top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Distillation design and control using Aspen simulation / / William L. Luyben
Distillation design and control using Aspen simulation / / William L. Luyben
Autore Luyben William L.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : AlChE : , : Wiley, , 2013
Descrizione fisica 1 online resource (742 p.)
Disciplina 660/.28425
Soggetto topico Distillation apparatus - Design and construction
Chemical process control - Simulation methods
Petroleum - Refining
ISBN 1-5231-1062-7
1-118-51019-4
1-118-51013-5
1-118-51009-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Dedication; Preface to the Second Edition; Preface to the First Edition; Chapter 1: Fundamentals of Vapor-Liquid-Equilibrium (VLE); 1.1 Vapor Pressure; 1.2 Binary VLE Phase Diagrams; 1.3 Physical Property Methods; 1.4 Relative Volatility; 1.5 Bubble Point Calculations; 1.6 Ternary Diagrams; 1.7 VLE Nonideality; 1.8 Residue Curves for Ternary Systems; 1.9 Distillation Boundaries; 1.10 Conclusions; Reference; Chapter 2: Analysis of Distillation Columns; 2.1 Design Degrees of Freedom; 2.2 Binary Mccabe-Thiele Method; 2.3 Approximate Multicomponent Methods
2.4 Conclusions Chapter 3: Setting Up a Steady-State Simulation; 3.1 Configuring a New Simulation; 3.2 Specifying Chemical Components and Physical Properties; 3.3 Specifying Stream Properties; 3.4 Specifying Parameters of Equipment; 3.5 Running the Simulation; 3.6 Using Design Spec/Vary Function; 3.7 Finding the Optimum Feed Tray and Minimum Conditions; 3.8 Column Sizing; 3.9 Conceptual Design; 3.10 Conclusions; Chapter 4: Distillation Economic Optimization; 4.1 Heuristic Optimization; 4.2 Economic Basis; 4.3 Results; 4.4 Operating Optimization; 4.5 Optimum Pressure for Vacuum Columns
4.6 Conclusions Chapter 5: More Complex Distillation Systems; 5.1 Extractive Distillation; 5.2 Ethanol Dehydration; 5.3 Pressure-Swing Azeotropic Distillation; 5.4 Heat-Integrated Columns; 5.5 Conclusions; Chapter 6: Steady-State Calculations for Control Structure Selection; 6.1 Control Structure Alternatives; 6.2 Feed Composition Sensitivity Analysis (ZSA); 6.3 Temperature Control Tray Selection; 6.4 Conclusions; Reference; Chapter 7: Converting From Steady-State to Dynamic Simulation; 7.1 Equipment Sizing; 7.2 Exporting to Aspen Dynamics; 7.3 Opening the Dynamic Simulation in Aspen Dynamics
7.4 Installing Basic Controllers 7.5 Installing Temperature and Composition Controllers; 7.6 Performance Evaluation; 7.7 Conclusions; Chapter 8: Control of More Complex Columns; 8.1 Extractive Distillation Process; 8.2 Columns with Partial Condensers; 8.3 Control of Heat-Integrated Distillation Columns; 8.4 Control of Azeotropic Columns/Decanter System; 8.5 Unusual Control Structure; 8.6 Conclusions; References; Chapter 9: Reactive Distillation; 9.1 Introduction; 9.2 Types of Reactive Distillation Systems; 9.3 Tame Process Basics; 9.4 Tame Reaction Kinetics and Vle
9.5 Plantwide Control Structure 9.6 Conclusions; References; Chapter 10: Control of Sidestream Columns; 10.1 Liquid Sidestream Column; 10.2 Vapor Sidestream Column; 10.3 Liquid Sidestream Column with Stripper; 10.4 Vapor Sidestream Column with Rectifier; 10.5 Sidestream Purge Column; 10.6 Conclusions; Chapter 11: Control of Petroleum Fractionators; 11.1 Petroleum Fractions; 11.2 Characterization Crude Oil; 11.3 Steady-State Design of Preflash Column; 11.4 Control of Preflash Column; 11.5 Steady-State Design of Pipestill; 11.6 Control of Pipestill; 11.7 Conclusions; References
Chapter 12: Divided-Wall (Petlyuk) Columns
Record Nr. UNINA-9910141607903321
Luyben William L.  
Hoboken, New Jersey : , : AlChE : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distillation design and control using Aspen simulation / / William L. Luyben
Distillation design and control using Aspen simulation / / William L. Luyben
Autore Luyben William L.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : AlChE : , : Wiley, , 2013
Descrizione fisica 1 online resource (742 p.)
Disciplina 660/.28425
Soggetto topico Distillation apparatus - Design and construction
Chemical process control - Simulation methods
Petroleum - Refining
ISBN 1-5231-1062-7
1-118-51019-4
1-118-51013-5
1-118-51009-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Dedication; Preface to the Second Edition; Preface to the First Edition; Chapter 1: Fundamentals of Vapor-Liquid-Equilibrium (VLE); 1.1 Vapor Pressure; 1.2 Binary VLE Phase Diagrams; 1.3 Physical Property Methods; 1.4 Relative Volatility; 1.5 Bubble Point Calculations; 1.6 Ternary Diagrams; 1.7 VLE Nonideality; 1.8 Residue Curves for Ternary Systems; 1.9 Distillation Boundaries; 1.10 Conclusions; Reference; Chapter 2: Analysis of Distillation Columns; 2.1 Design Degrees of Freedom; 2.2 Binary Mccabe-Thiele Method; 2.3 Approximate Multicomponent Methods
2.4 Conclusions Chapter 3: Setting Up a Steady-State Simulation; 3.1 Configuring a New Simulation; 3.2 Specifying Chemical Components and Physical Properties; 3.3 Specifying Stream Properties; 3.4 Specifying Parameters of Equipment; 3.5 Running the Simulation; 3.6 Using Design Spec/Vary Function; 3.7 Finding the Optimum Feed Tray and Minimum Conditions; 3.8 Column Sizing; 3.9 Conceptual Design; 3.10 Conclusions; Chapter 4: Distillation Economic Optimization; 4.1 Heuristic Optimization; 4.2 Economic Basis; 4.3 Results; 4.4 Operating Optimization; 4.5 Optimum Pressure for Vacuum Columns
4.6 Conclusions Chapter 5: More Complex Distillation Systems; 5.1 Extractive Distillation; 5.2 Ethanol Dehydration; 5.3 Pressure-Swing Azeotropic Distillation; 5.4 Heat-Integrated Columns; 5.5 Conclusions; Chapter 6: Steady-State Calculations for Control Structure Selection; 6.1 Control Structure Alternatives; 6.2 Feed Composition Sensitivity Analysis (ZSA); 6.3 Temperature Control Tray Selection; 6.4 Conclusions; Reference; Chapter 7: Converting From Steady-State to Dynamic Simulation; 7.1 Equipment Sizing; 7.2 Exporting to Aspen Dynamics; 7.3 Opening the Dynamic Simulation in Aspen Dynamics
7.4 Installing Basic Controllers 7.5 Installing Temperature and Composition Controllers; 7.6 Performance Evaluation; 7.7 Conclusions; Chapter 8: Control of More Complex Columns; 8.1 Extractive Distillation Process; 8.2 Columns with Partial Condensers; 8.3 Control of Heat-Integrated Distillation Columns; 8.4 Control of Azeotropic Columns/Decanter System; 8.5 Unusual Control Structure; 8.6 Conclusions; References; Chapter 9: Reactive Distillation; 9.1 Introduction; 9.2 Types of Reactive Distillation Systems; 9.3 Tame Process Basics; 9.4 Tame Reaction Kinetics and Vle
9.5 Plantwide Control Structure 9.6 Conclusions; References; Chapter 10: Control of Sidestream Columns; 10.1 Liquid Sidestream Column; 10.2 Vapor Sidestream Column; 10.3 Liquid Sidestream Column with Stripper; 10.4 Vapor Sidestream Column with Rectifier; 10.5 Sidestream Purge Column; 10.6 Conclusions; Chapter 11: Control of Petroleum Fractionators; 11.1 Petroleum Fractions; 11.2 Characterization Crude Oil; 11.3 Steady-State Design of Preflash Column; 11.4 Control of Preflash Column; 11.5 Steady-State Design of Pipestill; 11.6 Control of Pipestill; 11.7 Conclusions; References
Chapter 12: Divided-Wall (Petlyuk) Columns
Record Nr. UNINA-9910808123303321
Luyben William L.  
Hoboken, New Jersey : , : AlChE : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distillation design and control using Aspen simulation / / William L. Luyben
Distillation design and control using Aspen simulation / / William L. Luyben
Autore Luyben William L.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Interscience, , 2006
Descrizione fisica 1 online resource (361 p.)
Disciplina 660.2842
660/.28425
Soggetto topico Distillation apparatus - Design and construction
Chemical process control - Simulation methods
ISBN 1-280-44809-1
9786610448098
0-470-36131-X
0-471-78525-3
1-61583-844-9
0-471-78524-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DISTILLATION DESIGN AND CONTROL USING ASPENTM SIMULATION; CONTENTS; PREFACE; 1 FUNDAMENTALS OF VAPOR-LIQUID PHASE EQUILIBRIUM (VLE); 1.1 Vapor Pressure; 1.2 Binary VLE Phase Diagrams; 1.3 Physical Property Methods; 1.4 Relative Volatility; 1.5 Bubblepoint Calculations; 1.6 Ternary Diagrams; 1.7 VLE Nonideality; 1.8 Residue Curves for Ternary Systems; 1.9 Conclusion; 2 ANALYSIS OF DISTILLATION COLUMNS; 2.1 Design Degrees of Freedom; 2.2 Binary McCabe-Thiele Method; 2.3 Approximate Multicomponent Methods; 2.4 Analysis of Ternary Systems Using DISTIL; 2.5 Conclusion
3 SETTING UP A STEADY-STATE SIMULATION3.1 Configuring a New Simulation; 3.2 Specifying Chemical Components and Physical Properties; 3.3 Specifying Stream Properties; 3.4 Specifying Equipment Parameters; 3.5 Running the Simulation; 3.6 Using "Design Spec/Vary" Function; 3.7 Finding the Optimum Feed Tray and Minimum Conditions; 3.8 Column Sizing; 3.9 Conclusion; 4 DISTILLATION ECONOMIC OPTIMIZATION; 4.1 Heuristic Optimization; 4.2 Economic Basis; 4.3 Results; 4.4 Operating Optimization; 4.5 Conclusion; 5 MORE COMPLEX DISTILLATION SYSTEMS; 5.1 Methyl Acetate/Methanol/Water System
5.2 Ethanol Dehydration5.3 Heat-Integrated Columns; 5.4 Conclusion; 6 STEADY-STATE CALCULATIONS FOR CONTROL STRUCTURE SELECTION; 6.1 Summary of Methods; 6.2 Binary Propane/Isobutane System; 6.3 Ternary BTX System; 6.4 Multicomponent Hydrocarbon System; 6.5 Ternary Azeotropic System; 6.6 Conclusion; 7 CONVERTING FROM STEADY STATE TO DYNAMIC SIMULATION; 7.1 Equipment Sizing; 7.2 Exporting to Aspen Dynamics; 7.3 Opening the Dynamic Simulation in Aspen Dynamics; 7.4 Installing Basic Controllers; 7.5 Installing Temperature and Composition Controllers; 7.6 Performance Evaluation
7.7 Comparison with Economic Optimum Design7.8 Conclusion; 8 CONTROL OF MORE COMPLEX COLUMNS; 8.1 Methyl Acetate Column; 8.2 Columns with Partial Condensers; 8.3 Control of Heat-Integrated Distillation Columns; 8.4 Control of Azeotropic Columns/Decanter System; 8.5 Conclusion; 9 REACTIVE DISTILLATION; 9.1 Introduction; 9.2 Types of Reactive Distillation Systems; 9.3 TAME Process Basics; 9.4 TAME Reaction Kinetics and VLE; 9.5 Plantwide Control Structure; 9.6 Conclusion; 10 CONTROL OF SIDESTREAM COLUMNS; 10.1 Liquid Sidestream Column; 10.2 Vapor Sidestream Column
10.3 Liquid Sidestream Column with Stripper10.4 Vapor Sidestream Column with Rectifier; 10.5 Sidestream Purge Column; 10.6 Conclusion; 11 CONTROL OF PETROLEUM FRACTIONATORS; 11.1 Petroleum Fractions; 11.2 Characterization of Crude Oil; 11.3 Steady-State Design of PREFLASH Column; 11.4 Control of PREFLASH Column; 11.5 Steady-State Design of Pipestill; 11.6 Control of Pipestill; 11.7 Conclusion; INDEX
Record Nr. UNISA-996202368903316
Luyben William L.  
Hoboken, New Jersey : , : Wiley-Interscience, , 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Modeling of process intensification [[electronic resource] /] / edited by Frerich Johannes Keil
Modeling of process intensification [[electronic resource] /] / edited by Frerich Johannes Keil
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (424 p.)
Disciplina 660.15118
660.2815
Altri autori (Persone) KeilFrerich <1947->
Soggetto topico Chemical process control
Chemical process control - Mathematical models
Chemical process control - Simulation methods
ISBN 1-280-92156-0
9786610921560
3-527-61060-X
3-527-61059-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Modeling of Process Intensification; Contents; Preface; List of Contributors; 1 Modeling of Process Intensification - An Introduction and Overview; 2 Process Intensification - An Industrial Point of View; 2.1 Introduction; 2.1.1 Remarks on the Term Process Intensification; 2.1.2 Management Aspects; 2.2 Microreaction Technology; 2.2.1 Principal Features; 2.2.2 Catalytic Wall Reactors; 2.3 Simulation; 2.3.1 Introduction; 2.3.2 Molecular Simulations; 2.3.2.1 Quantum-chemical Calculations; 2.3.2.2 COSMO-RS Calculations; 2.3.2.3 Molecular-dynamics Calculations
2.3.3 Monte Carlo Simulations in Project Valuation under Risk3 Modeling and Simulation of Microreactors; 3.1 Introduction; 3.2 Flow Distributions; 3.2.1 Straight Microchannels; 3.2.2 Periodic and Curved Channel Geometries; 3.2.3 Multichannel Flow Domains; 3.3 Heat Transfer; 3.3.1 Straight Microchannels; 3.3.2 Periodic and Curved Channel Geometries; 3.3.3 Multichannel Flow Domains; 3.3.4 Micro Heat Exchangers; 3.4 Mass Transfer and Mixing; 3.4.1 Simple Mixing Channels; 3.4.2 Chaotic Micromixers; 3.4.3 Multilamination Micromixers; 3.4.4 Hydrodynamic Dispersion; 3.5 Chemical Kinetics
3.5.1 Numerical Methods for Reacting Flows3.5.2 Reacting Channel Flows; 3.5.3 Heat-exchanger Reactors; 3.6 Conclusions and Outlook; 4 Modeling and Simulation of Unsteady-state-operated Trickle-flow Reactors; 4.1 Introduction; 4.2 Modeling; 4.3 Reactor Model; 4.4 Simulation; 4.5 Conclusion; 5 Packed-bed Membrane Reactors; 5.1 Introduction; 5.1.1 The PBMR Principle; 5.1.2 Case Study; 5.1.3 Porous Membranes; 5.1.4 Outline; 5.2 One-dimensional Modeling of Packed-bed Membrane Reactors; 5.2.1 One-dimensional Pseudohomogeneous Model
5.2.2 Cofeed (FBR) vs. Distributed Dosing of Reactants (PBMR) - Nonreactive Conditions5.2.3 Comparison between FBR and PBMR - Reactive Conditions; 5.2.4 Nonisothermal Operation; 5.3 Two-dimensional Modeling of Packed-bed Membrane Reactors; 5.3.1 Two-dimensional Model of PBMR - The Momentum-balance Equation; 5.3.2 Two-dimensional Model of PBMR - The Mass-balance Equation; 5.3.3 Two-dimensional Model of PBMR - The Energy-balance Equation; 5.3.4 Boundary Conditions; 5.3.5 Numerical Solution of the Two-dimensional Model; 5.3.6 Velocity Field in a Packed-bed Membrane Reactor
5.3.7 The Influence of Membrane Permeability on the Boundary Conditions5.3.8 Effect of Porosity Profile; 5.3.9 Effect of Radial Mass-transport Limitations; 5.3.10 Comparison of the λ(r)- and α(w)-model Concepts - Temperature Profiles in a PBMR; 5.4 Three-dimensional Modeling of a Packed-bed Membrane Reactor; 5.4.1 Introduction to the Large-scale Simulation Methods in Fluid Mechanics and Mass Transport; 5.4.2 Pressure and Velocity Field (Varying the Flow Distribution) - Comparison between FBR and PBMR; 5.4.3 Advective-diffusive Mass Transport in PBMR; 5.5 Summary and Conclusion
6 The Focused Action of Surface Tension versus the Brute Force of Turbulence - Scaleable Microchannel-based Process Intensification using Monoliths
Record Nr. UNINA-9910144003403321
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui