top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cognitive radio and dynamic spectrum access / / Lars Berlemann and Stefan Mangold
Cognitive radio and dynamic spectrum access / / Lars Berlemann and Stefan Mangold
Autore Berlemann Lars
Pubbl/distr/stampa Hoboken, New Jersey : , : J. Wiley & Sons, , 2009
Descrizione fisica 1 online resource (266 p.)
Disciplina 621.384
Altri autori (Persone) MangoldStefan
Soggetto topico Cognitive radio networks
Radio frequency allocation
Software radio
ISBN 1-282-68377-2
9786612683770
0-470-75442-7
0-470-75443-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures -- List of Tables -- About The Authors -- Foreword -- Acknowledgement -- Preface -- Abbreviations -- 1. INTRODUCTION -- 1.1 Access to radio spectrum -- 1.2 Artificial spectrum scarcity from unexploited frequencies -- 1.3 Cognitive radio and dynamic spectrum access as solution -- 1.4 This book 28 -- 2. RADIO SPECTRUM TODAY - REGULATION AND SPECTRUM USAGE -- 2.1 History and terminology -- 2.1.1 The four basic approaches for radio spectrum regulation -- 2.1.2 Guiding principles -- 2.2 Institutions that regulate radio spectrum -- 2.2.1 International Telecommunication Union, ITU -- 2.2.2 Europe -- 2.2.3 Germany -- 2.2.4 United Kingdom -- 2.2.5 Japan -- 2.2.6 P.R. China -- 2.2.7 United States of America -- 2.3 Licensed and unlicensed spectrum -- 2.3.1 The disadvantages of spectrum licensing -- 2.3.2 Unlicensed spectrum as alternative -- 2.3.3 Tragedy of commons in unlicensed spectrum -- 2.3.4 Spectrum measurements -- 3. RADIO SPECTRUM TOMORROW ? DYNAMIC SPECTRUM ACCESS & SPECTRUM SHARING -- 3.1 Spectrum sharing and dynamic spectrum access: concepts and terminology -- 3.1.1 Spectrum trading and spectrum liberalization -- 3.1.2 Underlay and overlay spectrum sharing -- 3.1.3 Vertical and horizontal spectrum sharing -- 3.1.4 Coexistence, coordination and cooperation -- 3.2 Horizontal spectrum sharing -- 3.2.1 Coexistence -- 3.2.2 Centralized spectrum coordination for horizontal sharing -- 3.2.3 Spectrum sharing games -- 3.3 Vertical spectrum sharing -- 3.3.1 Re-use of TV bands for vertical spectrum sharing -- 3.3.2 Spectrum pooling and a common control for vertical spectrum sharing -- 3.3.3 Operator-assistance in vertical spectrum sharing -- 3.3.4 Spectrum load smoothing for vertical spectrum sharing -- 3.4 Taxonomy for spectrum sharing -- 4. TOWARDS COGNITIVE RADIO - RESEARCH AND STANDARDIZATION -- 4.1 Research programs and projects -- 4.1.1 DARPA Next Generation Communications Program, XG -- 4.1.2 National Science Foundation's project GENI -- 4.1.3 European project E3.
4.1.4 European project WINNER+ -- 4.1.5 European project WIP -- 4.1.6 European project SOCRATES -- 4.1.7 European project ROCKET -- 4.1.8 European project ORACLE -- 4.2 IEEE coordination, and the Coexistence Advisory Group IEEE 802.19 -- 4.3 IEEE SCC41/P1900 -- 4.3.1 IEEE P1900.1 -- 4.3.2 IEEE P1900.2 -- 4.3.3 IEEE P1900.3 -- 4.3.4 IEEE P1900.4 -- 4.3.5 IEEE P1900.5 -- 4.4 Wi-Fi Wireless Local Area Networks IEEE 802.11 -- 4.4.1 IEEE 802.11k for radio resource measurements -- 4.4.2 IEEE 802.11n for high throughput -- 4.4.3 IEEE 802.11s for mesh networks -- 4.4.4 IEEE 802.11y for high power Wi-Fi -- 4.5 WiMAX Wirless Metropolitan Area Networks IEEE 802.16 -- 4.5.1 IEEE 802.16.2 Coexistence -- 4.5.2 IEEE 802.16h license exempt -- 4.5.3 IEEE 802.22 for wireless rural area networks -- 4.6 Other standardization activities -- 4.6.1 White Spaces Coalition & Wireless Innovation Alliance -- 4.6.2 The New America Foundation and open spectrum -- 4.6.3 SDR Forum -- 4.6.4 Third Generation Partnership Project 3GPP -- 4.6.5 European Telecommunications Standards Institute ETSI -- 4.6.6 Academic research conferences and workshops -- 5. PROPOSED ENABLERS FOR REALIZING HORIZONTAL SPECTRUM SHARING -- 5.1 IEEE 802.11 in unlicensed spectrum -- 5.1.1 Overview -- 5.1.2 Physical layer -- 5.1.3 Medium access control -- 5.1.4 Learning from 802.11 -- 5.2 IEEE 802.16 in unlicensed spectrum -- 5.2.1 Coexistence scenario -- 5.2.2 Protecting the beginning of 802.16 MAC frame -- 5.2.3 Protecting the 802.16 UL subframe -- 5.2.4 Shifting the contention slots -- 5.2.5 Quality-of-service, efficiency, and fairness -- 5.3 Policies in spectrum usage -- 5.3.1 Policy framework -- 5.3.2 Spectrum navigation -- 5.3.3 Reasoning based spectrum navigation -- 5.4 Policy language -- 5.5 Spectrum sharing games -- 5.5.1 Related work -- 5.5.2 802.11e coexistence scenario -- 5.5.3 Game overview -- 5.5.4 Single stage game for frame based interaction -- 5.5.5 Quality-of-service as utility -- 5.5.6 Analytic game model -- 5.5.7 Behavior.
5.5.8 Equilibrium analysis -- 5.5.9 Multi stage game model -- 5.5.10 Discounting of future payoffs -- 5.5.11 Strategies -- 5.5.12 Nash equilibrium in multi stage games -- 5.5.13 QoS evaluation of strategies -- 5.5.14 Game approach as policy -- 5.5.15 Learning from spectrum sharing games -- 6. PROPOSED ENABLERS FOR REALIZING VERTICAL SPECTRUM SHARING -- 6.1 Frequency division duplex for Wi-Fi: FDD WLANs -- 6.2 Operator assisted cognitive radio with beaconing -- 6.2.1 Existing standard beaconing concepts -- 6.2.2 What is a beacon? -- 6.2.3 Improved signaling mechanism with dual beacons -- 6.2.4 Beacon implementation in IEEE 802.11 -- 6.2.5 Evaluation -- 6.2.6 Dual beaconing for the reuse of TV bands as policy -- 6.3 Spectrum load smoothing -- 6.3.1 Related work -- 6.3.2 Enabling cognitive radios -- 6.3.3 Spectrum load smoothing in the time domain -- 6.3.4 Initial simulations and convergence experiments -- 6.3.5 Modeling spectrum load smoothing in spectrum sharing scenarios -- 6.3.6 QoS support in IEEE 802.11e coexistence scenarios -- 6.3.7 SLS with reservations - approach to the re-use of TV-bands -- 6.3.8 SLS without reservations - opportunistic spectrum usage scenario -- 6.3.9 Evaluation of QoS capabilities -- 6.3.10 Spectrum load smoothing as policy -- 6.3.11 Learning from spectrum load smoothing approach -- 7. OUR VISION ? THE TRUE COGNITIVE RADIO -- 7.1 Mitola's cognition circle and related cognitive radio definitions -- 7.2 Cognitive radios can gain from delay-tolerant software radio -- 7.3 DARPA XG provides implementation guidelines, including the access protocol -- 7.3.1 Traceable decision making -- 7.3.2 Machine-understandable radio semantics -- 7.4 Spectrum etiquette may stimulate cognitive behavior -- 7.4.1 What is spectrum etiquette? -- 7.4.2 Value orientation -- 7.5 Network operators may assist dynamic spectrum access -- 7.6 Business opportunities -- 8 CONCLUDING REMARKS -- A. APPENDIX "JEMULA802" -- B. APPENDIX "YOUSHI" -- B.1 Modeling QoS requirements and demands.
B.2 Resource allocation and collisions -- B.3 Graphical user interface -- References -- Index.
Record Nr. UNINA-9910139784103321
Berlemann Lars  
Hoboken, New Jersey : , : J. Wiley & Sons, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio and dynamic spectrum access / / Lars Berlemann and Stefan Mangold
Cognitive radio and dynamic spectrum access / / Lars Berlemann and Stefan Mangold
Autore Berlemann Lars
Pubbl/distr/stampa Hoboken, New Jersey : , : J. Wiley & Sons, , 2009
Descrizione fisica 1 online resource (266 p.)
Disciplina 621.384
Altri autori (Persone) MangoldStefan
Soggetto topico Cognitive radio networks
Radio frequency allocation
Software radio
ISBN 1-282-68377-2
9786612683770
0-470-75442-7
0-470-75443-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures -- List of Tables -- About The Authors -- Foreword -- Acknowledgement -- Preface -- Abbreviations -- 1. INTRODUCTION -- 1.1 Access to radio spectrum -- 1.2 Artificial spectrum scarcity from unexploited frequencies -- 1.3 Cognitive radio and dynamic spectrum access as solution -- 1.4 This book 28 -- 2. RADIO SPECTRUM TODAY - REGULATION AND SPECTRUM USAGE -- 2.1 History and terminology -- 2.1.1 The four basic approaches for radio spectrum regulation -- 2.1.2 Guiding principles -- 2.2 Institutions that regulate radio spectrum -- 2.2.1 International Telecommunication Union, ITU -- 2.2.2 Europe -- 2.2.3 Germany -- 2.2.4 United Kingdom -- 2.2.5 Japan -- 2.2.6 P.R. China -- 2.2.7 United States of America -- 2.3 Licensed and unlicensed spectrum -- 2.3.1 The disadvantages of spectrum licensing -- 2.3.2 Unlicensed spectrum as alternative -- 2.3.3 Tragedy of commons in unlicensed spectrum -- 2.3.4 Spectrum measurements -- 3. RADIO SPECTRUM TOMORROW ? DYNAMIC SPECTRUM ACCESS & SPECTRUM SHARING -- 3.1 Spectrum sharing and dynamic spectrum access: concepts and terminology -- 3.1.1 Spectrum trading and spectrum liberalization -- 3.1.2 Underlay and overlay spectrum sharing -- 3.1.3 Vertical and horizontal spectrum sharing -- 3.1.4 Coexistence, coordination and cooperation -- 3.2 Horizontal spectrum sharing -- 3.2.1 Coexistence -- 3.2.2 Centralized spectrum coordination for horizontal sharing -- 3.2.3 Spectrum sharing games -- 3.3 Vertical spectrum sharing -- 3.3.1 Re-use of TV bands for vertical spectrum sharing -- 3.3.2 Spectrum pooling and a common control for vertical spectrum sharing -- 3.3.3 Operator-assistance in vertical spectrum sharing -- 3.3.4 Spectrum load smoothing for vertical spectrum sharing -- 3.4 Taxonomy for spectrum sharing -- 4. TOWARDS COGNITIVE RADIO - RESEARCH AND STANDARDIZATION -- 4.1 Research programs and projects -- 4.1.1 DARPA Next Generation Communications Program, XG -- 4.1.2 National Science Foundation's project GENI -- 4.1.3 European project E3.
4.1.4 European project WINNER+ -- 4.1.5 European project WIP -- 4.1.6 European project SOCRATES -- 4.1.7 European project ROCKET -- 4.1.8 European project ORACLE -- 4.2 IEEE coordination, and the Coexistence Advisory Group IEEE 802.19 -- 4.3 IEEE SCC41/P1900 -- 4.3.1 IEEE P1900.1 -- 4.3.2 IEEE P1900.2 -- 4.3.3 IEEE P1900.3 -- 4.3.4 IEEE P1900.4 -- 4.3.5 IEEE P1900.5 -- 4.4 Wi-Fi Wireless Local Area Networks IEEE 802.11 -- 4.4.1 IEEE 802.11k for radio resource measurements -- 4.4.2 IEEE 802.11n for high throughput -- 4.4.3 IEEE 802.11s for mesh networks -- 4.4.4 IEEE 802.11y for high power Wi-Fi -- 4.5 WiMAX Wirless Metropolitan Area Networks IEEE 802.16 -- 4.5.1 IEEE 802.16.2 Coexistence -- 4.5.2 IEEE 802.16h license exempt -- 4.5.3 IEEE 802.22 for wireless rural area networks -- 4.6 Other standardization activities -- 4.6.1 White Spaces Coalition & Wireless Innovation Alliance -- 4.6.2 The New America Foundation and open spectrum -- 4.6.3 SDR Forum -- 4.6.4 Third Generation Partnership Project 3GPP -- 4.6.5 European Telecommunications Standards Institute ETSI -- 4.6.6 Academic research conferences and workshops -- 5. PROPOSED ENABLERS FOR REALIZING HORIZONTAL SPECTRUM SHARING -- 5.1 IEEE 802.11 in unlicensed spectrum -- 5.1.1 Overview -- 5.1.2 Physical layer -- 5.1.3 Medium access control -- 5.1.4 Learning from 802.11 -- 5.2 IEEE 802.16 in unlicensed spectrum -- 5.2.1 Coexistence scenario -- 5.2.2 Protecting the beginning of 802.16 MAC frame -- 5.2.3 Protecting the 802.16 UL subframe -- 5.2.4 Shifting the contention slots -- 5.2.5 Quality-of-service, efficiency, and fairness -- 5.3 Policies in spectrum usage -- 5.3.1 Policy framework -- 5.3.2 Spectrum navigation -- 5.3.3 Reasoning based spectrum navigation -- 5.4 Policy language -- 5.5 Spectrum sharing games -- 5.5.1 Related work -- 5.5.2 802.11e coexistence scenario -- 5.5.3 Game overview -- 5.5.4 Single stage game for frame based interaction -- 5.5.5 Quality-of-service as utility -- 5.5.6 Analytic game model -- 5.5.7 Behavior.
5.5.8 Equilibrium analysis -- 5.5.9 Multi stage game model -- 5.5.10 Discounting of future payoffs -- 5.5.11 Strategies -- 5.5.12 Nash equilibrium in multi stage games -- 5.5.13 QoS evaluation of strategies -- 5.5.14 Game approach as policy -- 5.5.15 Learning from spectrum sharing games -- 6. PROPOSED ENABLERS FOR REALIZING VERTICAL SPECTRUM SHARING -- 6.1 Frequency division duplex for Wi-Fi: FDD WLANs -- 6.2 Operator assisted cognitive radio with beaconing -- 6.2.1 Existing standard beaconing concepts -- 6.2.2 What is a beacon? -- 6.2.3 Improved signaling mechanism with dual beacons -- 6.2.4 Beacon implementation in IEEE 802.11 -- 6.2.5 Evaluation -- 6.2.6 Dual beaconing for the reuse of TV bands as policy -- 6.3 Spectrum load smoothing -- 6.3.1 Related work -- 6.3.2 Enabling cognitive radios -- 6.3.3 Spectrum load smoothing in the time domain -- 6.3.4 Initial simulations and convergence experiments -- 6.3.5 Modeling spectrum load smoothing in spectrum sharing scenarios -- 6.3.6 QoS support in IEEE 802.11e coexistence scenarios -- 6.3.7 SLS with reservations - approach to the re-use of TV-bands -- 6.3.8 SLS without reservations - opportunistic spectrum usage scenario -- 6.3.9 Evaluation of QoS capabilities -- 6.3.10 Spectrum load smoothing as policy -- 6.3.11 Learning from spectrum load smoothing approach -- 7. OUR VISION ? THE TRUE COGNITIVE RADIO -- 7.1 Mitola's cognition circle and related cognitive radio definitions -- 7.2 Cognitive radios can gain from delay-tolerant software radio -- 7.3 DARPA XG provides implementation guidelines, including the access protocol -- 7.3.1 Traceable decision making -- 7.3.2 Machine-understandable radio semantics -- 7.4 Spectrum etiquette may stimulate cognitive behavior -- 7.4.1 What is spectrum etiquette? -- 7.4.2 Value orientation -- 7.5 Network operators may assist dynamic spectrum access -- 7.6 Business opportunities -- 8 CONCLUDING REMARKS -- A. APPENDIX "JEMULA802" -- B. APPENDIX "YOUSHI" -- B.1 Modeling QoS requirements and demands.
B.2 Resource allocation and collisions -- B.3 Graphical user interface -- References -- Index.
Record Nr. UNINA-9910807241403321
Berlemann Lars  
Hoboken, New Jersey : , : J. Wiley & Sons, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio communications and networking : principles and practice / / Robert C. Qiu ... [et al.]
Cognitive radio communications and networking : principles and practice / / Robert C. Qiu ... [et al.]
Autore Qiu Robert Caiming <1966->
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, UK : , : John Wiley & Sons Inc., , 2012
Descrizione fisica 1 online resource (536 p.)
Disciplina 621.382/1
Altri autori (Persone) QiuRobert C. <1966->
Soggetto topico Cognitive radio networks
ISBN 1-283-99373-2
1-118-37629-3
1-118-37628-5
1-118-37627-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Preface xv -- 1 Introduction 1 -- 1.1 Vision: “Big Data” 1 -- 1.2 Cognitive Radio: System Concepts 2 -- 1.3 Spectrum Sensing Interface and Data Structures 2 -- 1.4 Mathematical Machinery 4 -- 1.4.1 Convex Optimization 4 -- 1.4.2 Game Theory 6 -- 1.4.3 “Big Data” Modeled as Large Random Matrices 6 -- 1.5 Sample Covariance Matrix 10 -- 1.6 Large Sample Covariance Matrices of Spiked Population Models 11 -- 1.7 Random Matrices and Noncommutative Random Variables 12 -- 1.8 Principal Component Analysis 13 -- 1.9 Generalized Likelihood Ratio Test (GLRT) 13 -- 1.10 Bregman Divergence for Matrix Nearness 13 -- 2 Spectrum Sensing: Basic Techniques 15 -- 2.1 Challenges 15 -- 2.2 Energy Detection: No Prior Information about Deterministic or Stochastic Signal 15 -- 2.2.1 Detection in White Noise: Lowpass Case 16 -- 2.2.2 Time-Domain Representation of the Decision Statistic 19 -- 2.2.3 Spectral Representation of the Decision Statistic 19 -- 2.2.4 Detection and False Alarm Probabilities over AWGN Channels 20 -- 2.2.5 Expansion of Random Process in Orthonormal Series with Uncorrelated Coefficients: The Karhunen-Loeve Expansion 21 -- 2.3 Spectrum Sensing Exploiting Second-Order Statistics 23 -- 2.3.1 Signal Detection Formulation 23 -- 2.3.2 Wide-Sense Stationary Stochastic Process: Continuous-Time 24 -- 2.3.3 Nonstationary Stochastic Process: Continuous-Time 25 -- 2.3.4 Spectrum Correlation-Based Spectrum Sensing for WSS Stochastic Signal: Heuristic Approach 29 -- 2.3.5 Likelihood Ratio Test of Discrete-Time WSS Stochastic Signal 32 -- 2.3.6 Asymptotic Equivalence between Spectrum Correlation and Likelihood Ratio Test 35 -- 2.3.7 Likelihood Ratio Test of Continuous-Time Stochastic Signals in Noise: Selin's Approach 36 -- 2.4 Statistical Pattern Recognition: Exploiting Prior Information about Signal through Machine Learning 39 -- 2.4.1 Karhunen-Loeve Decomposition for Continuous-Time Stochastic Signal 39 -- 2.5 Feature Template Matching 42 -- 2.6 Cyclostationary Detection 47 -- 3 Classical Detection 51.
3.1 Formalism of Quantum Information 51 -- 3.2 Hypothesis Detection for Collaborative Sensing 51 -- 3.3 Sample Covariance Matrix 55 -- 3.3.1 The Data Matrix 56 -- 3.4 Random Matrices with Independent Rows 63 -- 3.5 The Multivariate Normal Distribution 67 -- 3.6 Sample Covariance Matrix Estimation and Matrix Compressed Sensing 77 -- 3.6.1 The Maximum Likelihood Estimation 81 -- 3.6.2 Likelihood Ratio Test (Wilks Test) for Multisample Hypotheses 83 -- 3.7 Likelihood Ratio Test 84 -- 3.7.1 General Gaussian Detection and Estimator-Correlator Structure 84 -- 3.7.2 Tests with Repeated Observations 90 -- 3.7.3 Detection Using Sample Covariance Matrices 94 -- 3.7.4 GLRT for Multiple Random Vectors 95 -- 3.7.5 Linear Discrimination Functions 97 -- 3.7.6 Detection of Correlated Structure for Complex Random Vectors 98 -- 4 Hypothesis Detection of Noncommutative Random Matrices 101 -- 4.1 Why Noncommutative Random Matrices? 101 -- 4.2 Partial Orders of Covariance Matrices: A < B 102 -- 4.3 Partial Ordering of Completely Positive Mappings: (A) < (B) 104 -- 4.4 Partial Ordering of Matrices Using Majorization: A ≺ B 105 -- 4.5 Partial Ordering of Unitarily Invariant Norms: |||A||| < |||B||| 109 -- 4.6 Partial Ordering of Positive Definite Matrices of Many Copies: K k=1 Ak ≤ K k=1 Bk 109 -- 4.7 Partial Ordering of Positive Operator Valued Random Variables: Prob(A ≤ X ≤ B) 110 -- 4.8 Partial Ordering Using Stochastic Order: A ≤st B 115 -- 4.9 Quantum Hypothesis Detection 115 -- 4.10 Quantum Hypothesis Testing for Many Copies 118 -- 5 Large Random Matrices 119 -- 5.1 Large Dimensional Random Matrices: Moment Approach, Stieltjes Transform and Free Probability 119 -- 5.2 Spectrum Sensing Using Large Random Matrices 121 -- 5.2.1 System Model 121 -- 5.2.2 Marchenko-Pastur Law 124 -- 5.3 Moment Approach 129 -- 5.3.1 Limiting Spectral Distribution 130 -- 5.3.2 Limits of Extreme Eigenvalues 133 -- 5.3.3 Convergence Rates of Spectral Distributions 136 -- 5.3.4 Standard Vector-In, Vector-Out Model 137.
5.3.5 Generalized Densities 138 -- 5.4 Stieltjes Transform 139 -- 5.4.1 Basic Theorems 143 -- 5.4.2 Large Random Hankel, Markov and Toepltiz Matrices 149 -- 5.4.3 Information Plus Noise Model of Random Matrices 152 -- 5.4.4 Generalized Likelihood Ratio Test Using Large Random Matrices 157 -- 5.4.5 Detection of High-Dimensional Signals in White Noise 164 -- 5.4.6 Eigenvalues of (A + B)-1B and Applications 169 -- 5.4.7 Canonical Correlation Analysis 171 -- 5.4.8 Angles and Distances between Subspaces 173 -- 5.4.9 Multivariate Linear Model 173 -- 5.4.10 Equality of Covariance Matrices 174 -- 5.4.11 Multiple Discriminant Analysis 174 -- 5.5 Case Studies and Applications 175 -- 5.5.1 Fundamental Example of Using Large Random Matrix 175 -- 5.5.2 Stieltjes Transform 177 -- 5.5.3 Free Deconvolution 178 -- 5.5.4 Optimal Precoding of MIMO Systems 178 -- 5.5.5 Marchenko and Pastur's Probability Distribution 179 -- 5.5.6 Convergence and Fluctuations Extreme Eigenvalues 180 -- 5.5.7 Information plus Noise Model and Spiked Models 180 -- 5.5.8 Hypothesis Testing and Spectrum Sensing 183 -- 5.5.9 Energy Estimation in a Wireless Network 185 -- 5.5.10 Multisource Power Inference 187 -- 5.5.11 Target Detection, Localization, and Reconstruction 187 -- 5.5.12 State Estimation and Malignant Attacker in the Smart Grid 191 -- 5.5.13 Covariance Matrix Estimation 193 -- 5.5.14 Deterministic Equivalents 197 -- 5.5.15 Local Failure Detection and Diagnosis 200 -- 5.6 Regularized Estimation of Large Covariance Matrices 200 -- 5.6.1 Regularized Covariance Estimates 201 -- 5.6.2 Banding the Inverse 203 -- 5.6.3 Covariance Regularization by Thresholding 204 -- 5.6.4 Regularized Sample Covariance Matrices 206 -- 5.6.5 Optimal Rates of Convergence for Covariance Matrix Estimation 208 -- 5.6.6 Banding Sample Autocovariance Matrices of Stationary Processes 211 -- 5.7 Free Probability 213 -- 5.7.1 Large Random Matrices and Free Convolution 218 -- 5.7.2 Vandermonde Matrices 221 -- 5.7.3 Convolution and Deconvolution with Vandermonde Matrices 229.
5.7.4 Finite Dimensional Statistical Inference 232 -- 6 Convex Optimization 235 -- 6.1 Linear Programming 237 -- 6.2 Quadratic Programming 238 -- 6.3 Semidefinite Programming 239 -- 6.4 Geometric Programming 239 -- 6.5 Lagrange Duality 241 -- 6.6 Optimization Algorithm 242 -- 6.6.1 Interior Point Methods 242 -- 6.6.2 Stochastic Methods 243 -- 6.7 Robust Optimization 244 -- 6.8 Multiobjective Optimization 248 -- 6.9 Optimization for Radio Resource Management 249 -- 6.10 Examples and Applications 250 -- 6.10.1 Spectral Efficiency for Multiple Input Multiple Output Ultra-Wideband Communication System 250 -- 6.10.2 Wideband Waveform Design for Single Input Single Output Communication System with Noncoherent Receiver 256 -- 6.10.3 Wideband Waveform Design for Multiple Input Single Output Cognitive Radio 262 -- 6.10.4 Wideband Beamforming Design 268 -- 6.10.5 Layering as Optimization Decomposition for Cognitive Radio Network 272 -- 6.11 Summary 282 -- 7 Machine Learning 283 -- 7.1 Unsupervised Learning 288 -- 7.1.1 Centroid-Based Clustering 288 -- 7.1.2 k-Nearest Neighbors 289 -- 7.1.3 Principal Component Analysis 289 -- 7.1.4 Independent Component Analysis 290 -- 7.1.5 Nonnegative Matrix Factorization 291 -- 7.1.6 Self-Organizing Map 292 -- 7.2 Supervised Learning 293 -- 7.2.1 Linear Regression 293 -- 7.2.2 Logistic Regression 294 -- 7.2.3 Artificial Neural Network 294 -- 7.2.4 Decision Tree Learning 294 -- 7.2.5 Naive Bayes Classifier 295 -- 7.2.6 Support Vector Machines 295 -- 7.3 Semisupervised Learning 298 -- 7.3.1 Constrained Clustering 298 -- 7.3.2 Co-Training 298 -- 7.3.3 Graph-Based Methods 299 -- 7.4 Transductive Inference 299 -- 7.5 Transfer Learning 299 -- 7.6 Active Learning 299 -- 7.7 Reinforcement Learning 300 -- 7.7.1 Q-Learning 300 -- 7.7.2 Markov Decision Process 301 -- 7.7.3 Partially Observable MDPs 302 -- 7.8 Kernel-Based Learning 303 -- 7.9 Dimensionality Reduction 304 -- 7.9.1 Kernel Principal Component Analysis 305 -- 7.9.2 Multidimensional Scaling 307.
7.9.3 Isomap 308 -- 7.9.4 Locally-Linear Embedding 308 -- 7.9.5 Laplacian Eigenmaps 309 -- 7.9.6 Semidefinite Embedding 309 -- 7.10 Ensemble Learning 311 -- 7.11 Markov Chain Monte Carlo 312 -- 7.12 Filtering Technique 313 -- 7.12.1 Kalman Filtering 314 -- 7.12.2 Particle Filtering 318 -- 7.12.3 Collaborative Filtering 319 -- 7.13 Bayesian Network 320 -- 7.14 Summary 321 -- 8 Agile Transmission Techniques (I): Multiple Input Multiple Output 323 -- 8.1 Benefits of MIMO 323 -- 8.1.1 Array Gain 323 -- 8.1.2 Diversity Gain 323 -- 8.1.3 Multiplexing Gain 324 -- 8.2 Space Time Coding 324 -- 8.2.1 Space Time Block Coding 325 -- 8.2.2 Space Time Trellis Coding 326 -- 8.2.3 Layered Space Time Coding 326 -- 8.3 Multi-User MIMO 327 -- 8.3.1 Space-Division Multiple Access 327 -- 8.3.2 MIMO Broadcast Channel 328 -- 8.3.3 MIMO Multiple Access Channel 330 -- 8.3.4 MIMO Interference Channel 331 -- 8.4 MIMO Network 334 -- 8.5 MIMO Cognitive Radio Network 336 -- 8.6 Summary 337 -- 9 Agile Transmission Techniques (II): Orthogonal Frequency Division Multiplexing 339 -- 9.1 OFDM Implementation 339 -- 9.2 Synchronization 341 -- 9.3 Channel Estimation 343 -- 9.4 Peak Power Problem 345 -- 9.5 Adaptive Transmission 345 -- 9.6 Spectrum Shaping 347 -- 9.7 Orthogonal Frequency Division Multiple Access 347 -- 9.8 MIMO OFDM 349 -- 9.9 OFDM Cognitive Radio Network 349 -- 9.10 Summary 350 -- 10 Game Theory 351 -- 10.1 Basic Concepts of Games 351 -- 10.1.1 Elements of Games 351 -- 10.1.2 Nash Equilibrium: Definition and Existence 352 -- 10.1.3 Nash Equilibrium: Computation 354 -- 10.1.4 Nash Equilibrium: Zero-Sum Games 355 -- 10.1.5 Nash Equilibrium: Bayesian Case 355 -- 10.1.6 Nash Equilibrium: Stochastic Games 356 -- 10.2 Primary User Emulation Attack Games 360 -- 10.2.1 PUE Attack 360 -- 10.2.2 Two-Player Case: A Strategic-Form Game 361 -- 10.2.3 Game in Queuing Dynamics: A Stochastic Game 362 -- 10.3 Games in Channel Synchronization 368 -- 10.3.1 Background of the Game 368 -- 10.3.2 System Model 368.
10.3.3 Game Formulation 369 -- 10.3.4 Bayesian Equilibrium 370 -- 10.3.5 Numerical Results 371 -- 10.4 Games in Collaborative Spectrum Sensing 372 -- 10.4.1 False Report Attack 373 -- 10.4.2 Game Formulation 373 -- 10.4.3 Elements of Game 374 -- 10.4.4 Bayesian Equilibrium 376 -- 10.4.5 Numerical Results 379 -- 11 Cognitive Radio Network 381 -- 11.1 Basic Concepts of Networks 381 -- 11.1.1 Network Architecture 381 -- 11.1.2 Network Layers 382 -- 11.1.3 Cross-Layer Design 384 -- 11.1.4 Main Challenges in Cognitive Radio Networks 384 -- 11.1.5 Complex Networks 385 -- 11.2 Channel Allocation in MAC Layer 386 -- 11.2.1 Problem Formulation 386 -- 11.2.2 Scheduling Algorithm 387 -- 11.2.3 Solution 389 -- 11.2.4 Discussion 390 -- 11.3 Scheduling in MAC Layer 391 -- 11.3.1 Network Model 391 -- 11.3.2 Goal of Scheduling 393 -- 11.3.3 Scheduling Algorithm 393 -- 11.3.4 Performance of the CNC Algorithm 395 -- 11.3.5 Distributed Scheduling Algorithm 396 -- 11.4 Routing in Network Layer 396 -- 11.4.1 Challenges of Routing in Cognitive Radio 397 -- 11.4.2 Stationary Routing 398 -- 11.4.3 Dynamic Routing 402 -- 11.5 Congestion Control in Transport Layer 404 -- 11.5.1 Congestion Control in Internet 404 -- 11.5.2 Challenges in Cognitive Radio 405 -- 11.5.3 TP-CRAHN 406 -- 11.5.4 Early Start Scheme 408 -- 11.6 Complex Networks in Cognitive Radio 417 -- 11.6.1 Brief Introduction to Complex Networks 418 -- 11.6.2 Connectivity of Cognitive Radio Networks 421 -- 11.6.3 Behavior Propagation in Cognitive Radio Networks 423 -- 12 Cognitive Radio Network as Sensors 427 -- 12.1 Intrusion Detection by Machine Learning 429 -- 12.2 Joint Spectrum Sensing and Localization 429 -- 12.3 Distributed Aspect Synthetic Aperture Radar 429 -- 12.4 Wireless Tomography 433 -- 12.5 Mobile Crowdsensing 434 -- 12.6 Integration of 3S 435 -- 12.7 The Cyber-Physical System 435 -- 12.8 Computing 436 -- 12.8.1 Graphics Processor Unit 437 -- 12.8.2 Task Distribution and Load Balancing 437 -- 12.9 Security and Privacy 438.
12.10 Summary 438 -- Appendix A Matrix Analysis 441 -- A.1 Vector Spaces and Hilbert Space 441 -- A.2 Transformations 443 -- A.3 Trace 444 -- A.4 Basics of C ∗-Algebra 444 -- A.5 Noncommunicative Matrix-Valued Random Variables 445 -- A.6 Distances and Projections 447 -- A.6.1 Matrix Inequalities 450 -- A.6.2 Partial Ordering of Positive Semidefinite Matrices 451 -- A.6.3 Partial Ordering of Hermitian Matrices 451 -- References 453 -- Index 511.
Record Nr. UNINA-9910137615003321
Qiu Robert Caiming <1966->  
Chichester, West Sussex, UK : , : John Wiley & Sons Inc., , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio communications and networking : principles and practice / / Robert C. Qiu ... [et al.]
Cognitive radio communications and networking : principles and practice / / Robert C. Qiu ... [et al.]
Autore Qiu Robert Caiming <1966->
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, UK : , : John Wiley & Sons Inc., , 2012
Descrizione fisica 1 online resource (536 p.)
Disciplina 621.382/1
Altri autori (Persone) QiuRobert C. <1966->
Soggetto topico Cognitive radio networks
ISBN 1-283-99373-2
1-118-37629-3
1-118-37628-5
1-118-37627-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Preface xv -- 1 Introduction 1 -- 1.1 Vision: “Big Data” 1 -- 1.2 Cognitive Radio: System Concepts 2 -- 1.3 Spectrum Sensing Interface and Data Structures 2 -- 1.4 Mathematical Machinery 4 -- 1.4.1 Convex Optimization 4 -- 1.4.2 Game Theory 6 -- 1.4.3 “Big Data” Modeled as Large Random Matrices 6 -- 1.5 Sample Covariance Matrix 10 -- 1.6 Large Sample Covariance Matrices of Spiked Population Models 11 -- 1.7 Random Matrices and Noncommutative Random Variables 12 -- 1.8 Principal Component Analysis 13 -- 1.9 Generalized Likelihood Ratio Test (GLRT) 13 -- 1.10 Bregman Divergence for Matrix Nearness 13 -- 2 Spectrum Sensing: Basic Techniques 15 -- 2.1 Challenges 15 -- 2.2 Energy Detection: No Prior Information about Deterministic or Stochastic Signal 15 -- 2.2.1 Detection in White Noise: Lowpass Case 16 -- 2.2.2 Time-Domain Representation of the Decision Statistic 19 -- 2.2.3 Spectral Representation of the Decision Statistic 19 -- 2.2.4 Detection and False Alarm Probabilities over AWGN Channels 20 -- 2.2.5 Expansion of Random Process in Orthonormal Series with Uncorrelated Coefficients: The Karhunen-Loeve Expansion 21 -- 2.3 Spectrum Sensing Exploiting Second-Order Statistics 23 -- 2.3.1 Signal Detection Formulation 23 -- 2.3.2 Wide-Sense Stationary Stochastic Process: Continuous-Time 24 -- 2.3.3 Nonstationary Stochastic Process: Continuous-Time 25 -- 2.3.4 Spectrum Correlation-Based Spectrum Sensing for WSS Stochastic Signal: Heuristic Approach 29 -- 2.3.5 Likelihood Ratio Test of Discrete-Time WSS Stochastic Signal 32 -- 2.3.6 Asymptotic Equivalence between Spectrum Correlation and Likelihood Ratio Test 35 -- 2.3.7 Likelihood Ratio Test of Continuous-Time Stochastic Signals in Noise: Selin's Approach 36 -- 2.4 Statistical Pattern Recognition: Exploiting Prior Information about Signal through Machine Learning 39 -- 2.4.1 Karhunen-Loeve Decomposition for Continuous-Time Stochastic Signal 39 -- 2.5 Feature Template Matching 42 -- 2.6 Cyclostationary Detection 47 -- 3 Classical Detection 51.
3.1 Formalism of Quantum Information 51 -- 3.2 Hypothesis Detection for Collaborative Sensing 51 -- 3.3 Sample Covariance Matrix 55 -- 3.3.1 The Data Matrix 56 -- 3.4 Random Matrices with Independent Rows 63 -- 3.5 The Multivariate Normal Distribution 67 -- 3.6 Sample Covariance Matrix Estimation and Matrix Compressed Sensing 77 -- 3.6.1 The Maximum Likelihood Estimation 81 -- 3.6.2 Likelihood Ratio Test (Wilks Test) for Multisample Hypotheses 83 -- 3.7 Likelihood Ratio Test 84 -- 3.7.1 General Gaussian Detection and Estimator-Correlator Structure 84 -- 3.7.2 Tests with Repeated Observations 90 -- 3.7.3 Detection Using Sample Covariance Matrices 94 -- 3.7.4 GLRT for Multiple Random Vectors 95 -- 3.7.5 Linear Discrimination Functions 97 -- 3.7.6 Detection of Correlated Structure for Complex Random Vectors 98 -- 4 Hypothesis Detection of Noncommutative Random Matrices 101 -- 4.1 Why Noncommutative Random Matrices? 101 -- 4.2 Partial Orders of Covariance Matrices: A < B 102 -- 4.3 Partial Ordering of Completely Positive Mappings: (A) < (B) 104 -- 4.4 Partial Ordering of Matrices Using Majorization: A ≺ B 105 -- 4.5 Partial Ordering of Unitarily Invariant Norms: |||A||| < |||B||| 109 -- 4.6 Partial Ordering of Positive Definite Matrices of Many Copies: K k=1 Ak ≤ K k=1 Bk 109 -- 4.7 Partial Ordering of Positive Operator Valued Random Variables: Prob(A ≤ X ≤ B) 110 -- 4.8 Partial Ordering Using Stochastic Order: A ≤st B 115 -- 4.9 Quantum Hypothesis Detection 115 -- 4.10 Quantum Hypothesis Testing for Many Copies 118 -- 5 Large Random Matrices 119 -- 5.1 Large Dimensional Random Matrices: Moment Approach, Stieltjes Transform and Free Probability 119 -- 5.2 Spectrum Sensing Using Large Random Matrices 121 -- 5.2.1 System Model 121 -- 5.2.2 Marchenko-Pastur Law 124 -- 5.3 Moment Approach 129 -- 5.3.1 Limiting Spectral Distribution 130 -- 5.3.2 Limits of Extreme Eigenvalues 133 -- 5.3.3 Convergence Rates of Spectral Distributions 136 -- 5.3.4 Standard Vector-In, Vector-Out Model 137.
5.3.5 Generalized Densities 138 -- 5.4 Stieltjes Transform 139 -- 5.4.1 Basic Theorems 143 -- 5.4.2 Large Random Hankel, Markov and Toepltiz Matrices 149 -- 5.4.3 Information Plus Noise Model of Random Matrices 152 -- 5.4.4 Generalized Likelihood Ratio Test Using Large Random Matrices 157 -- 5.4.5 Detection of High-Dimensional Signals in White Noise 164 -- 5.4.6 Eigenvalues of (A + B)-1B and Applications 169 -- 5.4.7 Canonical Correlation Analysis 171 -- 5.4.8 Angles and Distances between Subspaces 173 -- 5.4.9 Multivariate Linear Model 173 -- 5.4.10 Equality of Covariance Matrices 174 -- 5.4.11 Multiple Discriminant Analysis 174 -- 5.5 Case Studies and Applications 175 -- 5.5.1 Fundamental Example of Using Large Random Matrix 175 -- 5.5.2 Stieltjes Transform 177 -- 5.5.3 Free Deconvolution 178 -- 5.5.4 Optimal Precoding of MIMO Systems 178 -- 5.5.5 Marchenko and Pastur's Probability Distribution 179 -- 5.5.6 Convergence and Fluctuations Extreme Eigenvalues 180 -- 5.5.7 Information plus Noise Model and Spiked Models 180 -- 5.5.8 Hypothesis Testing and Spectrum Sensing 183 -- 5.5.9 Energy Estimation in a Wireless Network 185 -- 5.5.10 Multisource Power Inference 187 -- 5.5.11 Target Detection, Localization, and Reconstruction 187 -- 5.5.12 State Estimation and Malignant Attacker in the Smart Grid 191 -- 5.5.13 Covariance Matrix Estimation 193 -- 5.5.14 Deterministic Equivalents 197 -- 5.5.15 Local Failure Detection and Diagnosis 200 -- 5.6 Regularized Estimation of Large Covariance Matrices 200 -- 5.6.1 Regularized Covariance Estimates 201 -- 5.6.2 Banding the Inverse 203 -- 5.6.3 Covariance Regularization by Thresholding 204 -- 5.6.4 Regularized Sample Covariance Matrices 206 -- 5.6.5 Optimal Rates of Convergence for Covariance Matrix Estimation 208 -- 5.6.6 Banding Sample Autocovariance Matrices of Stationary Processes 211 -- 5.7 Free Probability 213 -- 5.7.1 Large Random Matrices and Free Convolution 218 -- 5.7.2 Vandermonde Matrices 221 -- 5.7.3 Convolution and Deconvolution with Vandermonde Matrices 229.
5.7.4 Finite Dimensional Statistical Inference 232 -- 6 Convex Optimization 235 -- 6.1 Linear Programming 237 -- 6.2 Quadratic Programming 238 -- 6.3 Semidefinite Programming 239 -- 6.4 Geometric Programming 239 -- 6.5 Lagrange Duality 241 -- 6.6 Optimization Algorithm 242 -- 6.6.1 Interior Point Methods 242 -- 6.6.2 Stochastic Methods 243 -- 6.7 Robust Optimization 244 -- 6.8 Multiobjective Optimization 248 -- 6.9 Optimization for Radio Resource Management 249 -- 6.10 Examples and Applications 250 -- 6.10.1 Spectral Efficiency for Multiple Input Multiple Output Ultra-Wideband Communication System 250 -- 6.10.2 Wideband Waveform Design for Single Input Single Output Communication System with Noncoherent Receiver 256 -- 6.10.3 Wideband Waveform Design for Multiple Input Single Output Cognitive Radio 262 -- 6.10.4 Wideband Beamforming Design 268 -- 6.10.5 Layering as Optimization Decomposition for Cognitive Radio Network 272 -- 6.11 Summary 282 -- 7 Machine Learning 283 -- 7.1 Unsupervised Learning 288 -- 7.1.1 Centroid-Based Clustering 288 -- 7.1.2 k-Nearest Neighbors 289 -- 7.1.3 Principal Component Analysis 289 -- 7.1.4 Independent Component Analysis 290 -- 7.1.5 Nonnegative Matrix Factorization 291 -- 7.1.6 Self-Organizing Map 292 -- 7.2 Supervised Learning 293 -- 7.2.1 Linear Regression 293 -- 7.2.2 Logistic Regression 294 -- 7.2.3 Artificial Neural Network 294 -- 7.2.4 Decision Tree Learning 294 -- 7.2.5 Naive Bayes Classifier 295 -- 7.2.6 Support Vector Machines 295 -- 7.3 Semisupervised Learning 298 -- 7.3.1 Constrained Clustering 298 -- 7.3.2 Co-Training 298 -- 7.3.3 Graph-Based Methods 299 -- 7.4 Transductive Inference 299 -- 7.5 Transfer Learning 299 -- 7.6 Active Learning 299 -- 7.7 Reinforcement Learning 300 -- 7.7.1 Q-Learning 300 -- 7.7.2 Markov Decision Process 301 -- 7.7.3 Partially Observable MDPs 302 -- 7.8 Kernel-Based Learning 303 -- 7.9 Dimensionality Reduction 304 -- 7.9.1 Kernel Principal Component Analysis 305 -- 7.9.2 Multidimensional Scaling 307.
7.9.3 Isomap 308 -- 7.9.4 Locally-Linear Embedding 308 -- 7.9.5 Laplacian Eigenmaps 309 -- 7.9.6 Semidefinite Embedding 309 -- 7.10 Ensemble Learning 311 -- 7.11 Markov Chain Monte Carlo 312 -- 7.12 Filtering Technique 313 -- 7.12.1 Kalman Filtering 314 -- 7.12.2 Particle Filtering 318 -- 7.12.3 Collaborative Filtering 319 -- 7.13 Bayesian Network 320 -- 7.14 Summary 321 -- 8 Agile Transmission Techniques (I): Multiple Input Multiple Output 323 -- 8.1 Benefits of MIMO 323 -- 8.1.1 Array Gain 323 -- 8.1.2 Diversity Gain 323 -- 8.1.3 Multiplexing Gain 324 -- 8.2 Space Time Coding 324 -- 8.2.1 Space Time Block Coding 325 -- 8.2.2 Space Time Trellis Coding 326 -- 8.2.3 Layered Space Time Coding 326 -- 8.3 Multi-User MIMO 327 -- 8.3.1 Space-Division Multiple Access 327 -- 8.3.2 MIMO Broadcast Channel 328 -- 8.3.3 MIMO Multiple Access Channel 330 -- 8.3.4 MIMO Interference Channel 331 -- 8.4 MIMO Network 334 -- 8.5 MIMO Cognitive Radio Network 336 -- 8.6 Summary 337 -- 9 Agile Transmission Techniques (II): Orthogonal Frequency Division Multiplexing 339 -- 9.1 OFDM Implementation 339 -- 9.2 Synchronization 341 -- 9.3 Channel Estimation 343 -- 9.4 Peak Power Problem 345 -- 9.5 Adaptive Transmission 345 -- 9.6 Spectrum Shaping 347 -- 9.7 Orthogonal Frequency Division Multiple Access 347 -- 9.8 MIMO OFDM 349 -- 9.9 OFDM Cognitive Radio Network 349 -- 9.10 Summary 350 -- 10 Game Theory 351 -- 10.1 Basic Concepts of Games 351 -- 10.1.1 Elements of Games 351 -- 10.1.2 Nash Equilibrium: Definition and Existence 352 -- 10.1.3 Nash Equilibrium: Computation 354 -- 10.1.4 Nash Equilibrium: Zero-Sum Games 355 -- 10.1.5 Nash Equilibrium: Bayesian Case 355 -- 10.1.6 Nash Equilibrium: Stochastic Games 356 -- 10.2 Primary User Emulation Attack Games 360 -- 10.2.1 PUE Attack 360 -- 10.2.2 Two-Player Case: A Strategic-Form Game 361 -- 10.2.3 Game in Queuing Dynamics: A Stochastic Game 362 -- 10.3 Games in Channel Synchronization 368 -- 10.3.1 Background of the Game 368 -- 10.3.2 System Model 368.
10.3.3 Game Formulation 369 -- 10.3.4 Bayesian Equilibrium 370 -- 10.3.5 Numerical Results 371 -- 10.4 Games in Collaborative Spectrum Sensing 372 -- 10.4.1 False Report Attack 373 -- 10.4.2 Game Formulation 373 -- 10.4.3 Elements of Game 374 -- 10.4.4 Bayesian Equilibrium 376 -- 10.4.5 Numerical Results 379 -- 11 Cognitive Radio Network 381 -- 11.1 Basic Concepts of Networks 381 -- 11.1.1 Network Architecture 381 -- 11.1.2 Network Layers 382 -- 11.1.3 Cross-Layer Design 384 -- 11.1.4 Main Challenges in Cognitive Radio Networks 384 -- 11.1.5 Complex Networks 385 -- 11.2 Channel Allocation in MAC Layer 386 -- 11.2.1 Problem Formulation 386 -- 11.2.2 Scheduling Algorithm 387 -- 11.2.3 Solution 389 -- 11.2.4 Discussion 390 -- 11.3 Scheduling in MAC Layer 391 -- 11.3.1 Network Model 391 -- 11.3.2 Goal of Scheduling 393 -- 11.3.3 Scheduling Algorithm 393 -- 11.3.4 Performance of the CNC Algorithm 395 -- 11.3.5 Distributed Scheduling Algorithm 396 -- 11.4 Routing in Network Layer 396 -- 11.4.1 Challenges of Routing in Cognitive Radio 397 -- 11.4.2 Stationary Routing 398 -- 11.4.3 Dynamic Routing 402 -- 11.5 Congestion Control in Transport Layer 404 -- 11.5.1 Congestion Control in Internet 404 -- 11.5.2 Challenges in Cognitive Radio 405 -- 11.5.3 TP-CRAHN 406 -- 11.5.4 Early Start Scheme 408 -- 11.6 Complex Networks in Cognitive Radio 417 -- 11.6.1 Brief Introduction to Complex Networks 418 -- 11.6.2 Connectivity of Cognitive Radio Networks 421 -- 11.6.3 Behavior Propagation in Cognitive Radio Networks 423 -- 12 Cognitive Radio Network as Sensors 427 -- 12.1 Intrusion Detection by Machine Learning 429 -- 12.2 Joint Spectrum Sensing and Localization 429 -- 12.3 Distributed Aspect Synthetic Aperture Radar 429 -- 12.4 Wireless Tomography 433 -- 12.5 Mobile Crowdsensing 434 -- 12.6 Integration of 3S 435 -- 12.7 The Cyber-Physical System 435 -- 12.8 Computing 436 -- 12.8.1 Graphics Processor Unit 437 -- 12.8.2 Task Distribution and Load Balancing 437 -- 12.9 Security and Privacy 438.
12.10 Summary 438 -- Appendix A Matrix Analysis 441 -- A.1 Vector Spaces and Hilbert Space 441 -- A.2 Transformations 443 -- A.3 Trace 444 -- A.4 Basics of C ∗-Algebra 444 -- A.5 Noncommunicative Matrix-Valued Random Variables 445 -- A.6 Distances and Projections 447 -- A.6.1 Matrix Inequalities 450 -- A.6.2 Partial Ordering of Positive Semidefinite Matrices 451 -- A.6.3 Partial Ordering of Hermitian Matrices 451 -- References 453 -- Index 511.
Record Nr. UNINA-9910807424303321
Qiu Robert Caiming <1966->  
Chichester, West Sussex, UK : , : John Wiley & Sons Inc., , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio communications and networks : principles and practice / edited by Alexander M. Wyglinski, Maziar Nekovee, Y. Thomas Hou
Cognitive radio communications and networks : principles and practice / edited by Alexander M. Wyglinski, Maziar Nekovee, Y. Thomas Hou
Pubbl/distr/stampa Burlington, MA : Academic Press, c2010
Descrizione fisica xxii, 714 p. : ill. ; 25 cm
Disciplina 621.384
Altri autori (Persone) Wyglinski, Alexander M.
Nekovee, Maziar
Hou, Y. Thomas
Soggetto topico Cognitive radio networks
ISBN 9780123747150
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto When radio meets software -- Radio frequency spectrum and regulation -- Digital communication fundamentals for cognitive radio -- Spectrum sensing and identification -- Spectrum access and sharing -- Agile transmission techniques -- Reconfiguration, adaptation, and optimization -- Fundamentals of communication networks -- Cognitive radio network architectures -- User ciiperative communications -- Information theoretical limits on cognitive radio networks -- Cross-layer optimization for multihop cognitive radio networks -- Defining cognitive radio -- Cognitive fadio for broadband wireless access in TV bands : the IEEE 802.22 standards -- Cognitive radio network security -- Public safety and cognitive radio -- Auction-based spectrum markets in cognitive radio networks -- GNU radio for cognitive radio experimentation -- Cognitive radio platforms and testbeds -- Cognitive radio evolution
Record Nr. UNISALENTO-991002423179707536
Burlington, MA : Academic Press, c2010
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Cognitive Radio in 4G/5G Wireless Communication Systems / / edited by Shahriar Shirvani Moghaddam
Cognitive Radio in 4G/5G Wireless Communication Systems / / edited by Shahriar Shirvani Moghaddam
Pubbl/distr/stampa London : , : IntechOpen, , 2018
Descrizione fisica 1 online resource (148 pages) : illustrations
Disciplina 621.3
Soggetto topico Wireless communication systems
Telecommunication
Cognitive radio networks
ISBN 1-83881-809-X
1-78984-707-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910317774503321
London : , : IntechOpen, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio networks / / Kwang-Cheng Chen, Ramjee Prasad
Cognitive radio networks / / Kwang-Cheng Chen, Ramjee Prasad
Autore Chen Kwang-Cheng
Pubbl/distr/stampa Chichester, U.K. : , : Wiley, , 2009
Descrizione fisica 1 online resource (373 p.)
Disciplina 621.39
621.39/81
621.3981
Altri autori (Persone) PrasadRamjee
Soggetto topico Cognitive radio networks
Computer networks
ISBN 1-282-12332-7
9786612123320
0-470-74202-X
0-470-74201-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Wireless communications -- Software defined radio -- Wireless networks -- Cooperative communications and networks -- Cognitive radio communications -- Cognitive radio networks -- Spectrum sensing -- Medium access control -- Network layer design -- Trusted cognitive radio networks -- Spectrum management of cognitive radio networks.
Record Nr. UNINA-9910146140403321
Chen Kwang-Cheng  
Chichester, U.K. : , : Wiley, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio networks / / Kwang-Cheng Chen, Ramjee Prasad
Cognitive radio networks / / Kwang-Cheng Chen, Ramjee Prasad
Autore Chen Kwang-Cheng
Pubbl/distr/stampa Chichester, U.K. : , : Wiley, , 2009
Descrizione fisica 1 online resource (373 p.)
Disciplina 621.39
621.39/81
621.3981
Altri autori (Persone) PrasadRamjee
Soggetto topico Cognitive radio networks
Computer networks
ISBN 1-282-12332-7
9786612123320
0-470-74202-X
0-470-74201-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Wireless communications -- Software defined radio -- Wireless networks -- Cooperative communications and networks -- Cognitive radio communications -- Cognitive radio networks -- Spectrum sensing -- Medium access control -- Network layer design -- Trusted cognitive radio networks -- Spectrum management of cognitive radio networks.
Record Nr. UNINA-9910830587703321
Chen Kwang-Cheng  
Chichester, U.K. : , : Wiley, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio networks : efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid / / Tao Jiang, Zhiqiang Wang, Yang Cao
Cognitive radio networks : efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid / / Tao Jiang, Zhiqiang Wang, Yang Cao
Autore Jiang Tao
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Florida : , : CRC Press, , [2015]
Descrizione fisica 1 online resource (143 p.)
Disciplina 621.384
Soggetto topico Cognitive radio networks
ISBN 0-429-09509-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Acknowledgments; About the Authors; Chapter 1 - Introduction; Chapter 2 - Transmission Slot Allocation in an Opportunistic Spectrum Access Network; Chapter 3 - Sensing Node Allocation in a Cognitive Radio Network with Cooperative Sensing; Chapter 4 - Transmission Power Allocation in a Cognitive Radio Network for Cellular Communication; Chapter 5 - White Space Allocation in a Cognitive Radio-Based High-Speed Vehicle Network; Chapter 6 - Sensing Channel Allocation in a Cognitive Radio Network for a Smart Grid; References; Back Cover
Record Nr. UNINA-9910788023203321
Jiang Tao  
Boca Raton, Florida : , : CRC Press, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio networks : efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid / / Tao Jiang, Zhiqiang Wang, Yang Cao
Cognitive radio networks : efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid / / Tao Jiang, Zhiqiang Wang, Yang Cao
Autore Jiang Tao
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Florida : , : CRC Press, , [2015]
Descrizione fisica 1 online resource (143 p.)
Disciplina 621.384
Soggetto topico Cognitive radio networks
ISBN 1-04-005706-3
0-429-09509-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Acknowledgments; About the Authors; Chapter 1 - Introduction; Chapter 2 - Transmission Slot Allocation in an Opportunistic Spectrum Access Network; Chapter 3 - Sensing Node Allocation in a Cognitive Radio Network with Cooperative Sensing; Chapter 4 - Transmission Power Allocation in a Cognitive Radio Network for Cellular Communication; Chapter 5 - White Space Allocation in a Cognitive Radio-Based High-Speed Vehicle Network; Chapter 6 - Sensing Channel Allocation in a Cognitive Radio Network for a Smart Grid; References; Back Cover
Altri titoli varianti Efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid
Record Nr. UNINA-9910826504403321
Jiang Tao  
Boca Raton, Florida : , : CRC Press, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...