand Non-convexities -- 6.2.2 Modelling and Analysing the Role of Flexible Demand and Energy Storage in Imperfect Markets -- References -- Appendix A Convexity Principles -- Appendix B Lagrangian Formulation of Convex Hull Pricing Problem -- References.
Record Nr. UNINA-9910585782103321
Yujian Ye  
Gateway East, Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui