top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cognitive radio techniques : spectrum sensing, interference mitigation, and localization / / Kandeepan Sithamparanathan, Andrea Giorgetti
Cognitive radio techniques : spectrum sensing, interference mitigation, and localization / / Kandeepan Sithamparanathan, Andrea Giorgetti
Autore Sithamparanathan Kandeepan
Pubbl/distr/stampa Boston, Massachusetts : , : Artech House, , ©2012
Descrizione fisica 1 online resource (395 p.)
Disciplina 395
Altri autori (Persone) GiorgettiAndrea
Collana Artech House mobile communications library
Soggetto topico Cognitive radio networks
ISBN 1-60807-204-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cognitive Radio Techniques Spectrum Sensing, Interference Mitigation, and Localization; Contents; Preface; 1 Introduction to Cognitive Radios; 1.1 Introduction; 1.2 Definition of Cognitive Radios; 1.3 Software-Defined Radios; 1.4 The Cognitive Cycle; 1.5 The Radio Scene Analysis; 1.5.1 Spectrum Occupancy Classification; 1.5.2 Hidden Terminals; 1.5.3 Locating Primary Users; 1.6 Dynamic Spectrum Access and Management; 1.6.1 Spectrum Underlay and Overlay; 1.7 Regulatory Aspects; 1.7.1 The IEEE DySPAN Standards Committee; 1.7.2 The IEEE 802.22 WRAN Standards
1.7.3 The ETSI-RRS Technical Committee1.8 Application Clusters; 1.8.1 Cellular Mobile Networks; 1.8.2 Energy Efficiency is Wireless Networks; 1.8.3 Public Safety Communications; 1.8.4 Coexistence of UWB Radio Technology; 1.8.5 Wireless Networks for Smart Grids; 1.8.6 Vehicular Networks; 1.8.7 Defense Application Systems; References; Part I: Spectrum Sensing in Cognitive Radios; 2 Fundamentals of Spectrum Sensing and Detection; 2.1 Introduction; 2.2 Statistical Detection Techniques; 2.2.1 Maximum A Posteriori Detection; 2.2.2 Maximum Likelihood Detection; 2.2.3 The Neyman-Pearson Detector
2.2.4 The Bayesian Risk-Based Detector2.3 Continuous and Discrete Signal Detection; 2.4 Detection Performance; 2.4.1 Detection Performance Versus the SNR; 2.4.2 Detection Performance Versus the Signal Observation Length; 2.4.3 The ROC Curves; 2.4.4 Area Under the ROC Curves; 2.5 Wireless Channel Models; 2.5.1 Mean Pathloss; 2.5.2 Shadowing; 2.5.3 Small Scale Fading; 2.6 Basic Models for Spectrum Occupancy; 2.6.1 The Poisson-Exponential Model; 2.6.2 The Markov Modulated Poisson Process; 2.6.3 The Poisson-Pareto Burst Process; 2.7 Stochastic Analysis of Radio Signals
2.8 Blind, Partial, and Complete Context Aware Signal Detection2.8.1 Blind Signal Detection; 2.8.2 Partial-Context Aware Signal Detection; 2.8.3 Fully Context Aware Signal Detection; 2.9 Summary; References; 3 Introduction to Spectrum Sensing Techniques; 3.1 Introduction; 3.2 Spectrum Sensing with Energy Detection; 3.2.1 Energy Detector; 3.2.2 Energy Detector in Gaussian Channel; 3.2.3 Energy Detector in Fading Channels; 3.2.4 Energy Detector in Fading Channels with Shadowing; 3.3 Energy Detection and Noise Power Uncertainty; 3.3.1 ED Threshold Mismatch; 3.3.2 SNR Wall
3.3.3 Existence of the SNR Wall3.4 Spectrum Sensing with Cyclostationary Feature Detection; 3.4.1 Cyclostationarity Analysis; 3.4.2 Cyclostationary Feature-Based Detector; 3.5 Spectrum Sensing with Matched Filter Detection; 3.6 Other Spectrum Sensing Techniques; 3.6.1 Covariance-Based Method; 3.6.2 Eigenvalue-Based Method; 3.6.3 Wavelet-Based Edge Detection; 3.6.4 Spectral Estimation Methods; 3.7 Summary; References; 4 Temporal Spectrum Sensing and Performance Analysis; 4.1 Introduction; 4.2 Temporal Periodic-Spectrum Sensing; 4.3 P rimary User Spectral Occupancy Model with Poisson Arrival
Record Nr. UNINA-9910812094103321
Sithamparanathan Kandeepan  
Boston, Massachusetts : , : Artech House, , ©2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio-oriented wireless networks : 15th EAI International Conference, CrownCom 2020, Rome, Italy, November 25-26, 2020, Proceedings / / Giuseppe Caso, Luca De Nardis, Liljana Gavrilovska (editors)
Cognitive radio-oriented wireless networks : 15th EAI International Conference, CrownCom 2020, Rome, Italy, November 25-26, 2020, Proceedings / / Giuseppe Caso, Luca De Nardis, Liljana Gavrilovska (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (x, 192 pages)
Disciplina 384.54524
Collana Lecture notes of the Institute for Computer Sciences, Social Informatics, and Telecommunications Engineering
Soggetto topico Cognitive radio networks
ISBN 3-030-73423-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Conference Organization -- Contents -- Spectrum Sensing and Environment Awareness -- Active User Blind Detection Through Deep Learning -- 1 Introduction -- 2 System Model for the Massive Random Access -- 2.1 Non-coherent AUD -- 2.2 MAP Detectors -- 2.3 It-MAP Detector -- 3 A Neural Network Based Algorithm -- 3.1 The NN-MAP Estimate -- 3.2 The NN-MAP System Parameters -- 4 Results -- 5 Conclusion -- References -- Spectrum Sensing Based on Dynamic Primary User with Additive Laplacian Noise in Cognitive Radio -- 1 Introduction -- 2 System Model -- 3 Dynamic PU Modeling -- 3.1 Energy Detection -- 3.2 AVCD and i-AVCD -- 4 Results -- 5 Conclusion -- References -- Blind Source Separation for Wireless Networks: A Tool for Topology Sensing -- 1 Introduction -- 1.1 Existing Works -- 1.2 Application Scenarios -- 2 System Model and Problem Formulation -- 2.1 Data Acquisition and Channel Model -- 3 Blind Source Separation -- 3.1 Whitening and Estimation of the Number of Sources -- 3.2 Independent Component Analysis -- 3.3 Unmixed Signals Association -- 3.4 Excision Filter -- 4 Topology Inference Algorithms -- 4.1 Granger Causality -- 4.2 Transfer Entropy -- 5 Numerical Results -- 5.1 BSS Reconstruction Error -- 5.2 Topology Inference and Number of Nodes -- 5.3 Impact of Shadowing -- 6 Conclusion -- References -- Resource Management and Optimization -- Efficient Clustering Schemes Towards Information Collection -- 1 Introduction -- 2 Energy Efficiency in Cooperative Spectrum Sensing -- 3 Clustering Algorithms -- 4 Simulation Results -- 5 Conclusions -- References -- A Non-zero Sum Power Control Game with Uncertainty -- 1 Introduction -- 2 Communication Model -- 2.1 Auxiliary Notations and Results -- 2.2 Equilibrium Strategies -- 3 Stackelberg Game -- 3.1 Auxiliary Notations and Results -- 3.2 Stackelberg Equilibrium Strategies.
4 Discussion of the Results -- 5 Conclusions -- References -- Demonstrating Spectrally Efficient Asynchronous Coexistence for Machine Type Communication: A Software Defined Radio Approach -- 1 Introduction -- 2 Background -- 2.1 Related Work -- 3 Asynchronous Coexistence -- 4 SDR Approach for Coexistence Studies -- 4.1 Workflow -- 4.2 F-OFDM Filter Implementation -- 4.3 An Automated Test Framework for EVM and BER Measurements -- 5 Results -- 5.1 Simulations -- 5.2 Hardware Experiments -- 6 Conclusions and Future Work -- References -- Verticals and Applications -- Distance Estimation for Database-Assisted Autonomous Platooning -- 1 Introduction -- 2 Negative Impact of Distance Measurement Errors -- 2.1 Impact on Distance-Related Entries in Databases -- 2.2 Impact on Pathloss Modelling -- 2.3 Combined Distance Measurement Scheme -- 3 Pathloss Measurements - Conducted Experiment -- 4 Proposed UWB and GPS-Based Distance Measurements Fusion -- 5 Conclusions -- References -- A Priced-Deferred Acceptance (p-DA) Technique for D2D Communication in Factories of the Future -- 1 Introduction -- 2 System Model -- 3 The Resource Allocation Problem -- 3.1 QoS Admission and Power Allocation -- 3.2 Priced Deferred Acceptance Game Solution -- 4 Example Case Studies, Simulation Results and Discussion -- 5 Conclusions -- References -- Data-Driven Intelligent Management of Energy Constrained Autonomous Vehicles in Smart Cities -- 1 Introduction -- 1.1 Motivation -- 1.2 Related Work and Contributions -- 2 Electric Taxis Dataset and System Model -- 2.1 Dataset Description -- 2.2 EAV Flow Model -- 2.3 Energy Models for EAV -- 3 Intelligent Management System -- 3.1 Energy-Aware Passenger Requests Scheduling -- 3.2 Grid Load-Aware Charging Scheduling -- 4 Simulation Results and Analysis -- 4.1 The Supply and Optimal Demand of EAVs -- 4.2 Energy-Aware EAV Scheduling.
5 Conclusion -- References -- A Primer on Large Intelligent Surface (LIS) for Wireless Sensing in an Industrial Setting -- 1 Introduction -- 2 Problem Formulation -- 3 Holographic Sensing -- 4 Machine Learning for Holographic Sensing -- 4.1 Model Description -- 4.2 Dataset Format -- 5 Model Validation -- 5.1 Simulated Scenario -- 5.2 Received Power and Noise Modeling -- 5.3 Noise Averaging Strategy -- 5.4 Performance Metrics -- 6 Numerical Results and Discussion -- 6.1 Impact of Sampling and Noise Averaging -- 6.2 Impact of Antenna Spacing -- 6.3 LIS Aperture Comparisons -- 7 Conclusions -- References -- Business Models and Spectrum Management -- Scalability and Replicability of Spectrum for Private 5G Network Business: Insights into Radio Authorization Policies -- 1 Introduction -- 2 Theoretical Foundation and Key Concepts -- 2.1 Business Model Framework -- 2.2 Private 5G Network Spectrum Requirements -- 2.3 Radio Equipment Authorization -- 3 Analysis of Radio Authorization Frameworks -- 3.1 European Radio Authorization Framework -- 3.2 US Radio Equipment Authorization Framework -- 3.3 Comparison of FCC and EU Radio Product Authorization Processes -- 3.4 Radio Authorization Frameworks in Selected Countries -- 3.5 Discussion -- 4 Conclusions -- References -- Novel Spectrum Administration and Management Approaches Transform 5G Towards Open Ecosystemic Business Models -- 1 Introduction -- 2 Theoretical Foundation -- 2.1 Business Model Value Configuration -- 2.2 Spectrum Management Archetypes -- 3 The Business Perspective of Spectrum Administration and Management Enablers -- 3.1 Market Based Mechanism -- 3.2 Administrative Assignment -- 3.3 Spectrum Commons -- 3.4 Open Ecosystemic Business Antecedents -- 4 Conclusions -- References -- Moving from 5G in Verticals to Sustainable 6G: Business, Regulatory and Technical Research Prospects -- 1 Introduction.
2 State of the Art of 5G in Verticals -- 2.1 Business Perspective -- 2.2 Regulation Perspective -- 2.3 Technology Perspective -- 3 Towards Sustainable 6G -- 3.1 Role of UN SDGs in 6G -- 3.2 Business, Regulation and Technology Perspectives -- 4 Business Scenarios and Strategic Options for 6G -- 4.1 Methodology -- 4.2 6G Business Scenarios -- 4.3 Strategic Options for 6G as Simple Rules -- 5 Future Outlook and Conclusions -- References -- Author Index.
Record Nr. UNINA-9910484157403321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio-oriented wireless networks : 15th EAI International Conference, CrownCom 2020, Rome, Italy, November 25-26, 2020, Proceedings / / Giuseppe Caso, Luca De Nardis, Liljana Gavrilovska (editors)
Cognitive radio-oriented wireless networks : 15th EAI International Conference, CrownCom 2020, Rome, Italy, November 25-26, 2020, Proceedings / / Giuseppe Caso, Luca De Nardis, Liljana Gavrilovska (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (x, 192 pages)
Disciplina 384.54524
Collana Lecture notes of the Institute for Computer Sciences, Social Informatics, and Telecommunications Engineering
Soggetto topico Cognitive radio networks
ISBN 3-030-73423-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Conference Organization -- Contents -- Spectrum Sensing and Environment Awareness -- Active User Blind Detection Through Deep Learning -- 1 Introduction -- 2 System Model for the Massive Random Access -- 2.1 Non-coherent AUD -- 2.2 MAP Detectors -- 2.3 It-MAP Detector -- 3 A Neural Network Based Algorithm -- 3.1 The NN-MAP Estimate -- 3.2 The NN-MAP System Parameters -- 4 Results -- 5 Conclusion -- References -- Spectrum Sensing Based on Dynamic Primary User with Additive Laplacian Noise in Cognitive Radio -- 1 Introduction -- 2 System Model -- 3 Dynamic PU Modeling -- 3.1 Energy Detection -- 3.2 AVCD and i-AVCD -- 4 Results -- 5 Conclusion -- References -- Blind Source Separation for Wireless Networks: A Tool for Topology Sensing -- 1 Introduction -- 1.1 Existing Works -- 1.2 Application Scenarios -- 2 System Model and Problem Formulation -- 2.1 Data Acquisition and Channel Model -- 3 Blind Source Separation -- 3.1 Whitening and Estimation of the Number of Sources -- 3.2 Independent Component Analysis -- 3.3 Unmixed Signals Association -- 3.4 Excision Filter -- 4 Topology Inference Algorithms -- 4.1 Granger Causality -- 4.2 Transfer Entropy -- 5 Numerical Results -- 5.1 BSS Reconstruction Error -- 5.2 Topology Inference and Number of Nodes -- 5.3 Impact of Shadowing -- 6 Conclusion -- References -- Resource Management and Optimization -- Efficient Clustering Schemes Towards Information Collection -- 1 Introduction -- 2 Energy Efficiency in Cooperative Spectrum Sensing -- 3 Clustering Algorithms -- 4 Simulation Results -- 5 Conclusions -- References -- A Non-zero Sum Power Control Game with Uncertainty -- 1 Introduction -- 2 Communication Model -- 2.1 Auxiliary Notations and Results -- 2.2 Equilibrium Strategies -- 3 Stackelberg Game -- 3.1 Auxiliary Notations and Results -- 3.2 Stackelberg Equilibrium Strategies.
4 Discussion of the Results -- 5 Conclusions -- References -- Demonstrating Spectrally Efficient Asynchronous Coexistence for Machine Type Communication: A Software Defined Radio Approach -- 1 Introduction -- 2 Background -- 2.1 Related Work -- 3 Asynchronous Coexistence -- 4 SDR Approach for Coexistence Studies -- 4.1 Workflow -- 4.2 F-OFDM Filter Implementation -- 4.3 An Automated Test Framework for EVM and BER Measurements -- 5 Results -- 5.1 Simulations -- 5.2 Hardware Experiments -- 6 Conclusions and Future Work -- References -- Verticals and Applications -- Distance Estimation for Database-Assisted Autonomous Platooning -- 1 Introduction -- 2 Negative Impact of Distance Measurement Errors -- 2.1 Impact on Distance-Related Entries in Databases -- 2.2 Impact on Pathloss Modelling -- 2.3 Combined Distance Measurement Scheme -- 3 Pathloss Measurements - Conducted Experiment -- 4 Proposed UWB and GPS-Based Distance Measurements Fusion -- 5 Conclusions -- References -- A Priced-Deferred Acceptance (p-DA) Technique for D2D Communication in Factories of the Future -- 1 Introduction -- 2 System Model -- 3 The Resource Allocation Problem -- 3.1 QoS Admission and Power Allocation -- 3.2 Priced Deferred Acceptance Game Solution -- 4 Example Case Studies, Simulation Results and Discussion -- 5 Conclusions -- References -- Data-Driven Intelligent Management of Energy Constrained Autonomous Vehicles in Smart Cities -- 1 Introduction -- 1.1 Motivation -- 1.2 Related Work and Contributions -- 2 Electric Taxis Dataset and System Model -- 2.1 Dataset Description -- 2.2 EAV Flow Model -- 2.3 Energy Models for EAV -- 3 Intelligent Management System -- 3.1 Energy-Aware Passenger Requests Scheduling -- 3.2 Grid Load-Aware Charging Scheduling -- 4 Simulation Results and Analysis -- 4.1 The Supply and Optimal Demand of EAVs -- 4.2 Energy-Aware EAV Scheduling.
5 Conclusion -- References -- A Primer on Large Intelligent Surface (LIS) for Wireless Sensing in an Industrial Setting -- 1 Introduction -- 2 Problem Formulation -- 3 Holographic Sensing -- 4 Machine Learning for Holographic Sensing -- 4.1 Model Description -- 4.2 Dataset Format -- 5 Model Validation -- 5.1 Simulated Scenario -- 5.2 Received Power and Noise Modeling -- 5.3 Noise Averaging Strategy -- 5.4 Performance Metrics -- 6 Numerical Results and Discussion -- 6.1 Impact of Sampling and Noise Averaging -- 6.2 Impact of Antenna Spacing -- 6.3 LIS Aperture Comparisons -- 7 Conclusions -- References -- Business Models and Spectrum Management -- Scalability and Replicability of Spectrum for Private 5G Network Business: Insights into Radio Authorization Policies -- 1 Introduction -- 2 Theoretical Foundation and Key Concepts -- 2.1 Business Model Framework -- 2.2 Private 5G Network Spectrum Requirements -- 2.3 Radio Equipment Authorization -- 3 Analysis of Radio Authorization Frameworks -- 3.1 European Radio Authorization Framework -- 3.2 US Radio Equipment Authorization Framework -- 3.3 Comparison of FCC and EU Radio Product Authorization Processes -- 3.4 Radio Authorization Frameworks in Selected Countries -- 3.5 Discussion -- 4 Conclusions -- References -- Novel Spectrum Administration and Management Approaches Transform 5G Towards Open Ecosystemic Business Models -- 1 Introduction -- 2 Theoretical Foundation -- 2.1 Business Model Value Configuration -- 2.2 Spectrum Management Archetypes -- 3 The Business Perspective of Spectrum Administration and Management Enablers -- 3.1 Market Based Mechanism -- 3.2 Administrative Assignment -- 3.3 Spectrum Commons -- 3.4 Open Ecosystemic Business Antecedents -- 4 Conclusions -- References -- Moving from 5G in Verticals to Sustainable 6G: Business, Regulatory and Technical Research Prospects -- 1 Introduction.
2 State of the Art of 5G in Verticals -- 2.1 Business Perspective -- 2.2 Regulation Perspective -- 2.3 Technology Perspective -- 3 Towards Sustainable 6G -- 3.1 Role of UN SDGs in 6G -- 3.2 Business, Regulation and Technology Perspectives -- 4 Business Scenarios and Strategic Options for 6G -- 4.1 Methodology -- 4.2 6G Business Scenarios -- 4.3 Strategic Options for 6G as Simple Rules -- 5 Future Outlook and Conclusions -- References -- Author Index.
Record Nr. UNISA-996464432703316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Academic Press, , 2015
Descrizione fisica 1 online resource (542 p.)
Disciplina 621.3825
Soggetto topico Artificial satellites in telecommunication
Multiuser detection (Telecommunication)
Cognitive radio networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Cooperative and Cognitive Satellite Systems; Copyright ; Contents; List of contributors; Preface; Cooperative and cognitive satellite systems; 1 Introduction; 1.1 Cooperative Satellite Systems; 1.2 Cognitive Satellite Systems; About the Editors; List of figures; Acronyms; Chapter 1: Multibeam joint detection; 1.1 Introduction; 1.1.1 Signal description; 1.1.1.1 Beam radiation pattern; 1.1.1.2 Fading; 1.1.2 Overview of multibeam techniques; 1.2 Theoretical performance limits; 1.2.1 Sum rate; 1.2.1.1 High SNR; 1.2.1.2 Low SNR; 1.2.1.3 Numerical example; 1.2.2 Outage capacity
1.2.2.1 High SNR1.2.2.2 Numerical example; 1.3 Multibeam processing: linear and nonlinear joint detection; 1.3.1 Joint detection algorithms; 1.3.1.1 Linear detectors; 1.3.1.2 Nonlinear detectors; 1.3.1.3 Numerical example; 1.3.2 IDD Techniques; 1.3.3 Complexity considerations; 1.4 Practical impairments; 1.4.1 Imperfect channel estimation; 1.4.1.1 Review on channel estimation techniques; 1.4.1.2 Asynchronism in the return link; 1.4.1.3 Performance with imperfect channel estimation; 1.4.2 Limitations of the feeder link; 1.5 Conclusions; References
Chapter 2: High-performance random access schemes2.1 Introduction; 2.2 Key terrestrial RA techniques; 2.3 RA Techniques for satellite networks; 2.3.1 Slotted RA techniques; 2.3.1.1 From (diversity) slotted ALOHA to CRDSA; 2.3.1.2 CRDSA practical implementation issues; 2.3.1.3 Review of other slotted RA techniques for satellite; 2.3.2 Unslotted RA techniques; 2.3.2.1 Enhanced SSA; 2.3.2.2 MMSe plus ESSA; 2.3.2.3 Asynchronous contention resolution diversity ALOHA; 2.3.2.4 Unslotted RA implementation aspects; 2.3.3 Congestion control in RA; 2.4 RA Capacity
2.4.1 Capacity bounds for spread-spectrum RA2.4.2 Capacity bounds for non-spread-spectrum RA; 2.5 Systems and standards; 2.6 Summary and future research perspectives; References; Chapter 3: Multibeam joint precoding: frame-based design; 3.1 Introduction; 3.1.1 Precoding and beamforming in the satellite context; 3.1.2 Precoding over satellite: a standardization perspective; 3.1.3 Practical considerations; 3.1.4 Frame-based precoding: a multigroupmulticast approach; 3.2 System and channel model; 3.2.1 Multicast channel model; 3.2.2 Equivalent channel model; 3.2.3 Multibeam satellite channel
3.2.4 Payload phase errors3.2.4.1 Sensitivity to phase offsets; 3.2.4.2 Imperfect CSI estimation; 3.2.4.3 Outdated CSI; 3.2.5 Feeder link; 3.3 Frame-based precoding design; 3.3.1 Unicast multibeam precoding; 3.3.2 Block-SVD precoding; 3.3.3 Heuristic multicast aware MMSE precoding; 3.3.4 Optimal multigroup multicast precoding; 3.4 User selection for frame-based precoding; 3.4.1 Maximum channel norm selection; 3.4.2 Scheduling based on geographic user clusters; 3.4.2.1 Geographic user clustering; 3.4.3 Semi-parallel user selection; 3.4.4 Multicast aware user scheduling
3.5 Performance evaluation of selected methods
Record Nr. UNINA-9910788105403321
Amsterdam, [Netherlands] : , : Academic Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
Cooperative and cognitive satellite systems / / edited by Symeon Chatzinotas, Björn Ottersten, Riccardo De Gaudenzi ; contributors, Nader Alagha [and fifty-two others]
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Academic Press, , 2015
Descrizione fisica 1 online resource (542 p.)
Disciplina 621.3825
Soggetto topico Artificial satellites in telecommunication
Multiuser detection (Telecommunication)
Cognitive radio networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Cooperative and Cognitive Satellite Systems; Copyright ; Contents; List of contributors; Preface; Cooperative and cognitive satellite systems; 1 Introduction; 1.1 Cooperative Satellite Systems; 1.2 Cognitive Satellite Systems; About the Editors; List of figures; Acronyms; Chapter 1: Multibeam joint detection; 1.1 Introduction; 1.1.1 Signal description; 1.1.1.1 Beam radiation pattern; 1.1.1.2 Fading; 1.1.2 Overview of multibeam techniques; 1.2 Theoretical performance limits; 1.2.1 Sum rate; 1.2.1.1 High SNR; 1.2.1.2 Low SNR; 1.2.1.3 Numerical example; 1.2.2 Outage capacity
1.2.2.1 High SNR1.2.2.2 Numerical example; 1.3 Multibeam processing: linear and nonlinear joint detection; 1.3.1 Joint detection algorithms; 1.3.1.1 Linear detectors; 1.3.1.2 Nonlinear detectors; 1.3.1.3 Numerical example; 1.3.2 IDD Techniques; 1.3.3 Complexity considerations; 1.4 Practical impairments; 1.4.1 Imperfect channel estimation; 1.4.1.1 Review on channel estimation techniques; 1.4.1.2 Asynchronism in the return link; 1.4.1.3 Performance with imperfect channel estimation; 1.4.2 Limitations of the feeder link; 1.5 Conclusions; References
Chapter 2: High-performance random access schemes2.1 Introduction; 2.2 Key terrestrial RA techniques; 2.3 RA Techniques for satellite networks; 2.3.1 Slotted RA techniques; 2.3.1.1 From (diversity) slotted ALOHA to CRDSA; 2.3.1.2 CRDSA practical implementation issues; 2.3.1.3 Review of other slotted RA techniques for satellite; 2.3.2 Unslotted RA techniques; 2.3.2.1 Enhanced SSA; 2.3.2.2 MMSe plus ESSA; 2.3.2.3 Asynchronous contention resolution diversity ALOHA; 2.3.2.4 Unslotted RA implementation aspects; 2.3.3 Congestion control in RA; 2.4 RA Capacity
2.4.1 Capacity bounds for spread-spectrum RA2.4.2 Capacity bounds for non-spread-spectrum RA; 2.5 Systems and standards; 2.6 Summary and future research perspectives; References; Chapter 3: Multibeam joint precoding: frame-based design; 3.1 Introduction; 3.1.1 Precoding and beamforming in the satellite context; 3.1.2 Precoding over satellite: a standardization perspective; 3.1.3 Practical considerations; 3.1.4 Frame-based precoding: a multigroupmulticast approach; 3.2 System and channel model; 3.2.1 Multicast channel model; 3.2.2 Equivalent channel model; 3.2.3 Multibeam satellite channel
3.2.4 Payload phase errors3.2.4.1 Sensitivity to phase offsets; 3.2.4.2 Imperfect CSI estimation; 3.2.4.3 Outdated CSI; 3.2.5 Feeder link; 3.3 Frame-based precoding design; 3.3.1 Unicast multibeam precoding; 3.3.2 Block-SVD precoding; 3.3.3 Heuristic multicast aware MMSE precoding; 3.3.4 Optimal multigroup multicast precoding; 3.4 User selection for frame-based precoding; 3.4.1 Maximum channel norm selection; 3.4.2 Scheduling based on geographic user clusters; 3.4.2.1 Geographic user clustering; 3.4.3 Semi-parallel user selection; 3.4.4 Multicast aware user scheduling
3.5 Performance evaluation of selected methods
Record Nr. UNINA-9910817329603321
Amsterdam, [Netherlands] : , : Academic Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cooperative communications : hardware, channel & PHY / / Mischa Dohler, Yonghui Li
Cooperative communications : hardware, channel & PHY / / Mischa Dohler, Yonghui Li
Autore Dohler Mischa
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; , : Wiley, , 2010
Descrizione fisica 1 online resource (465 p.)
Disciplina 621.384
Altri autori (Persone) LiYonghui <1975->
Soggetto topico Cognitive radio networks
Internetworking (Telecommunication)
MIMO systems
Multiuser detection (Telecommunication)
Ad hoc networks (Computer networks)
ISBN 1-282-48226-2
9786612482267
0-470-74007-8
0-470-74006-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface. -- Abbreviations. -- Functions. -- Symbols. -- 1 Introduction. -- 1.1 Book Structure. -- 1.2 Quick Introduction. -- 1.3 Application Scenarios. -- 1.4 Pros and Cons of Cooperation. -- 1.5 Cooperative Performance Bounds. -- 1.6 Definitions and Terminology. -- 1.7 Background and Milestones. -- 1.8 Concluding Remarks. -- 2 Wireless Relay Channel. -- 2.1 Introductory Note. -- 2.2 General Characteristics and Trends. -- 2.3 Regenerative Relaying Channel. -- 2.4 Transparent Relaying Channel. -- 2.5 Distributed MIMO Channel. -- 2.6 Concluding Remarks. -- 3 Transparent Relaying Techniques. -- 3.1 Introductory Note. -- 3.2 Transparent Relaying Protocols. -- 3.3 Transparent Space / Time Processing. -- 3.4 Distributed System Optimization. -- 3.5 Concluding Remarks. -- 4 Regenerative Relaying Techniques. -- 4.1 Introductory Note. -- 4.2 Regenerative Relay Protocols. -- 4.3 Distributed Space / Time Coding. -- 4.4 Distributed Network Coding. -- 4.5 Concluding Remarks. -- 5 Hardware Issues. -- 5.1 Introductory Note. -- 5.2 Analog Hardware Transceivers. -- 5.3 Digital Hardware Transceivers. -- 5.4 Architectural Comparisons. -- 5.5 Complexity of 3G UMTS Voice/HSDPA Relay. -- 5.6 Complexity of LTE/WiMAX Relay. -- 5.7 Hardware Demonstrators. -- 5.8 Concluding Remarks. -- 6 Conclusions and Outlook. -- 6.1 Contributions. -- 6.2 Real-World Impairments. -- 6.3 Open Research Problems. -- 6.4 Business Challenges. -- References. -- Index.
Record Nr. UNINA-9910139507103321
Dohler Mischa  
Chichester, West Sussex, U.K. ; , : Wiley, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cooperative communications : hardware, channel & PHY / / Mischa Dohler, Yonghui Li
Cooperative communications : hardware, channel & PHY / / Mischa Dohler, Yonghui Li
Autore Dohler Mischa
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; , : Wiley, , 2010
Descrizione fisica 1 online resource (465 p.)
Disciplina 621.384
Altri autori (Persone) LiYonghui <1975->
Soggetto topico Cognitive radio networks
Internetworking (Telecommunication)
MIMO systems
Multiuser detection (Telecommunication)
Ad hoc networks (Computer networks)
ISBN 1-282-48226-2
9786612482267
0-470-74007-8
0-470-74006-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface. -- Abbreviations. -- Functions. -- Symbols. -- 1 Introduction. -- 1.1 Book Structure. -- 1.2 Quick Introduction. -- 1.3 Application Scenarios. -- 1.4 Pros and Cons of Cooperation. -- 1.5 Cooperative Performance Bounds. -- 1.6 Definitions and Terminology. -- 1.7 Background and Milestones. -- 1.8 Concluding Remarks. -- 2 Wireless Relay Channel. -- 2.1 Introductory Note. -- 2.2 General Characteristics and Trends. -- 2.3 Regenerative Relaying Channel. -- 2.4 Transparent Relaying Channel. -- 2.5 Distributed MIMO Channel. -- 2.6 Concluding Remarks. -- 3 Transparent Relaying Techniques. -- 3.1 Introductory Note. -- 3.2 Transparent Relaying Protocols. -- 3.3 Transparent Space / Time Processing. -- 3.4 Distributed System Optimization. -- 3.5 Concluding Remarks. -- 4 Regenerative Relaying Techniques. -- 4.1 Introductory Note. -- 4.2 Regenerative Relay Protocols. -- 4.3 Distributed Space / Time Coding. -- 4.4 Distributed Network Coding. -- 4.5 Concluding Remarks. -- 5 Hardware Issues. -- 5.1 Introductory Note. -- 5.2 Analog Hardware Transceivers. -- 5.3 Digital Hardware Transceivers. -- 5.4 Architectural Comparisons. -- 5.5 Complexity of 3G UMTS Voice/HSDPA Relay. -- 5.6 Complexity of LTE/WiMAX Relay. -- 5.7 Hardware Demonstrators. -- 5.8 Concluding Remarks. -- 6 Conclusions and Outlook. -- 6.1 Contributions. -- 6.2 Real-World Impairments. -- 6.3 Open Research Problems. -- 6.4 Business Challenges. -- References. -- Index.
Record Nr. UNINA-9910811953003321
Dohler Mischa  
Chichester, West Sussex, U.K. ; , : Wiley, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Developments in cognitive radio networks : future directions for beyond 5G / / Bodhaswar T. J. Maharaj and Babatunde Seun Awoyemi
Developments in cognitive radio networks : future directions for beyond 5G / / Bodhaswar T. J. Maharaj and Babatunde Seun Awoyemi
Autore Maharaj Bodhaswar T. J.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (256 pages)
Disciplina 621.384
Soggetto topico Cognitive radio networks
ISBN 3-030-64653-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910523745803321
Maharaj Bodhaswar T. J.  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Autore Elmasry George F.
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , 2020
Descrizione fisica 1 online resource (748 pages)
Disciplina 384.54524
Soggetto topico Radio resource management (Wireless communications)
Cognitive radio networks
ISBN 1-119-57379-3
1-119-57377-7
1-119-57378-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Author -- Preface -- List of Acronyms -- Part 1: DSA Basic Design Concept -- 1 Introduction -- 1.1 Summary of DSA decision making processes -- 1.2 The hierarchy of DSA decision making -- 1.3 The impact of DSA control traffic -- 1.4 The involvement of DSA decision making -- 1.5 The pitfalls of DSA decision making -- 1.6 Concluding remarks -- 1.7 1Exercises -- Bibliography -- 2 Spectrum Sensing Technique -- 2.1 Multidimensional spectrum sensing and sharing -- 2.2 Time, frequency and power spectrum sensing -- 2.3 Energy detection sensing -- 2.3.1 Energy detection sensing of a communications signal (same-channel in-band sensing) -- 2.3.2 Time domain energy detection -- 2.3.3 Frequency domain energy detection -- 2.4 Signal characteristics spectrum sensing -- 2.4.1 Matched filter based spectrum sensing -- 2.4.2 Autocorrelation based spectrum sensing -- 2.4.3 Spreading code spectrum sensing -- 2.4.4 Frequency hopping spectrum sensing -- 2.4.5 Orthogonality based spectrum sensing -- 2.4.6 Waveform based spectrum sensing -- 2.4.7 Cyclostationarity based spectrum sensing -- 2.5 Euclidean space based detection -- 2.5.1 Geographical space detection -- 2.5.2 Angle of RF beam detection -- 2.6 Other sensing techniques -- 2.7 Concluding remarks -- 2.8 Exercises -- Bibliography -- 3 Receiver Operating Characteristics (ROC) and Decision Fusion -- 3.1 Basic ROC model adaptation for DSA -- 3.2 Adapting the ROC model for same-channel in-band sensing -- 3.3 Decision fusion -- 3.3.1 Local decision fusion -- 3.3.1.1 Local decision fusion for same-channel in-band sensing -- 3.3.1.2 Local decision fusion with directional energy detection -- 3.3.2 Distributed and centralized decision fusion -- 3.4 Concluding remarks -- 3.5 Exercises -- Appendix A: Basic principles of the ROC model -- A1. The ROC curve as connecting points -- A2. The ROC curve classifications -- Bibliography -- 4 Designing a Hybrid DSA System -- 4.1 Reasons for using hybrid DSA design approach -- 4.2 Decision fusion cases.
4.3 The role of other cognitive processes -- 4.4 How far can distributed cooperative DSA design go? -- 4.5 Using a centralized DSA arbitrator -- 4.6 Concluding remarks -- 4.7 Exercises -- Bibliography -- Part 2: Case Studies -- 5 DSA as a Set of Cloud Services -- 5.1 DSA services in the hierarchy of heterogeneous networks -- 5.2 The generic DSA cognitive engine skeleton -- 5.2.1 The main thread in the central arbitrator DSA cognitive engine -- 5.2.2 A critical thread in the gateway DSA cognitive engine -- 5.2.3 The gateway cognitive engine propagation of fused information to the central arbitrator thread -- 5.3 DSA cloud services metrics -- 5.3.1 DSA cloud services metrics model -- 5.3.2 DSA cloud services metrology -- 5.3.3 Examples of DSA cloud services metrics -- 5.3.3.1 Response time -- 5.3.3.2 Hidden node -- 5.3.3.3 Meeting traffic demand -- 5.3.3.4 Rippling -- 5.3.3.5 Co-site interference impact -- 5.3.3.6 Other metrics -- 5.3.3.7 Generalizing a metric description -- 5.4 Concluding remarks -- 5.5 Exercises -- Bibliography -- 6 Dynamic Spectrum Management for 5G Cellular Systems -- 6.1 Basic concepts of 5G -- 6.2 Spatial modeling and the impact of 5G dense cell deployment -- 6.2.1 Spatial modeling and SIR -- 6.2.2. SIR and connectivity -- 6.2.3 Generl case connectivity and coverage -- 6.2.3.1 Transmission capacity -- 6.2.3.2 5G cell overlay -- 6.3 Stages of 5G SI cancellation -- 6.4 5G and cooperative spectrum sensing -- 6.4.1 The macrocell as the main fusion center -- 6.4.2 Spectrum agents (SAs) operate autonomously -- 6.4.3 The end user as its own arbitrator -- 6.5 Power control, orthogonality and 5G spectrum utilization -- 6.6 The role of the cell and end user devices in 5G DSM -- 6.7 Concluding remarks -- 6.8 Exercises -- Bibliography -- 7 DSA and 5G Adaptation to Military Communications -- 7.1 Multilayer security enhancements of 5G -- 7.2 MIMO design considerations -- 7.2.1 The use of MU MIMO -- 7.2.2 The use of MIMO channel training symbols for LPD/LPI.
7.2.3 The use of MIMO channel feedback mechanism for LPD/LPI -- 7.2.4 The use of MU MIMO for Multipath hopping -- 7.2.5 The use of MU MIMO to avoid eavesdroppers -- 7.2.6 The use of MU MIMO to discover jammers -- 7.2.7 Beamforming and LPI/LPD -- 7.3 Multifaceted optimization of MU MIMO channel in military applications -- 7.4 Other security approaches -- 7.4.1 Bottom up deployment approach -- 7.4.2 Switching a network to an anti-jamming (AJ) waveform -- 7.5 Concluding remarks -- 7.6 Exercises -- Bibliography -- 8 DSA and Co-site Interference Mitigation -- 8.1 Power spectral density lobes -- 8.2 Co-site interference between frequencies in different bands -- 8.3 Co-site interference for unlicensed frequency blocks -- 8.4 Adapting the platforḿs co-site interference analysis process for DSA services -- 8.5 Adapting the external systemś co-site interference analysis for DSA -- 8.6 Considering the inter-system co-site interference impact -- 8.7 Using lookup tables as weighted metrics -- 8.8 Co-site interference incorporation in decision fusion and fine-tuning of co-site impact -- 8.9 DSA systeḿs co-site interference impact on external systems -- 8.10 The locations where co-site interference lookup tables and metrics are utilized -- 8.11 Concluding Remarks -- Bibliography -- Part 3: TECHNIQUES FOR SPECTRUM MANAGEMENT OPERATIONS -- Page -- PREFACE iv -- INTRODUCTION v -- Chapter 1 OVERVIEW 1-1 -- Electromagnetic Spectrum 1-1 -- Definition 1-3 -- Objective 1-4 -- Core Functions 1-5 -- Army Spectrum Management Operations Process 1-5 -- Chapter 2 TACTICAL STAFF ORGANIZATION AND PLANNING 2-1 -- Spectrum Management Operations for Corps and Below 2-1 -- Division, Brigade and Battalion Spectrum Operations 2-3 -- Spectrum Managers Assigned to Cyber Electromagnetic Activity -- Working Group 2-3 -- Cyber Electromagnetic Activities Element 2-4 -- Tips for Spectrum Managers 2-6 -- The Military Decisionmaking Process 2-7 -- Support to the MDMP Steps 2-8 -- The Common Operational Picture 2-10.
Chapter 3 SUPPORT TO THE WARFIGHTING FUNCTIONS 3-1 -- Movement and Maneuver 3-1 -- Intelligence 3-1 -- Fires 3-1 -- Sustainment 3-2 -- Mission Command 3-2 -- Protection 3-4 -- Chapter 4 JOINT TASK FORCE CONSIDERATIONS 4-1 -- Inputs and Products of Joint Task Force Spectrum Managers 4-1 -- Joint Frequency Management Office 4-1 -- Joint Spectrum Management Element 4-3 -- Spectrum Management Support to Defense Support of Civil -- Authorities 4-6 -- Chapter 5 SPECTRUM MANAGEMENT OPERATIONS TOOLS 5-1 -- Tool Considerations 5-1 -- Joint Spectrum Interference Resolution Online 5-11 -- Joint Spectrum Data Repository 5-11 -- Appendix A SPECTRUM MANAGEMENT TASK LIST A-1 -- Appendix B CAPABILITIES AND COMPATIBILITY BETWEEN TOOLS B-1 -- Appendix C SPECTRUM PHYSICS C-1 -- Appendix D SPECTRUM MANAGEMENT LIFECYCLE D-1 -- Appendix E MILITARY TIME ZONE DESIGNATORS E-1 -- Part 4: THE IEEE STANDARDS 1900x - 2019 -- Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC) -- IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management -- 1. Overview 12 -- 1.1 Scope 12 -- 1.2 Purpose 12 -- 2. Acronyms and abbreviations 13 -- 3. Definitions of advanced radio system concepts 14 -- 3.1 Adaptive radio 14 -- 3.2 Cognitive radio 15 -- 3.3 Hardware-defined radio 15 -- 3.4 Hardware radio 15 -- 3.5 Intelligent radio 16 -- 3.6 Policy-based radio 16 -- 3.7 Reconfigurable radio 16 -- 3.8 Software-controlled radio 16 -- 3.9 Software-defined radio 16 -- 4. Definitions of radio system functional capabilities 17 -- 4.1 Adaptive modulation 17 -- 4.2 Cognition 17 -- 4.3 Cognitive control mechanism 17 -- 4.4 Cognitive process 17 -- 4.5 Cognitive radio system 18 -- 4.6 Frequency agility 18 -- 4.7 Geolocation capability 18 -- 4.8 Location awareness 18 -- 4.9 Policy-based control mechanism 18 -- 4.10 Policy conformance reasoner 19 -- 4.11 Policy enforcer 19 -- 4.12 Radio awareness 19 -- 4.13 Software controlled 19.
4.14 Software defined 19 -- 4.15 System strategy reasoning capability 19 -- 4.16 Transmit power control 20 -- 5. Definitions of decision-making and control concepts that support advanced radio system technologies 20 -- 5.1 Coexistence policy 20 -- 5.2 DSA policy language 20 -- 5.3 Formal policy 20 -- 5.4 Meta-policy 20 -- 5.5 Model-theoretic computational semantics 20 -- 5.6 Policy language 20 -- 5.7 Reasoner 21 -- 6. Definitions of network technologies that support advanced radio system technologies 21 -- 6.1 Cognitive radio network 21 -- 6.2 Dynamic spectrum access networks 21 -- 6.3 Reconfigurable networks 21 -- 7. Spectrum management definitions 21 -- 7.1 Allocation 21 -- 7.2 Clear channel assessment function 22 -- 7.3 Coexistence 22 -- 7.4 Coexistence mechanism 22 -- 7.5 Cognitive interference avoidance 22 -- 7.6 Collaboration 22 -- 7.7 Collaborative decoding 22 -- 7.8 Cooperation 23 -- 7.9 Data archive 23 -- 7.10 Distributed radio resource usage optimization 23 -- 7.11 Distributed sensing 23 -- 7.12 Dynamic channel assignment 23 -- 7.13 Dynamic frequency selection 23 -- 7.14 Dynamic frequency sharing 24 -- 7.15 Dynamic spectrum access 24 -- 7.16 Dynamic spectrum assignment 24 -- 7.17 Dynamic spectrum management 25 -- 7.18 Electromagnetic compatibility 25 -- 7.19 Frequency hopping 25 -- 7.20 Frequency sharing 25 -- 7.21 Hierarchical spectrum access 25 -- 7.22 Horizontal spectrum sharing 26 -- 7.23 Interference 26 -- 7.24 Opportunistic spectrum access 26 -- 7.25 Opportunistic spectrum management 26 -- 7.26 Policy authority 26 -- 7.27 Policy traceability 27 -- 7.28 Radio environment map 27 -- 7.29 RF environment map 27 -- 7.30 Sensing control information 27 -- 7.31 Sensing information 27 -- 7.32 Sensor 27 -- 7.33 Spectral opportunity 27 -- 7.34 Spectrum access 27 -- 7.35 Spectrum broker 28 -- 7.36 Spectrum efficiency 28 -- 7.37 Spectrum etiquette 28 -- 7.38 Spectrum leasing 28 -- 7.39 Spectrum management 28 -- 7.40 Spectrum overlay 29 -- 7.41 Spectrum owner 29.
7.42 Spectrum pooling 29 -- 7.43 Spectrum sensing 29 -- 7.44 Cooperative spectrum sensing 30 -- 7.45 Collaborative spectrum sensing 30 -- 7.46 Spectrum sharing 30 -- 7.47 Spectrum underlay 30 -- 7.48 Spectrum utilization 30 -- 7.49 Spectrum utilization efficiency 31 -- 7.50 Vertical spectrum sharing 31 -- 7.51 White space 32 -- 7.52 White space database 32 -- 7.53 White space frequency band 32 -- 7.54 White space spectrum band 32 -- 8. Glossary of ancillary terminology 32 -- 8.1 Air interface 32 -- 8.2 Digital policy 32 -- 8.3 Domain 33 -- 8.4 Interference temperature 33 -- 8.5 Interoperability 33 -- 8.6 Machine learning 33 -- 8.7 Machine-understandable policies 33 -- 8.8 Ontology 33 -- 8.9 Policy 34 -- 8.10 Quality of service 34 -- 8.11 Radio 34 -- 8.12 Radio node 35 -- 8.13 Radio spectrum 35 -- 8.14 Receiver 35 -- 8.15 Software 35 -- 8.16 Transmitter 35 -- 8.17 Waveform 35 -- 8.18 Waveform processing 36 -- Annex A (informative) Implications of advanced radio system technologies for spectrum 37 -- Annex B (informative) Explanatory notes on advanced radio system technologies and advanced spectrum management concepts 41 -- Annex C (informative) List of deleted terms from the previous versions of IEEE Std 1901.1 66 -- Annex D (informative) Bibliography 73 -- IEEE Recommended Practice for the Analysis of In-Band and Adjacent Band Interference and Coexistence Between Radio Systems -- 1. Overview 1 -- 1.1 Relationship to traditional spectrum management 1 -- 1.2 Introduction to this recommended practice 2 -- 1.3 Scope 2 -- 1.4 Purpose 3 -- 1.5 Rationale 3 -- 2. Normative references 5 -- 3. Definitions, acronyms, and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. Key concepts 8 -- 4.1 Interference and coexistence analysis 8 -- 4.2 Measurement event 8 -- 4.3 Interference event 9 -- 4.4 Harmful interference 9 -- 4.5 Physical and logical domains 9 -- 5. Structure of analysis and report 10 -- 5.1 Structure for analysis 10 -- 5.2 Process floẃdivergence, reduction, and convergence 12.
5.3 Report structure 14 -- 6. Scenario definition 14 -- 6.1 General 14 -- 6.2 Study question 16 -- 6.3 Benefits and impacts of proposal 16 -- 6.4 Scenario(s) and usage model 16 -- 6.5 Case(s) for analysis 25 -- 7. Criteria for interference 25 -- 7.1 General 25 -- 7.2 Interference characteristics 26 -- 7.3 Measurement event 28 -- 7.4 Interference event 28 -- 7.5 Harmful interference criteria 28 -- 8. Variables 32 -- 8.1 General 32 -- 8.2 Variable selection 34 -- 9. Analysiśmodeling, simulation, measurement, and testing 35 -- 9.1 General 35 -- 9.2 Selection of the analysis approach, tools, and techniques 36 -- 9.3 Matrix reduction 37 -- 9.4 Performing the analysis 38 -- 9.5 Quantification of benefits and interference 38 -- 9.6 Analysis of mitigation options 38 -- 9.7 Analysis uncertainty 38 -- 10. Conclusions and summary 39 -- 10.1 Benefits and impacts 39 -- 10.2 Summation 39 -- Annex A (informative) Propagation modeling 40 -- Annex B (informative) Audio interference 48 -- Annex C (informative) Spectrum utilization efficiency 51 -- Annex D (informative) Sample analysiśselection of listen-before-talk threshold 55 -- Annex E (informative) Sample analysiśeffect of out-of-band emissions on a LBT band 63 -- Annex F (informative) Sample analysiśLow-power radios operating in the TV band 70 -- Annex G (informative) Sample analysiśRF test levels for ANSI C63.9 [B3] 81 -- Annex H (normative) Glossary 89 -- Annex I (informative) Bibliography 93 -- IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 1 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 3 -- 3.1 Definitions 3 -- 3.2 Acronyms and abbreviations 5 -- 4. Overall system description 5 -- 4.1 System overview 5 -- 4.2 Summary of use cases 7 -- 4.3 Assumptions 8 -- 5. Requirements 9 -- 5.1 System requirements 9.
5.2 Functional requirements 12 -- 5.3 Information model requirements 14 -- 6. Architecture 14 -- 6.1 System description 14 -- 6.2 Functional description 18 -- 7. Information model 24 -- 7.1 Introduction 24 -- 7.2 Information modeling approach 25 -- 7.3 Information model classes 25 -- 8. Procedures 32 -- 8.1 Introduction 32 -- 8.2 Generic procedures 36 -- 8.3 Examples of use case realization 49 -- Annex A (informative) Use cases 53 -- A.1 Dynamic spectrum assignment 53 -- A.2 Dynamic spectrum sharing 59 -- A.3 Distributed radio resource usage optimization 61 -- Annex B (normative) Class definitions for information model 63 -- B.1 Notational tools 63 -- B.2 Common base class 64 -- B.3 Policy classes 64 -- B.4 Terminal classes 66 -- B.5 CWN classes 74 -- B.6 Relations between terminal and CWN classes 82 -- Annex C (normative) Data type definitions for information model 84 -- C.1 Function definitions 84 -- C.2 ASN.1 type definitions 86 -- Annex D (informative) Information model extensions and usage example 93 -- D.1 Functions for external management interface 93 -- D.2 Additional utility classes 94 -- D.3 Additional ASN.1 type definitions for utility classes 103 -- D.4 Example for distributed radio resource usage optimization use case 104 -- Annex E (informative) Deployment examples 109 -- E.1 Introduction 109 -- E.2 Deployment examples for single operator scenario 109 -- E.3 Multiple operator scenario 1 (NRM is inside operator) 114 -- E.4 Multiple operator scenario 2 (NRM is outside operator) 115 -- Annex F (informative) Bibliography 117 -- IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 2 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 2 -- 3.1 Definitions 2 -- 3.2 Acronyms and abbreviations 6 -- 4. Architecture requirements for policy-based control of DSA radio systems 8 -- 4.1 General architecture requirements 8.
4.2 Policy management requirements 9 -- 5. Architecture components and interfaces for policy-based control of DSA radio systems 10 -- 5.1 Policy management point 12 -- 5.2 Policy conformance reasoner 12 -- 5.3 Policy enforcer (PE) 14 -- 5.4 Policy repository 15 -- 5.5 System strategy reasoning capability (SSRC) 16 -- 6. Policy language and reasoning requirements 17 -- 6.1 Language expressiveness 18 -- 6.2 Reasoning about policies 27 -- Annex A (informative) Use cases 29 -- Annex B (informative) Illustrative examples of DSA policy-based architecture 31 -- Annex C (informative) Relation of IEEE 1900.5 policy architecture to other policy architectures 33 -- Annex D (informative) Characteristics of imperative (procedural) and declarative languages for satisfying language requirements for cognitive radio systems 35 -- Annex E (informative) Example sequence diagrams of IEEE 1900.5 system 36 -- E.1 Overview 36 -- E.2 Assumptions 36 -- E.3 Sequence diagram organization 37 -- Annex F (informative) Bibliography 41 -- IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and Other Advanced Radio Communication Systems -- 1. Overview 1 -- 1.1 Scope 2 -- 1.2 Purpose 2 -- 1.3 Interfaces and sample application areas 2 -- 1.4 Conformance keywords 4 -- 2. Normative references 4 -- 3. Definitions, acronyms and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. System model 8 -- 4.1 Scenario 1: Single CE/DA and single Sensor 8 -- 4.2 Scenario 2: Single CE/DA and multiple Sensors 9 -- 4.3 Scenario 3: Multiple CE/DA and single Sensor 10 -- 5. The IEEE 1900.6 reference model 11 -- 5.1 General description 11 -- 5.2 An implementation example of the IEEE 1900.6 reference model 14 -- 5.3 Service access points (SAPs) 15 -- 6. Information description 70 -- 6.1 Information categories 70 -- 6.2 Data types 73 -- 6.3 Description of sensing-related parameters 75 -- 6.4 Data representation 88 -- 7. State diagram and generic procedures 95.
7.1 State description 95 -- 7.2 State transition description 96 -- 7.3 Generic procedures 98 -- 7.4 Example procedures for use cases 101 -- Annex A (informative) Use cases 107 -- Annex B (informative) Use case classification 143 -- Annex C (informative) Implementation of distributed sensing 148 -- Annex D (informative) IEEE 1900.6 DA: Scope and usage 153 -- Annex E (informative) Analysis of available/future technologies 157 -- Annex F (informative) Bibliography 15 -- IEEE Standard for Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 2. Definitions, acronyms, and abbreviations 2 -- 2.1 Definitions 2 -- 2.2 Acronyms and abbreviations 2 -- 3. Reference model 3 -- 4. MAC sublayer 4 -- 4.1 Architecture of the MAC sublayer 4 -- 4.2 Type definition 4 -- 4.3 MAC frame formats 4 -- 4.4 MAC sublayer service specification 9 -- 4.5 MAC functional description 24 -- 5. PHY layer 37 -- 5.1 PHY layer service specification 37 -- 5.2 CRC method 42 -- 5.3 Channel coding (including interleaving and modulation) 42 -- 5.4 Mapping modulated symbols to carriers 47 -- 5.5 Transmitter requirements 53 -- Annex A (informative) Coexistence considerations 55.
Record Nr. UNINA-9910554805503321
Elmasry George F.  
Hoboken, New Jersey, USA : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Autore Elmasry George F.
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , 2020
Descrizione fisica 1 online resource (748 pages)
Disciplina 384.54524
Soggetto topico Radio resource management (Wireless communications)
Cognitive radio networks
ISBN 1-119-57379-3
1-119-57377-7
1-119-57378-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Author -- Preface -- List of Acronyms -- Part 1: DSA Basic Design Concept -- 1 Introduction -- 1.1 Summary of DSA decision making processes -- 1.2 The hierarchy of DSA decision making -- 1.3 The impact of DSA control traffic -- 1.4 The involvement of DSA decision making -- 1.5 The pitfalls of DSA decision making -- 1.6 Concluding remarks -- 1.7 1Exercises -- Bibliography -- 2 Spectrum Sensing Technique -- 2.1 Multidimensional spectrum sensing and sharing -- 2.2 Time, frequency and power spectrum sensing -- 2.3 Energy detection sensing -- 2.3.1 Energy detection sensing of a communications signal (same-channel in-band sensing) -- 2.3.2 Time domain energy detection -- 2.3.3 Frequency domain energy detection -- 2.4 Signal characteristics spectrum sensing -- 2.4.1 Matched filter based spectrum sensing -- 2.4.2 Autocorrelation based spectrum sensing -- 2.4.3 Spreading code spectrum sensing -- 2.4.4 Frequency hopping spectrum sensing -- 2.4.5 Orthogonality based spectrum sensing -- 2.4.6 Waveform based spectrum sensing -- 2.4.7 Cyclostationarity based spectrum sensing -- 2.5 Euclidean space based detection -- 2.5.1 Geographical space detection -- 2.5.2 Angle of RF beam detection -- 2.6 Other sensing techniques -- 2.7 Concluding remarks -- 2.8 Exercises -- Bibliography -- 3 Receiver Operating Characteristics (ROC) and Decision Fusion -- 3.1 Basic ROC model adaptation for DSA -- 3.2 Adapting the ROC model for same-channel in-band sensing -- 3.3 Decision fusion -- 3.3.1 Local decision fusion -- 3.3.1.1 Local decision fusion for same-channel in-band sensing -- 3.3.1.2 Local decision fusion with directional energy detection -- 3.3.2 Distributed and centralized decision fusion -- 3.4 Concluding remarks -- 3.5 Exercises -- Appendix A: Basic principles of the ROC model -- A1. The ROC curve as connecting points -- A2. The ROC curve classifications -- Bibliography -- 4 Designing a Hybrid DSA System -- 4.1 Reasons for using hybrid DSA design approach -- 4.2 Decision fusion cases.
4.3 The role of other cognitive processes -- 4.4 How far can distributed cooperative DSA design go? -- 4.5 Using a centralized DSA arbitrator -- 4.6 Concluding remarks -- 4.7 Exercises -- Bibliography -- Part 2: Case Studies -- 5 DSA as a Set of Cloud Services -- 5.1 DSA services in the hierarchy of heterogeneous networks -- 5.2 The generic DSA cognitive engine skeleton -- 5.2.1 The main thread in the central arbitrator DSA cognitive engine -- 5.2.2 A critical thread in the gateway DSA cognitive engine -- 5.2.3 The gateway cognitive engine propagation of fused information to the central arbitrator thread -- 5.3 DSA cloud services metrics -- 5.3.1 DSA cloud services metrics model -- 5.3.2 DSA cloud services metrology -- 5.3.3 Examples of DSA cloud services metrics -- 5.3.3.1 Response time -- 5.3.3.2 Hidden node -- 5.3.3.3 Meeting traffic demand -- 5.3.3.4 Rippling -- 5.3.3.5 Co-site interference impact -- 5.3.3.6 Other metrics -- 5.3.3.7 Generalizing a metric description -- 5.4 Concluding remarks -- 5.5 Exercises -- Bibliography -- 6 Dynamic Spectrum Management for 5G Cellular Systems -- 6.1 Basic concepts of 5G -- 6.2 Spatial modeling and the impact of 5G dense cell deployment -- 6.2.1 Spatial modeling and SIR -- 6.2.2. SIR and connectivity -- 6.2.3 Generl case connectivity and coverage -- 6.2.3.1 Transmission capacity -- 6.2.3.2 5G cell overlay -- 6.3 Stages of 5G SI cancellation -- 6.4 5G and cooperative spectrum sensing -- 6.4.1 The macrocell as the main fusion center -- 6.4.2 Spectrum agents (SAs) operate autonomously -- 6.4.3 The end user as its own arbitrator -- 6.5 Power control, orthogonality and 5G spectrum utilization -- 6.6 The role of the cell and end user devices in 5G DSM -- 6.7 Concluding remarks -- 6.8 Exercises -- Bibliography -- 7 DSA and 5G Adaptation to Military Communications -- 7.1 Multilayer security enhancements of 5G -- 7.2 MIMO design considerations -- 7.2.1 The use of MU MIMO -- 7.2.2 The use of MIMO channel training symbols for LPD/LPI.
7.2.3 The use of MIMO channel feedback mechanism for LPD/LPI -- 7.2.4 The use of MU MIMO for Multipath hopping -- 7.2.5 The use of MU MIMO to avoid eavesdroppers -- 7.2.6 The use of MU MIMO to discover jammers -- 7.2.7 Beamforming and LPI/LPD -- 7.3 Multifaceted optimization of MU MIMO channel in military applications -- 7.4 Other security approaches -- 7.4.1 Bottom up deployment approach -- 7.4.2 Switching a network to an anti-jamming (AJ) waveform -- 7.5 Concluding remarks -- 7.6 Exercises -- Bibliography -- 8 DSA and Co-site Interference Mitigation -- 8.1 Power spectral density lobes -- 8.2 Co-site interference between frequencies in different bands -- 8.3 Co-site interference for unlicensed frequency blocks -- 8.4 Adapting the platforḿs co-site interference analysis process for DSA services -- 8.5 Adapting the external systemś co-site interference analysis for DSA -- 8.6 Considering the inter-system co-site interference impact -- 8.7 Using lookup tables as weighted metrics -- 8.8 Co-site interference incorporation in decision fusion and fine-tuning of co-site impact -- 8.9 DSA systeḿs co-site interference impact on external systems -- 8.10 The locations where co-site interference lookup tables and metrics are utilized -- 8.11 Concluding Remarks -- Bibliography -- Part 3: TECHNIQUES FOR SPECTRUM MANAGEMENT OPERATIONS -- Page -- PREFACE iv -- INTRODUCTION v -- Chapter 1 OVERVIEW 1-1 -- Electromagnetic Spectrum 1-1 -- Definition 1-3 -- Objective 1-4 -- Core Functions 1-5 -- Army Spectrum Management Operations Process 1-5 -- Chapter 2 TACTICAL STAFF ORGANIZATION AND PLANNING 2-1 -- Spectrum Management Operations for Corps and Below 2-1 -- Division, Brigade and Battalion Spectrum Operations 2-3 -- Spectrum Managers Assigned to Cyber Electromagnetic Activity -- Working Group 2-3 -- Cyber Electromagnetic Activities Element 2-4 -- Tips for Spectrum Managers 2-6 -- The Military Decisionmaking Process 2-7 -- Support to the MDMP Steps 2-8 -- The Common Operational Picture 2-10.
Chapter 3 SUPPORT TO THE WARFIGHTING FUNCTIONS 3-1 -- Movement and Maneuver 3-1 -- Intelligence 3-1 -- Fires 3-1 -- Sustainment 3-2 -- Mission Command 3-2 -- Protection 3-4 -- Chapter 4 JOINT TASK FORCE CONSIDERATIONS 4-1 -- Inputs and Products of Joint Task Force Spectrum Managers 4-1 -- Joint Frequency Management Office 4-1 -- Joint Spectrum Management Element 4-3 -- Spectrum Management Support to Defense Support of Civil -- Authorities 4-6 -- Chapter 5 SPECTRUM MANAGEMENT OPERATIONS TOOLS 5-1 -- Tool Considerations 5-1 -- Joint Spectrum Interference Resolution Online 5-11 -- Joint Spectrum Data Repository 5-11 -- Appendix A SPECTRUM MANAGEMENT TASK LIST A-1 -- Appendix B CAPABILITIES AND COMPATIBILITY BETWEEN TOOLS B-1 -- Appendix C SPECTRUM PHYSICS C-1 -- Appendix D SPECTRUM MANAGEMENT LIFECYCLE D-1 -- Appendix E MILITARY TIME ZONE DESIGNATORS E-1 -- Part 4: THE IEEE STANDARDS 1900x - 2019 -- Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC) -- IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management -- 1. Overview 12 -- 1.1 Scope 12 -- 1.2 Purpose 12 -- 2. Acronyms and abbreviations 13 -- 3. Definitions of advanced radio system concepts 14 -- 3.1 Adaptive radio 14 -- 3.2 Cognitive radio 15 -- 3.3 Hardware-defined radio 15 -- 3.4 Hardware radio 15 -- 3.5 Intelligent radio 16 -- 3.6 Policy-based radio 16 -- 3.7 Reconfigurable radio 16 -- 3.8 Software-controlled radio 16 -- 3.9 Software-defined radio 16 -- 4. Definitions of radio system functional capabilities 17 -- 4.1 Adaptive modulation 17 -- 4.2 Cognition 17 -- 4.3 Cognitive control mechanism 17 -- 4.4 Cognitive process 17 -- 4.5 Cognitive radio system 18 -- 4.6 Frequency agility 18 -- 4.7 Geolocation capability 18 -- 4.8 Location awareness 18 -- 4.9 Policy-based control mechanism 18 -- 4.10 Policy conformance reasoner 19 -- 4.11 Policy enforcer 19 -- 4.12 Radio awareness 19 -- 4.13 Software controlled 19.
4.14 Software defined 19 -- 4.15 System strategy reasoning capability 19 -- 4.16 Transmit power control 20 -- 5. Definitions of decision-making and control concepts that support advanced radio system technologies 20 -- 5.1 Coexistence policy 20 -- 5.2 DSA policy language 20 -- 5.3 Formal policy 20 -- 5.4 Meta-policy 20 -- 5.5 Model-theoretic computational semantics 20 -- 5.6 Policy language 20 -- 5.7 Reasoner 21 -- 6. Definitions of network technologies that support advanced radio system technologies 21 -- 6.1 Cognitive radio network 21 -- 6.2 Dynamic spectrum access networks 21 -- 6.3 Reconfigurable networks 21 -- 7. Spectrum management definitions 21 -- 7.1 Allocation 21 -- 7.2 Clear channel assessment function 22 -- 7.3 Coexistence 22 -- 7.4 Coexistence mechanism 22 -- 7.5 Cognitive interference avoidance 22 -- 7.6 Collaboration 22 -- 7.7 Collaborative decoding 22 -- 7.8 Cooperation 23 -- 7.9 Data archive 23 -- 7.10 Distributed radio resource usage optimization 23 -- 7.11 Distributed sensing 23 -- 7.12 Dynamic channel assignment 23 -- 7.13 Dynamic frequency selection 23 -- 7.14 Dynamic frequency sharing 24 -- 7.15 Dynamic spectrum access 24 -- 7.16 Dynamic spectrum assignment 24 -- 7.17 Dynamic spectrum management 25 -- 7.18 Electromagnetic compatibility 25 -- 7.19 Frequency hopping 25 -- 7.20 Frequency sharing 25 -- 7.21 Hierarchical spectrum access 25 -- 7.22 Horizontal spectrum sharing 26 -- 7.23 Interference 26 -- 7.24 Opportunistic spectrum access 26 -- 7.25 Opportunistic spectrum management 26 -- 7.26 Policy authority 26 -- 7.27 Policy traceability 27 -- 7.28 Radio environment map 27 -- 7.29 RF environment map 27 -- 7.30 Sensing control information 27 -- 7.31 Sensing information 27 -- 7.32 Sensor 27 -- 7.33 Spectral opportunity 27 -- 7.34 Spectrum access 27 -- 7.35 Spectrum broker 28 -- 7.36 Spectrum efficiency 28 -- 7.37 Spectrum etiquette 28 -- 7.38 Spectrum leasing 28 -- 7.39 Spectrum management 28 -- 7.40 Spectrum overlay 29 -- 7.41 Spectrum owner 29.
7.42 Spectrum pooling 29 -- 7.43 Spectrum sensing 29 -- 7.44 Cooperative spectrum sensing 30 -- 7.45 Collaborative spectrum sensing 30 -- 7.46 Spectrum sharing 30 -- 7.47 Spectrum underlay 30 -- 7.48 Spectrum utilization 30 -- 7.49 Spectrum utilization efficiency 31 -- 7.50 Vertical spectrum sharing 31 -- 7.51 White space 32 -- 7.52 White space database 32 -- 7.53 White space frequency band 32 -- 7.54 White space spectrum band 32 -- 8. Glossary of ancillary terminology 32 -- 8.1 Air interface 32 -- 8.2 Digital policy 32 -- 8.3 Domain 33 -- 8.4 Interference temperature 33 -- 8.5 Interoperability 33 -- 8.6 Machine learning 33 -- 8.7 Machine-understandable policies 33 -- 8.8 Ontology 33 -- 8.9 Policy 34 -- 8.10 Quality of service 34 -- 8.11 Radio 34 -- 8.12 Radio node 35 -- 8.13 Radio spectrum 35 -- 8.14 Receiver 35 -- 8.15 Software 35 -- 8.16 Transmitter 35 -- 8.17 Waveform 35 -- 8.18 Waveform processing 36 -- Annex A (informative) Implications of advanced radio system technologies for spectrum 37 -- Annex B (informative) Explanatory notes on advanced radio system technologies and advanced spectrum management concepts 41 -- Annex C (informative) List of deleted terms from the previous versions of IEEE Std 1901.1 66 -- Annex D (informative) Bibliography 73 -- IEEE Recommended Practice for the Analysis of In-Band and Adjacent Band Interference and Coexistence Between Radio Systems -- 1. Overview 1 -- 1.1 Relationship to traditional spectrum management 1 -- 1.2 Introduction to this recommended practice 2 -- 1.3 Scope 2 -- 1.4 Purpose 3 -- 1.5 Rationale 3 -- 2. Normative references 5 -- 3. Definitions, acronyms, and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. Key concepts 8 -- 4.1 Interference and coexistence analysis 8 -- 4.2 Measurement event 8 -- 4.3 Interference event 9 -- 4.4 Harmful interference 9 -- 4.5 Physical and logical domains 9 -- 5. Structure of analysis and report 10 -- 5.1 Structure for analysis 10 -- 5.2 Process floẃdivergence, reduction, and convergence 12.
5.3 Report structure 14 -- 6. Scenario definition 14 -- 6.1 General 14 -- 6.2 Study question 16 -- 6.3 Benefits and impacts of proposal 16 -- 6.4 Scenario(s) and usage model 16 -- 6.5 Case(s) for analysis 25 -- 7. Criteria for interference 25 -- 7.1 General 25 -- 7.2 Interference characteristics 26 -- 7.3 Measurement event 28 -- 7.4 Interference event 28 -- 7.5 Harmful interference criteria 28 -- 8. Variables 32 -- 8.1 General 32 -- 8.2 Variable selection 34 -- 9. Analysiśmodeling, simulation, measurement, and testing 35 -- 9.1 General 35 -- 9.2 Selection of the analysis approach, tools, and techniques 36 -- 9.3 Matrix reduction 37 -- 9.4 Performing the analysis 38 -- 9.5 Quantification of benefits and interference 38 -- 9.6 Analysis of mitigation options 38 -- 9.7 Analysis uncertainty 38 -- 10. Conclusions and summary 39 -- 10.1 Benefits and impacts 39 -- 10.2 Summation 39 -- Annex A (informative) Propagation modeling 40 -- Annex B (informative) Audio interference 48 -- Annex C (informative) Spectrum utilization efficiency 51 -- Annex D (informative) Sample analysiśselection of listen-before-talk threshold 55 -- Annex E (informative) Sample analysiśeffect of out-of-band emissions on a LBT band 63 -- Annex F (informative) Sample analysiśLow-power radios operating in the TV band 70 -- Annex G (informative) Sample analysiśRF test levels for ANSI C63.9 [B3] 81 -- Annex H (normative) Glossary 89 -- Annex I (informative) Bibliography 93 -- IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 1 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 3 -- 3.1 Definitions 3 -- 3.2 Acronyms and abbreviations 5 -- 4. Overall system description 5 -- 4.1 System overview 5 -- 4.2 Summary of use cases 7 -- 4.3 Assumptions 8 -- 5. Requirements 9 -- 5.1 System requirements 9.
5.2 Functional requirements 12 -- 5.3 Information model requirements 14 -- 6. Architecture 14 -- 6.1 System description 14 -- 6.2 Functional description 18 -- 7. Information model 24 -- 7.1 Introduction 24 -- 7.2 Information modeling approach 25 -- 7.3 Information model classes 25 -- 8. Procedures 32 -- 8.1 Introduction 32 -- 8.2 Generic procedures 36 -- 8.3 Examples of use case realization 49 -- Annex A (informative) Use cases 53 -- A.1 Dynamic spectrum assignment 53 -- A.2 Dynamic spectrum sharing 59 -- A.3 Distributed radio resource usage optimization 61 -- Annex B (normative) Class definitions for information model 63 -- B.1 Notational tools 63 -- B.2 Common base class 64 -- B.3 Policy classes 64 -- B.4 Terminal classes 66 -- B.5 CWN classes 74 -- B.6 Relations between terminal and CWN classes 82 -- Annex C (normative) Data type definitions for information model 84 -- C.1 Function definitions 84 -- C.2 ASN.1 type definitions 86 -- Annex D (informative) Information model extensions and usage example 93 -- D.1 Functions for external management interface 93 -- D.2 Additional utility classes 94 -- D.3 Additional ASN.1 type definitions for utility classes 103 -- D.4 Example for distributed radio resource usage optimization use case 104 -- Annex E (informative) Deployment examples 109 -- E.1 Introduction 109 -- E.2 Deployment examples for single operator scenario 109 -- E.3 Multiple operator scenario 1 (NRM is inside operator) 114 -- E.4 Multiple operator scenario 2 (NRM is outside operator) 115 -- Annex F (informative) Bibliography 117 -- IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 2 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 2 -- 3.1 Definitions 2 -- 3.2 Acronyms and abbreviations 6 -- 4. Architecture requirements for policy-based control of DSA radio systems 8 -- 4.1 General architecture requirements 8.
4.2 Policy management requirements 9 -- 5. Architecture components and interfaces for policy-based control of DSA radio systems 10 -- 5.1 Policy management point 12 -- 5.2 Policy conformance reasoner 12 -- 5.3 Policy enforcer (PE) 14 -- 5.4 Policy repository 15 -- 5.5 System strategy reasoning capability (SSRC) 16 -- 6. Policy language and reasoning requirements 17 -- 6.1 Language expressiveness 18 -- 6.2 Reasoning about policies 27 -- Annex A (informative) Use cases 29 -- Annex B (informative) Illustrative examples of DSA policy-based architecture 31 -- Annex C (informative) Relation of IEEE 1900.5 policy architecture to other policy architectures 33 -- Annex D (informative) Characteristics of imperative (procedural) and declarative languages for satisfying language requirements for cognitive radio systems 35 -- Annex E (informative) Example sequence diagrams of IEEE 1900.5 system 36 -- E.1 Overview 36 -- E.2 Assumptions 36 -- E.3 Sequence diagram organization 37 -- Annex F (informative) Bibliography 41 -- IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and Other Advanced Radio Communication Systems -- 1. Overview 1 -- 1.1 Scope 2 -- 1.2 Purpose 2 -- 1.3 Interfaces and sample application areas 2 -- 1.4 Conformance keywords 4 -- 2. Normative references 4 -- 3. Definitions, acronyms and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. System model 8 -- 4.1 Scenario 1: Single CE/DA and single Sensor 8 -- 4.2 Scenario 2: Single CE/DA and multiple Sensors 9 -- 4.3 Scenario 3: Multiple CE/DA and single Sensor 10 -- 5. The IEEE 1900.6 reference model 11 -- 5.1 General description 11 -- 5.2 An implementation example of the IEEE 1900.6 reference model 14 -- 5.3 Service access points (SAPs) 15 -- 6. Information description 70 -- 6.1 Information categories 70 -- 6.2 Data types 73 -- 6.3 Description of sensing-related parameters 75 -- 6.4 Data representation 88 -- 7. State diagram and generic procedures 95.
7.1 State description 95 -- 7.2 State transition description 96 -- 7.3 Generic procedures 98 -- 7.4 Example procedures for use cases 101 -- Annex A (informative) Use cases 107 -- Annex B (informative) Use case classification 143 -- Annex C (informative) Implementation of distributed sensing 148 -- Annex D (informative) IEEE 1900.6 DA: Scope and usage 153 -- Annex E (informative) Analysis of available/future technologies 157 -- Annex F (informative) Bibliography 15 -- IEEE Standard for Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 2. Definitions, acronyms, and abbreviations 2 -- 2.1 Definitions 2 -- 2.2 Acronyms and abbreviations 2 -- 3. Reference model 3 -- 4. MAC sublayer 4 -- 4.1 Architecture of the MAC sublayer 4 -- 4.2 Type definition 4 -- 4.3 MAC frame formats 4 -- 4.4 MAC sublayer service specification 9 -- 4.5 MAC functional description 24 -- 5. PHY layer 37 -- 5.1 PHY layer service specification 37 -- 5.2 CRC method 42 -- 5.3 Channel coding (including interleaving and modulation) 42 -- 5.4 Mapping modulated symbols to carriers 47 -- 5.5 Transmitter requirements 53 -- Annex A (informative) Coexistence considerations 55.
Record Nr. UNINA-9910829922503321
Elmasry George F.  
Hoboken, New Jersey, USA : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...