top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Efficient petrochemical processes : technology, design and operation / / Frank (Xin X.) Zhu [and three others]
Efficient petrochemical processes : technology, design and operation / / Frank (Xin X.) Zhu [and three others]
Autore Zhu Frank <1957->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : AIChE, , [2020]
Descrizione fisica 1 online resource (425 pages)
Disciplina 547.6
Collana THEi Wiley ebooks
Soggetto topico Aromatic compounds
ISBN 1-119-48788-9
1-5231-3296-5
1-119-48789-7
1-119-48787-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555110903321
Zhu Frank <1957->  
Hoboken, New Jersey : , : Wiley : , : AIChE, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Efficient petrochemical processes : technology, design and operation / / Frank (Xin X.) Zhu [and three others]
Efficient petrochemical processes : technology, design and operation / / Frank (Xin X.) Zhu [and three others]
Autore Zhu Frank <1957->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : AIChE, , [2020]
Descrizione fisica 1 online resource (425 pages)
Disciplina 547.6
Collana THEi Wiley ebooks
Soggetto topico Aromatic compounds
ISBN 1-119-48788-9
1-5231-3296-5
1-119-48789-7
1-119-48787-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910816961103321
Zhu Frank <1957->  
Hoboken, New Jersey : , : Wiley : , : AIChE, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Helicenes : synthesis, properties, and applications / / edited by Jeanne Crassous, Irena G. Stara, and Ivo Stary
Helicenes : synthesis, properties, and applications / / edited by Jeanne Crassous, Irena G. Stara, and Ivo Stary
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, , [2023]
Descrizione fisica 1 online resource (563 pages)
Disciplina 547
Soggetto topico Aromatic compounds
Polycyclic compounds
ISBN 3-527-82941-5
3-527-82939-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 The Photochemical Approach to Helicenes -- 1.1 Introduction -- 1.2 General Features -- 1.3 Photochemical Preparation of Carbohelicenes -- 1.3.1 Oxidative Photocyclizations of Unsubstituted Carbo[n]helicenes -- 1.3.2 Oxidative Photocyclizations of Substituted Carbo[n]helicenes -- 1.3.3 Oxidative Photocyclizations of Benzocarbo[n]helicenes -- 1.3.4 Oxidative Photocyclizations of Multiple Carbo[n]helicenes -- 1.3.5 Eliminative Photocyclizations of Carbo[n]helicenes -- 1.4 Photochemical Preparation of Heterohelicenes -- 1.4.1 Azahelicenes -- 1.4.2 Thiahelicenes -- 1.4.3 Phosphahelicenes and Other Heterohelicenes -- 1.5 Photochemical Preparation of Helicene‐Like Molecules -- 1.6 Photochemical Transformations of Helicenes -- 1.7 Conclusions -- References -- Chapter 2 Synthesis of Helicenes by [2 + 2 + 2] Cycloisomerization of Alkynes and Related Systems -- 2.1 Introduction -- 2.2 Helicenes via [2 + 2 + 2] Cycloisomerization of π‐Electron Systems -- 2.2.1 Intramolecular [2 + 2 + 2] Cycloisomerization -- 2.2.2 Intermolecular [2 + 2 + 2] Cycloisomerization -- 2.3 Carbo‐ and Heterohelicenes -- 2.3.1 Carbohelicenes -- 2.3.2 Azahelicenes -- 2.3.3 Azoniahelicenes -- 2.3.4 Oxahelicenes -- 2.3.5 Sila‐, Phospha‐, and Thiahelicenes -- 2.4 Functionalized Helicenes -- 2.5 Asymmetric Synthesis of Nonracemic Helicenes -- 2.5.1 Stoichiometric Diastereoselective Synthesis -- 2.5.2 Catalytic Enantioselective Synthesis -- 2.6 Advanced Helicene Architectures -- 2.7 Summary and Outlook -- 2.8 Abbreviations -- References -- Chapter 3 Enantioselective Synthesis of Helicenes -- 3.1 Introduction -- 3.2 Metal‐Catalyzed [2 + 2 + 2] Cycloaddition -- 3.2.1 Ni‐ and Co‐catalyzed [2 + 2 + 2] Cycloaddition -- 3.2.2 Rh‐ and Ir‐Catalyzed [2 + 2 + 2] Cycloaddition -- 3.2.3 Pd‐catalyzed [2 + 2 + 2] Cycloaddition.
3.3 Metal‐catalyzed Hydroarylation -- 3.4 Metal‐catalyzed Oxidative Annulation -- 3.5 Organocatalyzed Annulation -- 3.6 Conclusion -- References -- Chapter 4 Cationic Triarylcarbenium Helicenes: Synthesis, Resolution, and Applications -- 4.1 Introduction -- 4.2 Synthesis and Resolution of Cationic [4]‐, [5]‐, and [6]Helicenes -- 4.2.1 [4]Helicenes -- 4.2.2 [6]Helicenes -- 4.2.3 [5]Helicenes -- 4.3 Regioselective Functionalization -- 4.3.1 Generalities: Nomenclature -- 4.3.2 Late‐stage Functionalization -- 4.3.2.1 North Functionalization of Cationic [4]‐ and [6]Helicenes -- 4.3.2.2 South Functionalization of Cationic [4]‐ and [6]helicenes -- 4.3.2.3 Tropical Functionalization Cationic [6]Helicenes -- 4.3.2.4 Central Nucleophilic Additions on [4]‐, [5]‐, and [6]Helicenes -- 4.3.3 Early‐stage Equatorial Functionalization of [4]Helicene -- 4.4 Structural Properties -- 4.4.1 Helical Pitch and Configurational Stability -- 4.4.2 pKR+ and Chemical Stability -- 4.5 Optical and Chiroptical Properties and Applications of Cationic Helicenes -- 4.5.1 Absorption and Fluorescence Properties -- 4.5.2 Chiroptical Properties -- 4.5.3 Biological Applications -- 4.5.3.1 Interaction with DNA -- 4.5.3.2 Cellular Imaging -- 4.5.4 Applications Based on Redox Chemistry -- 4.5.4.1 Generalities -- 4.5.4.2 Electrochemiluminescence -- 4.5.4.3 Thin Film Voltammetry -- 4.5.4.4 Stable Radicals -- 4.5.5 Organometallic Chemistry and Photocatalysis -- 4.5.6 Spintronics -- 4.6 Conclusion -- References -- Chapter 5 Organometallic and Coordination Chemistry of Helicenes -- 5.1 Introduction -- 5.2 Coordination Chemistry -- 5.2.1 Coordination of Monodentate Helicenes -- 5.2.2 Coordination of Bidentate Helicenes -- 5.2.3 Coordination of Polydentate Helicenes -- 5.3 Organometallic Chemistry -- 5.3.1 Metal‐vinyl‐ and Metal‐ethynyl‐helicenes -- 5.3.1.1 Metal‐vinyl‐helicene Complexes (Ru, Os).
5.3.1.2 Metal‐ethynyl‐helicene Complexes (Fe, Ru, Au) -- 5.3.2 Cyclometalated Helicenic Complexes -- 5.3.2.1 Cyclometalated Helicenic Complexes Bearing C^N Chelate Ligands (Pt, Ir, Os) -- 5.3.2.2 Cyclometalated Helicenic Complexes Bearing NHCs (Ir, Re) and Related Complexes -- 5.3.3 Sandwich‐type Helicenic Complexes -- 5.4 Conclusion -- References -- Chapter 6 Tetrathiahelicenes: An Infinite Source of Inspiration -- 6.1 Introduction -- 6.2 Synthesis of 7‐TH Scaffold -- 6.2.1 Oxidative Cyclization of Bis(benzodithienyl)ethenes -- 6.2.1.1 Photochemical Oxidative Cyclization -- 6.2.2 Annulation of 3,3′‐Bis(benzo[1,2‐b:4,3‐b′]dithiophene) Derivatives -- 6.3 Functionalization -- 6.4 Resolution of Enantiomers -- 6.4.1 Chiral HPLC -- 6.4.2 Enzymatic Resolution -- 6.4.3 Formation of Diastereoisomers -- 6.4.4 Kinetic Resolution -- 6.5 Electrochemical Properties and Applications of Tetrathiahelicenes -- 6.5.1 Investigation of Tetrathiahelicene Electroactivity on a Systematic Compound Series -- 6.5.2 Investigation of Electronic Properties of Electroactive 7‐TH Adducts With Advanced Functional Properties -- 6.5.3 Application of 7‐TH‐based Inherently Chiral Films for Enantioselective Electroanalysis -- 6.6 Computational Studies on Tetrathiahelicenes -- 6.6.1 General Remarks -- 6.6.2 Electron‐Detached and Attached States of 7‐TH Phosphorus Derivatives -- 6.6.3 Optical Properties of Chiral Tetrathiahelicene‐Based Alkyl Phosphine−Borane Complexes -- 6.6.4 Computational Study on Vibrational Raman Optical Activity of Helicenes -- 6.7 Materials -- 6.7.1 NLO -- 6.7.2 Self‐Assembly -- 6.7.3 Molecular Spring -- 6.7.4 Photoswitches -- 6.8 Catalysis -- 6.8.1 Organometallic Catalysis -- 6.8.2 Organocatalysis -- 6.9 Interaction with Biomolecules -- 6.9.1 Chiral Recognition of Biomolecules -- 6.9.2 Delivery Systems for 7‐TH -- 6.10 Conclusion -- References.
Chapter 7 Synthesis and Properties of Helicenes with Small Numbers of Benzene Rings -- 7.1 Helicenes with Small Numbers of Benzene Rings -- 7.1.1 Helicenes -- 7.2 Synthesis of Helicene Derivatives -- 7.2.1 Tetracyclic Helicenes -- 7.2.2 Bicyclic Helicenes -- 7.3 Noncovalent Bond Interactions and Chiral Recognition -- 7.3.1 Complexation and Chiral Recognition by Oligosaccharides in Water -- 7.3.2 Formation of Langmuir-Blodgett (LB) Films -- 7.3.3 Charge Transfer (CT) Complexation -- 7.3.4 Formation of Self‐assembly Gel -- 7.4 Asymmetric Catalysis -- 7.5 Electronic Properties -- 7.5.1 Reversible Switching of Charge Injection Barriers Using Helicenedithiol -- 7.5.2 Ferroelectricity -- 7.6 Interactions with Biological Macromolecules -- 7.6.1 Nucleic Acid Binding -- 7.6.2 Enzyme Inhibitor -- 7.7 Separation Involving Aggregation of Helicene‐Grafted Nanoparticles -- 7.7.1 Separation of Molecules by Aggregation of Nanoparticles -- 7.7.2 Chiral Recognition in Aggregation of Helicene‐Grafted Gold Nanoparticles -- 7.7.3 Optical Resolution Using Helicene‐Grafted Silica Nanoparticles -- 7.7.4 Molecular Recognition and Separation of Small Molecules from Metal‐Catalyzed Chemical Equilibrium -- 7.7.5 Molecular Recognition and Separation of Homo‐ and Hetero‐double‐helix Complexes by Helicene‐Grafted Silica Nanoparticles -- 7.7.6 Time Event by Helicene‐Grafted Silica Nanoparticles -- 7.8 Conclusion -- Acknowledgment -- References -- Chapter 8 Multihelicenic Platforms from Halogenated Helicenes and Related Precursors -- 8.1 Introduction -- 8.2 General Synthetic Strategies for Constructing Multihelicenic Platforms from Aromatic Halides -- 8.3 Palladium‐Mediated Cross‐Coupling Reactions Involving Aromatic Halides -- 8.4 Electrophilic Aromatic Substitutions Involving Aromatic Halides -- 8.5 Metal‐Catalyzed Homocouplings with Aromatic Halides -- 8.6 Conclusion.
References -- Chapter 9 Helical Nanographenes: Synthetic and Chiroptical Achievements -- 9.1 Introduction -- 9.2 All Carbon Helical Nanographenes -- 9.2.1 Achiral or Racemic Helical Nanographenes -- 9.2.2 Chiral and Enantioenriched Helical Nanographenes -- 9.3 Heteroatom‐Containing Helical Nanographenes -- 9.3.1 Helical Nanographenes Containing Heteroatoms of Group 15 (N, P) -- 9.3.2 Helical Nanographenes Containing Heteroatoms of Group 16 (O, S) -- 9.4 Summary Table -- Acknowledgments -- References -- Chapter 10 Helicene‐based Electron Acceptors -- 10.1 Introduction -- 10.2 Helicenes with Remote Electron‐withdrawing Functionalities -- 10.3 Electron‐accepting Heterohelicenes -- 10.3.1 Azahelicenes -- 10.3.2 Incorporation of Oxygen Atoms in Helicenes -- 10.3.3 Borahelicenes -- 10.3.4 Cationic Heterohelicenes -- 10.4 Electron‐accepting π‐extended Frameworks Embedded with Helicenes -- 10.4.1 Extended Helicenes with Naphthalimide Units -- 10.4.2 Perylene Diimide (PDI)‐based Helicenes -- 10.4.3 Terrylene‐based Helicenes -- 10.5 Conclusion and Outlook -- References -- Chapter 11 Chiroptical Properties of Helicenes -- 11.1 Introduction -- 11.2 Chiroptical Spectroscopies of Model Hexahelicenes: A Brief History -- 11.3 Helical Length Dependence of Chiroptical Properties of Helicenes -- 11.4 Impact of Symmetry in Multiple Helicenes on Their Chiroptical Properties -- 11.5 Relevance of Substituents, of Vibronic Couplings, and of Charge Transfer Effects in the ECD Spectra of Helicene Systems -- 11.6 Concluding Remarks -- References -- Chapter 12 Photophysical and Chiroptical Properties of Metal-Organic Helicenic Systems: Experiment vs. Theory -- 12.1 General Aspects -- 12.1.1 Introduction -- 12.1.2 Theory Developments in the Context of Helicene Optical Activity -- 12.2 Case Studies -- 12.2.1 Azahelicene‐Phosphole Pd(II) and Cu(I) Complexes: OR and ECD Analyses.
12.2.1.1 Complexes with Extended π‐Conjugated Helicenic P,N Bidentate Ligands.
Record Nr. UNINA-9910830677303321
Weinheim, Germany, : Wiley-VCH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Industrial arene chemistry : markets, technologies, sustainable processes and case studies of aromatic commodities / / edited by Jacques Mortier
Industrial arene chemistry : markets, technologies, sustainable processes and case studies of aromatic commodities / / edited by Jacques Mortier
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2023]
Descrizione fisica 1 online resource (2806 pages)
Disciplina 547.6
Soggetto topico Aromatic compounds
Chemical engineering
ISBN 3-527-82799-4
3-527-82798-6
3-527-82797-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Title Page -- Copyright -- Foreword -- Preface -- Section 1.  The Markets for Aromatic Commodities -- Section 2.  BTX, Naphthalene, and Higher Aromatics from Fossil‐Based Sources -- Section 3.  Aromatics from Methanol and Synthesis Gas -- Section 4.  The Chemistry of Downstream Functional Aromatics -- Section 5.  Sustainable Aromatics Production and Technology -- Volume 1 -- Section 1: The Markets for Aromatic Commodities -- 1 The Fossil‐Based BTX Market -- 1.1 Introduction -- 1.2 Development of the Steel Industry - Extraction of Aromatics from Coke Oven Light Oil -- 1.3 Refining and Petrochemicals - Aromatics from Reformate and Pygas -- 1.4 Aromatics in Gasoline -- 1.5 Toluene and Mixed Xylenes for Chemical and Solvent Use -- 1.6 Benzene as Co‐product - Pricing Volatility -- 1.7 Paraxylene Production and Sourcing -- 1.8 Orthoxylene and Metaxylene as Co‐products -- 1.9 The Shift to Asia and Explosive Growth in China - Changing Regional Product Flows -- 1.10 Environmental Challenges: Decarbonization, a Future for Bio‐based Aromatics? -- 1.11 The Competitive Challenge for Europe -- 2 The Downstream Functional Aromatics Market -- 2.1 Introduction -- 2.2 Benzene Derivatives -- 2.3 Toluene Derivatives -- 2.4 Xylene Derivatives -- 2.5 Outlook for Future Growth: Sustainability and the Impact of Recycling -- 3 Crude Oil to Chemicals: Industry Development and Strategic Implications -- 3.1 Driving Forces Behind Crude Oil to Chemicals -- 3.2 COTC Routes -- 3.3 COTC vs. Traditional Refinery Petrochemical Integration -- 3.4 Recent COTC Projects -- 3.5 Configuration and Technologies -- 3.6 Strategic Implications -- 3.7 Carbon Footprint and Sustainability -- References -- Section 2: BTX, Naphthalene and Higher Aromatics from Fossil‐Based Sources -- 4 BTX from Light Hydrocarbons -- 4.1 Introduction.
4.2 Commercial Processes and Emerging Methods -- 4.3 Brief Principle and Elementary Step -- 4.4 Light Hydrocarbon Aromatization -- 4.5 Brief Comparison Between Zn/HZSM‐5 and Ga/HZSM‐5 -- 4.6 Deactivation of ZSM‐5 and Metal/ZSM‐5 Catalysts -- 4.7 Summary and Outlook -- Acknowledgments -- List of Abbreviations -- References -- 5 BTX Aromatics from Naphtha Hydrocarbons -- 5.1 Introduction -- 5.2 Naphtha -- 5.3 Dehydrocyclization by Monofunctional Metal Catalysts -- 5.4 Catalytic Naphtha Reforming by Bifunctional Catalysts -- 5.5 Aromatization by Monofunctional Acid Catalysts -- 5.6 In Summary -- References -- 6 BTX Aromatics from Heavier Material than Naphtha -- 6.1 Introduction -- 6.2 Heavier Material than Naphtha -- 6.3 Thermal Cracking -- 6.4 Catalytic Cracking -- 6.5 Hydroprocessing -- 6.6 In Summary -- References -- 7 BTX Aromatics from Other Conversion Processes -- 7.1 Introduction -- 7.2 Xylene Isomerization -- 7.3 Transalkylation (Disproportionation) -- 7.4 Hydrodealkylation -- 7.5 Methylation -- 7.6 Decarboxylation of Benzoic Acid -- 7.7 Hydrodeoxygenation of Phenolic Compounds -- 7.8 In Summary -- References -- 8 Bi‐ and Tri‐nuclear Aromatic Production -- 8.1 Introduction -- 8.2 Properties of Bi‐ and Tri‐nuclear Aromatics -- 8.3 Markets for Bi‐ and Tri‐nuclear Aromatics -- 8.4 Naphthalene -- 8.5 Anthracene -- 8.6 In Summary -- References -- 9 Extraction Separation of Aromatics -- 9.1 Introduction -- 9.2 Extraction of Aromatics Using Traditional Organic Solvents -- 9.3 Extraction of Aromatics Using Ionic Liquids -- 9.4 Extraction of Aromatics Using Deep Eutectic Solvents -- 9.5 Extractive Distillation of Aromatics from Aliphatics -- 9.6 Summary and Outlook -- Acknowledgments -- Abbreviations -- References -- 10 The Honeywell UOP CCR Platforming™ Process for BTX Production (Case Study) -- 10.1 Introduction -- 10.2 History.
10.3 Feedstock and Products -- 10.4 Reforming Reactions -- 10.5 Reforming Process Conditions -- 10.6 Reforming Catalysts -- 10.7 Process Flow Schemes -- 10.8 Economics -- 10.9 Forward Directions -- References -- 11 The Honeywell UOP ParexTM Process: Fifty Years of Growth for the Petrochemical Industry (Case Study) -- 11.1 Introduction -- 11.2 Development of Adsorptive Separation Technology for Para‐xylene -- 11.3 Integration of Para‐xylene Adsorption with Other Aromatic Technologies -- 11.4 Evolution of The UOP Parex Process -- 11.5 Outlook -- References -- 12 Forty Years of Xylene Isomerization Technology Deployment at ExxonMobil (Case Study) -- 12.1 Introduction -- 12.2 Vapor‐Phase Xylene Isomerization (VPI) -- 12.3 EB Dealkylation‐Based VPI Processes: An Evolutionary History -- 12.4 Significance of Xylene Loss -- 12.5 Retrofit of EB‐Reforming Process to EB‐Dealkylation Process -- 12.6 Liquid‐Phase Isomerization -- 12.7 Outlook for Xylene Isomerization Processes -- References -- 13 ExxonMobil PxMaxSM Process: Production of Paraxylene (Case Study) -- 13.1 Introduction -- 13.2 Shape‐Selective Catalysis -- 13.3 Development of Selective Toluene Disproportionation Technology -- 13.4 Process Description -- 13.5 Paraxylene Recovery from Paraxylene‐Enriched Effluent -- 13.6 STDP vs. Other Toluene Routes to Xylenes -- 13.7 Economics Favoring STDP -- 13.8 Outlook -- References -- 14 BP/Amoco Paraxylene Crystallization Technology (Case Study) -- 14.1 Introduction -- 14.2 The BP Amoco pX Unit Fractionation Section -- 14.3 The BP Amoco pX Unit Crystallization Section -- 14.4 The BP Amoco pX Unit Refrigeration Section -- 14.5 Other New BP Amoco pX Technologies -- 14.6 Summary -- Acknowledgments -- References -- 15 Reactions and Mechanisms of Xylene Isomerization and Related Processes -- 15.1 Introduction -- 15.2 EB Transalkylation Catalysts.
15.3 A Shape Selective Shift in the Mechanism for Ethyl Transfer -- 15.4 EB Dealkylation Catalysts -- 15.5 Summary of the Effect of the Shape Selective Shift in Ethyl Transfer or Removal -- 15.6 Dual Bed EB TA and EB DE Catalysts -- 15.7 Comment on Optimal EB Conversion for Selective Adsorption vs. Crystallization pX Units -- 15.8 Conversion of C9 P& -- N Co‐Boilers Over EB TA and EB DE Catalysts -- 15.9 EB Isomerization Catalysts -- 15.10 How the Shape Selective Shift in the Mechanism of Ethyl Transfer or Removal Led to the Development of Effective TOL/A9+ Transalkylation Catalysts -- 15.11 Thoughts on Incorporating TOL/A9+ TA and/or STDP and/or Selective TOL Alkylation By Methanol (STA) in an Aromatics Complex -- 15.12 Experimental Determination of the True Equilibrium Distribution of Xylenes -- 15.13 Summary -- List of Abbreviations -- References -- Note -- 16 Honeywell UOP Tatoray Process: Maximizing Feed Utilization for Aromatics Production (Case Study) -- 16.1 Introduction -- 16.2 Process Chemistry -- 16.3 UOP Tatoray Catalysts -- 16.4 UOP Tatoray Process -- 16.5 Summary -- List of Abbreviations -- References -- 17 The Honeywell UOP MX Sorbex™ Process: Enabling Growth of PET Resin Applications (Case Study) -- 17.1 Introduction -- 17.2 Mechanisms for Meta‐Xylene Separation -- 17.3 Adsorbent and Desorbent Selection -- 17.4 Commercial Applications -- 17.5 Outlook -- References -- Section 3: Aromatics from Methanol and Synthesis Gas -- 18 Methanol‐to‐Aromatics Compounds (MTA) Process -- 18.1 The Purpose of Developing MTA Technology -- 18.2 The Chemistry of MTA: Mechanistic and Kinetic Considerations -- 18.3 The Preparation of Catalysts in MTA -- 18.4 Effect of Operating Conditions -- 18.5 Reactor Technology of MTA -- 18.6 Perspectives -- References -- 19 Carbon Monoxide and Carbon Dioxide for Aromatics Production -- 19.1 Introduction.
19.2 The Routes for Direct Aromatic Synthesis from CO and CO2 -- 19.3 Catalyst Design Strategies for Improving Catalytic Performance of Catalysts -- 19.4 Other Issues on the Production of Aromatics from CO and CO2 -- 19.5 Process Simulation on the Technical Economics Aspects -- 19.6 Summary and Outlook -- References -- Volume 2 -- Section 4: The Chemistry of Downstream Functional Aromatics -- Section 4.1: Alkylation -- 20 Homogeneous Friedel-Crafts Alkylation -- 20.1 Industrial Friedel-Crafts Alkylation -- 20.2 Catalysts in Friedel-Crafts Alkylation -- 20.3 Recent Advances in Friedel-Crafts Alkylation -- 20.4 Outlook and Future -- References -- 21 Heterogeneous Friedel-Crafts Alkylation -- 21.1 Introduction -- 21.2 Ethylbenzene Synthesis by the Ethylation of Benzene -- 21.3 Cumene Synthesis by the Isopropylation of Benzene -- 21.4 p‐Xylene Synthesis by the Isomerization of Xylene Isomers -- 21.5 p‐Xylene Synthesis by Toluene Disproportionation -- 21.6 p‐Xylene Synthesis by Toluene Methylation -- 21.7 Synthesis of Linear Alkylbenzenes -- 21.8 Alkylation of Naphthalene and the Related Catalysis -- 21.9 Alkylation of Biphenyl and Related Catalysis -- 21.10 Concluding Remark -- References -- 22 Badger Ethylbenzene Technology (Case Study) -- 22.1 Introduction -- 22.2 Ethylbenzene Technology Overview -- 22.3 EBMAXSM Process Description -- 22.4 Feedstocks for Ethylbenzene Production -- 22.5 Process Performance -- 22.6 Process Safety -- 22.7 Environmental Impact -- 22.8 Ethylbenzene Technology Outlook -- References -- 23 Exelus Styrene Monomer (ExSyM) Process (Case Study) -- 23.1 Styrene Industry Overview -- 23.2 Alkylation of Benzene with Ethylene -- 23.3 Dehydrogenation of Ethylbenzene to Styrene Monomer -- 23.4 PO/SM Route -- 23.5 Alternative Routes -- 23.6 Scheme of Reactions -- 23.7 Role of Acid-Base Sites -- 23.8 Ethylbenzene Formation.
23.9 Phenylethanol as Intermediate.
Record Nr. UNINA-9910684595103321
Weinheim, Germany : , : Wiley-VCH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metallabenzenes : an expert view / / edited by L. James Wright
Metallabenzenes : an expert view / / edited by L. James Wright
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2017
Descrizione fisica 1 online resource (330 pages) : color illustrations
Disciplina 547/.611
Soggetto topico Benzene - Derivatives
Aromatic compounds
Soggetto genere / forma Electronic books.
ISBN 1-119-06808-8
1-119-06809-6
1-119-06807-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910270882303321
Hoboken, New Jersey : , : Wiley, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metallabenzenes : an expert view / / edited by L. James Wright
Metallabenzenes : an expert view / / edited by L. James Wright
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2017
Descrizione fisica 1 online resource (330 pages) : color illustrations
Disciplina 547/.611
Soggetto topico Benzene - Derivatives
Aromatic compounds
ISBN 1-119-06808-8
1-119-06809-6
1-119-06807-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830271403321
Hoboken, New Jersey : , : Wiley, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern arene chemistry
Modern arene chemistry
Pubbl/distr/stampa [Place of publication not identified], : Wiley VCH, 2002
Descrizione fisica 1 online resource (635 pages)
Disciplina 547.6
Soggetto topico Aromatic compounds
Organic Chemistry
Chemistry
Physical Sciences & Mathematics
Soggetto genere / forma Electronic books.
ISBN 1-280-55871-7
9786610558711
3-527-60176-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910146242003321
[Place of publication not identified], : Wiley VCH, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern arene chemistry
Modern arene chemistry
Pubbl/distr/stampa [Place of publication not identified], : Wiley VCH, 2002
Descrizione fisica 1 online resource (635 pages)
Disciplina 547.6
Soggetto topico Aromatic compounds
Organic Chemistry
Chemistry
Physical Sciences & Mathematics
ISBN 1-280-55871-7
9786610558711
3-527-60176-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830630403321
[Place of publication not identified], : Wiley VCH, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern arene chemistry
Modern arene chemistry
Pubbl/distr/stampa [Place of publication not identified], : Wiley VCH, 2002
Descrizione fisica 1 online resource (635 pages)
Disciplina 547.6
Soggetto topico Aromatic compounds
Organic Chemistry
Chemistry
Physical Sciences & Mathematics
ISBN 1-280-55871-7
9786610558711
3-527-60176-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910840944403321
[Place of publication not identified], : Wiley VCH, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern Aryne chemistry / / edited by Akkattu T. Biju
Modern Aryne chemistry / / edited by Akkattu T. Biju
Pubbl/distr/stampa Weinheim : , : Wiley-VCH, , [2021]
Descrizione fisica 1 online resource (528 pages)
Disciplina 547.6
Soggetto topico Aromatic compounds
ISBN 3-527-82309-3
3-527-82308-5
3-527-82307-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Introduction to the Chemistry of Arynes -- 1.1 Introduction -- 1.2 History of Arynes -- 1.3 Characterization of the Aryne Intermediates -- 1.4 Ortho‐Arynes with Substitution -- 1.5 Ortho‐Arynes of Heterocycles -- 1.6 Other Arynes -- 1.7 Methods of Aryne Generation -- 1.7.1 Selected Methods of Aryne Generation -- 1.7.1.1 Deprotonation of Aryl Halides -- 1.7.1.2 Metal-Halogen Exchange/Elimination -- 1.7.1.3 From Anthranilic Acids -- 1.7.1.4 Fragmentation of Amino Benzotriazoles -- 1.7.1.5 From Phenyl(2‐(trimethylsilyl)phenyl)iodonium Triflate -- 1.7.1.6 Using Hexadehydro Diels-Alder (HDDA) Reaction -- 1.7.1.7 From ortho‐Borylaryl Triflates -- 1.7.1.8 Pd(II)‐Catalyzed C-H Activation Strategy Starting from Benzoic Acids -- 1.7.1.9 via Grob Fragmentation -- 1.7.2 Kobayashi's Fluoride‐Induced Aryne Generation -- 1.8 Possible Reactivity Modes of Arynes -- 1.8.1 Pericyclic Reactions -- 1.8.2 Arylation Reactions -- 1.8.3 Insertion Reactions -- 1.8.4 Transition‐Metal‐Catalyzed Reactions -- 1.8.5 Multicomponent Couplings (MCCs) -- 1.8.6 Molecular Rearrangements -- 1.9 Domino Aryne Generation -- 1.10 Arynes for the Synthesis of Large Polycyclic Aromatic Compounds -- 1.11 Arynes in Natural Product Synthesis -- 1.12 Concluding Remarks -- References -- Chapter 2 Aryne Cycloadditions for the Synthesis of Functional Polyarenes -- 2.1 Introduction -- 2.2 Aryne Cycloaddition Reactions: General Considerations -- 2.2.1 [4+2] Aryne Cycloadditions -- 2.2.2 [2+2] Aryne Cycloadditions -- 2.2.3 [2+2+2] Aryne Cycloadditions -- 2.3 Aryne‐Mediated Synthesis of Functional Polyarenes -- 2.3.1 Synthesis of Acenes -- 2.3.2 Synthesis of Perylene Derivatives -- 2.3.3 Synthesis of Triptycenes -- 2.3.4 Synthesis of π‐Extended Starphenes or Angular PAHs -- 2.3.5 Synthesis of Helicenes.
2.3.6 Functionalization of Carbon Nanostructures -- References -- Chapter 3 Dipolar Cycloaddition Reactions of Arynes and Related Chemistry -- 3.1 Introduction -- 3.2 1,3‐Dipolar Cycloaddition Reactions of Arynes -- 3.2.1 [3+2] Dipolar Cycloaddition Reactions of Arynes with Linear 1,3‐Dipoles -- 3.2.1.1 Reactions with Diazo Compounds -- 3.2.1.2 Reactions of Arynes with Azides -- 3.2.1.3 Reactions of Arynes with Nitrile Oxides -- 3.2.1.4 Reactions of Arynes with Nitrile Imines -- 3.2.1.5 Reactions of Arynes with Nitrones -- 3.2.1.6 Reactions of Arynes with Azomethine Imines and Ylides -- 3.2.1.7 Reactions of Arynes with Pyridinium N‐Oxides -- 3.2.1.8 Reactions of Arynes with Pyridinium N‐Imides -- 3.2.1.9 Reactions of Arynes with Pyridinium Ylides -- 3.2.2 [3+2] Dipolar Cycloaddition Reactions of Arynes with Cyclic 1,3‐Dipoles -- 3.2.2.1 Reactions of Arynes with Sydnones -- 3.2.2.2 Reactions of Arynes with Münchnones -- 3.3 Other [n+2] Dipolar Cycloaddition Reactions of Arynes -- 3.3.1 Cycloaddition with Other Dipoles -- 3.3.2 Cycloaddition of Extended Scope of Arynes -- 3.4 Formal Cycloaddition Reactions of Arynes -- 3.4.1 Formal Cycloaddition with N-C-C Systems Forming Indole/Indoline/Oxyindole Scaffolds -- 3.4.2 Formal Cycloaddition with Hydrazone‐Derived N-N-C Systems -- 3.4.3 Formal Cycloaddition and with Sulfur‐Containing Substrates -- 3.5 Summary -- References -- Chapter 4 Recent Insertion Reactions of Aryne Intermediates -- 4.1 Introduction -- 4.2 Amination and Related Transformations -- 4.2.1 Transformations Involving the Formation of C N and C H Bonds -- 4.2.2 Transformations Involving the Formation of C N and C Mg Bonds -- 4.2.3 Transformations Involving the Formation of C N and C C Bonds -- 4.2.4 Transformations Involving the Formation of C N and C S, C P, C Cl, or C Si Bonds.
4.3 Transformations Involving Bond Formation with Nucleophilic Carbons -- 4.3.1 Transformations Involving Carbometalation -- 4.3.2 Benzocyclobutene Synthesis by [2+2] Cycloaddition -- 4.3.3 Acylalkylations and Related Transformations -- 4.3.4 Transformations Involving C C and C H Bond Formations -- 4.4 Etherification and Related Transformations -- 4.5 Sulfanylation and Related Transformations -- 4.5.1 Hydrosulfanylation of Arynes -- 4.5.2 Transformations Involving C S and C C Bond Formations -- 4.5.3 Other Transformations Involving C S and C X Bond Formations -- 4.6 Transformations Involving Bond Formation with Other Heteroatom Nucleophiles -- 4.6.1 Transformations Involving C P Bond Formation -- 4.6.2 Transformations Involving C B, C I, or C Cl Bond Formations -- 4.7 Conclusions -- References -- Chapter 5 Multicomponent Reactions Involving Arynes and Related Chemistry -- 5.1 Introduction -- 5.2 Classification of Multicomponent Reactions -- 5.3 Carbon Nucleophile-Based Multicomponent Reactions -- 5.3.1 Isocyanide -- 5.3.2 Active Methylene Compounds -- 5.4 Nitrogen Nucleophile-Based Multicomponent Reactions -- 5.4.1 Amine -- 5.4.2 Imine -- 5.4.3 N‐Heteroarene -- 5.4.4 Diazene -- 5.4.5 Nitrite -- 5.5 Oxygen Nucleophile-Based Multicomponent Reactions -- 5.5.1 Dimethylformamide -- 5.5.2 Sulfoxide -- 5.5.3 Cyclic Ether -- 5.5.4 Trifluoromethoxide -- 5.6 Phosphorus Nucleophile-Based Multicomponent Reactions -- 5.7 Sulfur Nucleophile-Based Multicomponent Reactions -- 5.8 Halogen Nucleophile-Based Multicomponent Reactions -- 5.9 Miscellaneous -- 5.10 Conclusive Remarks -- References -- Chapter 6 Transition‐Metal‐Catalyzed Reactions Involving Arynes and Related Chemistry -- 6.1 Introduction -- 6.2 Metal‐Catalyzed Cyclotrimerization and Cocyclization of Arynes -- 6.2.1 Palladium‐Catalyzed Cyclotrimerization and Cocyclization with Arynes.
6.2.2 Ni‐Catalyzed Cyclotrimerization and Cocyclization with Benzynes -- 6.2.3 Au‐Catalyzed Cyclotrimerization of Arynes -- 6.2.4 Au‐Catalyzed [4+2] Cycloaddition of o‐Alkynyl(oxo)benzenes with Arynes -- 6.3 Metal‐Catalyzed Annulation with Arynes via C H and N H Bond Activation -- 6.3.1 Palladium‐Catalyzed Carbocyclization Reaction by C-H Activation -- 6.3.2 Palladium‐Catalyzed Arynes in C-X Annulations (X & -- equals -- N, O) -- 6.3.3 Ni‐Catalyzed C-N Annulations by Denitrogenative Process -- 6.3.4 Cu‐Catalyzed C-H and N-H Annulations of Arynes -- 6.4 Transition‐Metal‐Catalyzed Three‐Component Coupling Reactions -- 6.4.1 Palladium‐Catalyzed Three‐Component Coupling in Arynes -- 6.4.2 Nickel‐Catalyzed Three‐Component Coupling in Arynes -- 6.4.3 Copper‐Catalyzed Three‐Component Coupling in Arynes -- 6.4.4 Silver‐Catalyzed Three‐Component Coupling in Arynes -- 6.5 Metal‐Catalyzed Addition of Metal-Metal (or) Metal-Carbon and C X bonds into Arynes -- 6.5.1 Palladium‐Catalyzed C Sn Bond Addition to Arynes -- 6.5.2 Palladium‐Catalyzed Sn Sn/Si Si Bond Addition to Arynes -- 6.5.3 Palladium‐Catalyzed Ar SCN Bond Addition to Arynes -- 6.5.4 Platinum‐Catalyzed Boron-Boron Bond Addition to Arynes -- 6.5.5 Copper‐Catalyzed B B Bond Addition to Arynes -- 6.5.6 Copper‐Catalyzed Ar Sn Bond Addition to Arynes -- 6.5.7 Copper‐Catalyzed sp C H Bond Addition to Arynes -- 6.5.8 Gold/Copper‐Catalyzed sp C H Bond Addition to Arynes -- 6.5.9 Copper‐Catalyzed C Br Bond Addition to Arynes -- 6.5.10 Copper‐Mediated 1,2‐Bis(trifluoromethylation) of Arynes -- 6.5.11 Copper‐ and Silver‐Catalyzed Hexadehydro‐Diels-Alder‐Cycloaddition of a Triyne (or) Tetrayne (HDDA Arynes) with Terminal Alkynes -- 6.5.12 Copper‐Catalyzed P H Bond Addition to arynes -- 6.6 Metal‐Catalyzed CO Insertion Reactions of Arynes.
6.6.1 Cobalt‐, Rhodium‐, and Palladium‐Catalyzed CO Insertion of Arynes -- 6.7 Metal‐Catalyzed [3+2] Cycloaddition of Arynes -- 6.7.1 Silver‐Catalyzed [3+2] Cycloaddition of Arynes -- References -- Chapter 7 Molecular Rearrangements Triggered by Arynes -- 7.1 Introduction -- 7.2 Rearrangements Involved in the Monofunctionalization of Arynes -- 7.2.1 Reactions of Arynes with Nitrogen Nucleophiles -- 7.2.2 Reactions of Arynes with Sulfur Nucleophiles -- 7.3 Rearrangements Involved in the 1,2‐Difunctionalization of Arynes -- 7.3.1 Formal Insertion of Arynes into Carbon-Carbon Bonds -- 7.3.2 Formal Insertion of Arynes into Carbon-Heteroatom Bonds -- 7.3.3 Formal Insertion of Arynes into Heteroatom-Heteroatom Bonds -- 7.3.4 Vicinal Carbon-Carbon/Carbon-Carbon Bond‐Forming Reactions of Arynes -- 7.3.5 Vicinal Carbon-Carbon/Carbon-Heteroatom Bond‐Forming Reactions of Arynes -- 7.3.6 Vicinal Carbon-Heteroatom/Carbon-Heteroatom Bond‐Forming Reactions of Arynes -- 7.4 Rearrangements Involved in the 1,2,3‐Trifunctionalization of Arynes -- 7.5 Rearrangements Involved in the Multicomponent Reactions with Two or More Aryne Molecules -- 7.5.1 Three‐Component Reactions with Two Aryne Molecules -- 7.5.2 Four‐Component Reactions with Three Benzyne Molecules -- 7.6 Conclusions -- References -- Chapter 8 New Strategies in Recent Aryne Chemistry -- 8.1 Introduction -- 8.2 New Aryne Generation Methods -- 8.2.1 Revisiting ortho‐Deprotonative Elimination Protocols -- 8.2.2 Arynes from ortho‐Difunctionalized Precursors -- 8.2.3 Catalytic Aryne Generation Methods -- 8.3 Aryne Regioselectivity -- 8.3.1 Steric Effect -- 8.3.2 Electronic Effect -- 8.3.3 Regioselectivity on Small Ring‐Fused Arynes -- 8.4 Recent Advances in Aryne Multifunctionalization -- 8.4.1 1,2‐Benzdiyne -- 8.4.2 1,3‐Benzdiyne -- 8.4.3 1,4‐Benzdiyne -- 8.4.4 1,3,5‐Benztriyne.
8.4.5 Benzyne Insertion, C-H Functionalization Cascade.
Record Nr. UNINA-9910554882103321
Weinheim : , : Wiley-VCH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui