top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Silicon : electrochemistry, production, purification and applications / / Eimutis Juzeliunas
Silicon : electrochemistry, production, purification and applications / / Eimutis Juzeliunas
Autore Juzeliunas Eimutis
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (291 pages)
Disciplina 780
Soggetto topico Materials science
ISBN 3-527-83191-6
3-527-83190-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- List of Abbreviations -- About the Author -- Chapter 1 Introduction -- References -- Chapter 2 Silicon Electrochemistry - Toward Low‐Carbon Economy -- 2.1 Silicon for Energy Storage - Electrochemical Batteries -- 2.2 Silicon for Energy Conversion - Photovoltaic Devices -- 2.2.1 Solar to Electricity -- 2.2.2 Solar‐to‐Chemical Conversion -- References -- Chapter 3 Brief Historical Overview of Silicon Production. Metallurgical‐Grade Silicon -- References -- Chapter 4 Physical and Chemical Properties of Silicon -- References -- Chapter 5 Silicon Refining: From Metallurgical‐Grade to Electronic‐Grade -- 5.1 Purification Based on Direct Si Chlorination -- 5.2 The Siemens Process -- 5.3 The Union Carbide Process -- 5.4 The Ethyl Process -- 5.5 Electrorefining in Molten Salts -- 5.6 Zone Refining, Acid Leaching -- References -- Chapter 6 Silicon Electrowinning and Electrodeposition of Thin Layers -- 6.1 Electrodeposition in Molten Fluoride, Chloride, and Oxide Electrolytes -- 6.2 Substrate Materials for Silicon Electrodeposition -- 6.3 Electrodeposition of Photoactive Silicon and p-n Junction -- 6.4 Electrodeposition of Silicon from Ionic Liquids and Organic Solvents -- 6.5 Purity Concerns and Solutions -- References -- Chapter 7 Photoelectrochemistry and Nanogravimetry of Si and Si‐Oxide Electrodes -- 7.1 Topicality of Si Photoelectrochemical Research -- 7.2 Basic Parameters: Photopotential, Photocurrent, and Photocapacitance -- 7.3 Photoelectrochemical Features of the Si‐Oxide Electrodes -- 7.3.1 Si-SiO2 Electrode -- 7.3.2 Si-HfO2 Electrode -- 7.3.3 Si-Al2O3 Electrode -- 7.4 Quartz Crystal Nanogravimetry -- References -- Chapter 8 Electro‐Deoxidation of Solid Compounds in Molten Salts -- References -- Chapter 9 Voltammetry and Basic Reactions of Silicon Electrode in Molten CaCl2 -- References.
Chapter 10 Si-SiO2 Electrode in Molten CaCl2 -- References -- Chapter 11 Formation of Silicon Oxide Layer -- References -- Chapter 12 In Situ Studies of SiO2 → Si Conversion - Synchrotron X‐ray Diffraction -- References -- Chapter 13 Molten Oxide Electrochemistry at Ultra‐High Temperatures -- References -- Chapter 14 Silicon Surface Structuring -- 14.1 Electrochemical Structuring, Porous Silicon -- 14.2 Chemical-Physical Structuring -- 14.2.1 Chemical Etching -- 14.2.2 Laser Engineering -- 14.2.3 Reactive Ion Etching -- 14.2.4 Plasma Immersion Ion Implantation Etching -- 14.2.5 Stain Etching -- 14.2.6 Metal‐Assisted Chemical Etching -- 14.2.7 Vapor-Liquid-Solid Method -- 14.2.8 Nanostructuring Based on Porous Alumina Template -- 14.3 Black Silicon -- References -- Chapter 15 Electrochemical Si Surface Structuring and Formation of Black Silicon in High‐Temperature Molten Salts -- 15.1 Anodic and Cathodic Processing in Molten CaCl2 -- 15.2 Microcolumnar and Amorphous Structures -- 15.3 Electrodeoxidation of Thin SiO2 Layers -- 15.4 Globular Structures -- 15.5 Black Silicon from Molten Salts -- 15.6 Electrochemical Synthesis of Nanowires: Implications for Li‐Ion Batteries -- References -- Chapter 16 Silicon Compositions - Perspectives for Semiconductor Production -- 16.1 Silicon Carbide -- 16.2 Silicides -- References -- Chapter 17 Silicon Photo‐Electrodes for Water Splitting and Their Protection -- 17.1 Relevance, Basic Principles, and Semiconductor Materials for Photo‐Electrodes -- 17.2 Protection of Silicon Photoelectrodes in Solar‐Fuel Generators -- 17.2.1 Protection of Si Photoanodes -- 17.2.2 Protection of Si Photoanodes for Halide Reduction -- 17.2.3 Protection of Si Photocathodes -- References -- Chapter 18 Conclusions, Outlook, and Challenges -- Index -- EULA.
Record Nr. UNINA-9910830668403321
Juzeliunas Eimutis  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Small structures
Small structures
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2020]-
Descrizione fisica 1 online resource
Disciplina 540
Soggetto topico Chemistry
Science
Engineering
Nanostructures
Nanotechnology
Microtechnology
Soggetto genere / forma Periodical
Periodicals
ISSN 2688-4062
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996490369803316
Weinheim, Germany : , : Wiley-VCH GmbH, , [2020]-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Small structures
Small structures
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2020]-
Descrizione fisica 1 online resource
Disciplina 540
Soggetto topico Chemistry
Science
Engineering
Nanostructures
Nanotechnology
Microtechnology
Soggetto genere / forma Periodical
Periodicals
ISSN 2688-4062
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910365060303321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2020]-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sodium-ion batteries : energy storage materials and technologies / / Yang Yu
Sodium-ion batteries : energy storage materials and technologies / / Yang Yu
Autore Yu Yang
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (555 pages)
Disciplina 621.31242
Soggetto topico Sodium ion batteries
Soggetto genere / forma Electronic books.
ISBN 3-527-83162-2
3-527-83161-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555134203321
Yu Yang  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sodium-ion batteries : energy storage materials and technologies / / Yang Yu
Sodium-ion batteries : energy storage materials and technologies / / Yang Yu
Autore Yu Yang
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (555 pages)
Disciplina 621.31242
Soggetto topico Sodium ion batteries
ISBN 3-527-83162-2
3-527-83161-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910686760703321
Yu Yang  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Solar-to-chemical conversion : photocatalytic and photoelectrochemcial processes / / edited by Hongqi Sun
Solar-to-chemical conversion : photocatalytic and photoelectrochemcial processes / / edited by Hongqi Sun
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (476 pages) : illustrations
Disciplina 621.3124
Soggetto topico Solar energy
Energy conversion
Soggetto genere / forma Electronic books.
ISBN 3-527-82508-8
3-527-82509-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Introduction: A Delicate Collection of Advances in Solar‐to‐Chemical Conversions -- Chapter 2 Artificial Photosynthesis and Solar Fuels -- 2.1 Introduction of Solar Fuels -- 2.2 Photosynthesis -- 2.2.1 Natural Photosynthesis -- 2.2.2 Artificial Photosynthesis -- 2.3 Principles of Photocatalysis -- 2.4 Products of Artificial Photosynthesis -- 2.4.1 Hydrocarbons -- 2.4.1.1 Methane (CH4) -- 2.4.1.2 Methanol (CH3OH) -- 2.4.1.3 Formaldehyde (HCHO) -- 2.4.1.4 Formic Acid (HCOOH) -- 2.4.1.5 C2 Hydrocarbons -- 2.4.1.6 Other Hydrocarbons -- 2.4.2 Carbon Monoxide (CO) -- 2.4.3 Dioxygen (O2) -- 2.5 Perspective -- Acknowledgments -- References -- Chapter 3 Natural and Artificial Photosynthesis -- 3.1 Introduction -- 3.2 Overview of Natural Photosynthesis -- 3.3 Light Harvesting and Excitation Energy Transfer -- 3.4 Charge Separation and Electron Transfer -- 3.5 Water Oxidation -- 3.6 Carbon Fixation -- 3.7 Conclusions -- References -- Chapter 4 Photocatalytic Hydrogen Evolution -- 4.1 Introduction -- 4.2 Fundamentals of Photocatalytic H2 Evolution -- 4.3 Photocatalytic H2 Evolution Under UV Light -- 4.3.1 Titanium Dioxide (TiO2)‐Based Semiconductors -- 4.3.2 Other Types of UV‐Responsive Photocatalysts -- 4.4 Photocatalytic H2 Evolution Under Visible Light -- 4.4.1 Carbon Nitride (C3N4)‐Based Semiconductor -- 4.4.2 Other Types of Visible‐Light‐Responsive Photocatalysts -- 4.5 Photocatalytic H2 Evolution Under Near‐Infrared Light -- 4.6 Roles of Sacrificial Reagents and Reaction Pathways -- 4.7 Summary and Outlook -- References -- Chapter 5 Photoelectrochemical Hydrogen Evolution -- 5.1 Background of Photoelectrocatalytic Water Splitting -- 5.2 Mechanism of Charge Separation and Transfer -- 5.3 Strategy for Improving Charge Transfer -- 5.3.1 Improving the Charge Transfer in Continuous Film.
5.3.2 Improving the Charge Transfer in Particulate Photoelectrodes -- 5.4 Strategy for Improving Electron-Hole Separation -- 5.4.1 Heterojunction Formation -- 5.4.2 Crystal Facet Control -- 5.4.3 Surface Passivation -- 5.5 Surface Cocatalyst Design -- 5.6 Unbiased PEC Water Splitting -- 5.7 Conclusion and Perspective -- References -- Chapter 6 Photocatalytic Oxygen Evolution -- 6.1 Introduction -- 6.1.1 Configuration of Photocatalytic Water Oxidation -- 6.1.2 Mechanism, Thermodynamics, and Kinetics Toward Efficient Oxygen Evolution -- 6.2 Homogeneous Photocatalytic Water Oxidation -- 6.2.1 Molecular Complexes and Polyoxometalates -- 6.2.2 Mechanism Details and the Stability -- 6.3 Heterogeneous Photocatalytic Water Oxidation -- 6.3.1 Unique Properties of Nanosized Semiconductor System -- 6.3.1.1 Quantum Confinement -- 6.3.1.2 Localized Surface Plasmon Resonance (LSPR) -- 6.3.1.3 Surface Area and Exposed Facet‐Enhanced Charge Transfer -- 6.3.2 Zero‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.2.1 0D Metal Complexes and Nanoclusters -- 6.3.2.2 Metal Oxide Quantum Dots and Nanocrystals -- 6.3.3 One‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.4 Two‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.4.1 2D Metal Oxide Nanosheets for Photocatalytic Water Oxidation -- 6.3.4.2 Layered Double Hydroxide (LDH) Nanosheets for Photocatalytic Water Oxidation -- 6.3.4.3 Metal‐Based Oxyhalide Semiconductors for Photocatalytic Water Oxidation -- 6.3.5 LD Semiconductor‐Based Hybrids for Photocatalytic Oxygen Evolution -- 6.3.5.1 1D‐Based (0D/1D and 1D/1D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation -- 6.3.5.2 2D‐Based (2D/2D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation -- 6.3.5.3 Metal‐Free‐Based Semiconductors for Water Oxidation.
6.4 Catalytic Active Site-Catalysis Correlation in LD Semiconductors -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Photoelectrochemical Oxygen Evolution -- 7.1 Introduction -- 7.2 Honda-Fujishima Effect -- 7.3 Factors Affecting the Photoanodic Current -- 7.4 Electrode Potentials at Different pH -- 7.5 Evaluation of PEC Performance -- 7.6 Flat Band Potential and Photocurrent Onset Potential -- 7.7 Selection of Materials -- 7.8 Enhancement of PEC Properties -- 7.8.1 Nanostructuring and Morphology Control -- 7.8.2 Donor Doping -- 7.8.3 Modification of Photoanode Surface -- 7.8.4 Electron‐Conductive Materials -- 7.9 PEC Device for Water Splitting -- 7.10 Conclusions and Outlook -- References -- Chapter 8 Photocatalytic and Photoelectrochemical Overall Water Splitting -- 8.1 Introduction -- 8.2 Photocatalytic Overall Water Splitting -- 8.2.1 Principles and Mechanism -- 8.2.2 Key Performance Indicators -- 8.2.3 Materials for One‐Step Photoexcitation Toward Overall Water Splitting -- 8.2.3.1 Semiconductors -- 8.2.3.2 Incorporation of Cocatalysts -- 8.2.3.3 Plasmonic Nanostructures -- 8.2.4 Hybrid Systems for Two‐Step Photoexcitation Toward Overall Water Splitting -- 8.2.4.1 Z‐Schemes -- 8.3 Photoelectrochemical Overall Water Splitting -- 8.3.1 Principles and Mechanism -- 8.3.2 Key Performance Indicators -- 8.3.3 Materials Design -- 8.3.3.1 Photoanode Materials -- 8.3.3.2 Photocathode Materials -- 8.3.4 Unassisted Photoelectrochemical Overall Water Splitting -- 8.3.4.1 Photoanode-Photocathode Tandem Cells -- 8.3.4.2 Photovoltaic-Photoelectrode Devices -- 8.4 Concluding Remarks and Outlook -- Acknowledgments -- References -- Chapter 9 Photocatalytic CO2 Reduction -- 9.1 Introduction -- 9.2 Principle of Photocatalytic Reduction of CO2 -- 9.3 Energy and Mass Transfers in Photocatalytic Reduction of CO2.
9.3.1 Energy Flow from the Concentrator to Reactor -- 9.3.2 Energy Flow on the Surface of the Photocatalyst -- 9.3.3 Mass Flow in CO2 Photocatalytic Reduction -- 9.3.4 Product Selectivity in CO2 Photocatalytic Reaction -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Photoelectrochemical CO2 Reduction -- 10.1 Introduction -- 10.1.1 Introduction of Photoelectrocatalytic Reduction of CO2 -- 10.1.2 Principles of Photoelectrocatalytic Reduction of CO2 -- 10.1.3 System Configurations of Photoelectrocatalytic Reduction of CO2 -- 10.2 PEC CO2 Reduction Principles -- 10.2.1 Thermodynamics and Kinetics of CO2 Reduction -- 10.2.2 Reaction Conditions -- 10.2.2.1 Reaction Temperature and Pressure -- 10.2.2.2 pH Value -- 10.2.2.3 Solvent -- 10.2.2.4 External Electrical Bias -- 10.2.3 Performance Evaluation of PEC CO2 Reduction -- 10.2.3.1 Product Evolution Rate and Catalytic Current Density -- 10.2.3.2 Turnover Number and Turnover Frequency -- 10.2.3.3 Overpotential -- 10.2.3.4 Faradaic Efficiency -- 10.3 Application of Solar‐to‐Chemical Energy Conversion in PEC CO2 Reduction -- 10.3.1 PEC CO2 Reduction on Semiconductors -- 10.3.1.1 Oxide Semiconductors -- 10.3.1.2 Non‐oxide Semiconductors -- 10.3.1.3 Chalcogenide Semiconductors -- 10.3.2 PEC CO2 Reduction on Cocatalyst Systems -- 10.3.2.1 Metal Nanoparticles -- 10.3.2.2 Metal Complexes -- 10.3.3 PEC CO2 Reduction on Hybrid Semiconductors -- 10.3.3.1 Conductive Polymers -- 10.3.3.2 Enzymatic Biocatalysts -- 10.3.3.3 Organic Molecules -- 10.4 Other Configurations for PEC CO2 Reduction -- 10.5 Conclusion and Outlook -- Acknowledgments -- Conflict of Interest -- References -- Chapter 11 Photocatalytic and Photoelectrochemical Nitrogen Fixation -- 11.1 Introduction -- 11.2 Fundamental Principles and Present Challenges -- 11.2.1 Principles in N2 Reduction for NH3 Production.
11.2.2 Challenges for N2 Reduction to NH3 -- 11.3 Strategies for Catalyst Design and Fabrication -- 11.3.1 Defect Engineering -- 11.3.1.1 Vacancies -- 11.3.1.2 Heteroatom Doping -- 11.3.1.3 Amorphization -- 11.3.2 Structure Engineering -- 11.3.2.1 Morphology Regulation -- 11.3.2.2 Facet Control -- 11.3.3 Interface Engineering -- 11.3.4 Heterojunction Engineering -- 11.3.5 Co‐catalyst Engineering -- 11.3.6 Biomimetic Engineering -- 11.4 Conclusions and Outlook -- References -- Chapter 12 Photocatalytic Production of Hydrogen Peroxide Using MOF Materials -- 12.1 Introduction -- 12.2 Photocatalytic H2O2 Production Through Selective Two‐Electron Reduction of O2 Utilizing NiO/MIL‐125‐NH2 -- 12.3 Two‐Phase System Utilizing Linker‐Alkylated Hydrophobic MIL‐125‐NH2 for Photocatalytic H2O2 Production -- 12.4 Ti Cluster‐Alkylated Hydrophobic MIL‐125‐NH2 for Photocatalytic H2O2 Production in Two‐Phase System -- 12.5 Conclusion and Outlooks -- Reference -- Chapter 13 Photocatalytic and Photoelectrochemical Reforming of Methane -- 13.1 Introduction -- 13.2 Photo‐Mediated Processes -- 13.3 Differences Between Photo‐Assisted Catalysis and Thermocatalysis -- 13.3.1 Catalyst Involved -- 13.3.2 Reactors -- 13.3.3 Mechanism -- 13.3.4 Equations for Quantum Efficiency -- 13.4 Reactions of Methane Conversion via Photo‐Assisted Catalysis -- 13.4.1 Methane Dry Reforming -- 13.4.2 Methane Steam Reforming -- 13.4.3 Methane Coupling -- 13.4.4 Methane Oxidation -- 13.4.5 Methane Dehydroaromatization -- 13.5 Conclusions and Perspectives -- Acknowledgment -- References -- Chapter 14 Photocatalytic and Photoelectrochemical Reforming of Biomass -- 14.1 Introduction -- 14.2 Fundamentals of Photocatalytic and Photoelectrochemical Processes -- 14.2.1 Photocatalytic Process -- 14.2.2 Photoelectrochemical Process -- 14.3 Photocatalytic Reforming of Biomass.
14.3.1 Photocatalytic Reforming of Lignin.
Record Nr. UNINA-9910555243703321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Solar-to-chemical conversion : photocatalytic and photoelectrochemcial processes / / edited by Hongqi Sun
Solar-to-chemical conversion : photocatalytic and photoelectrochemcial processes / / edited by Hongqi Sun
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (476 pages) : illustrations
Disciplina 621.3124
Soggetto topico Solar energy
Energy conversion
ISBN 3-527-82508-8
3-527-82509-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Introduction: A Delicate Collection of Advances in Solar‐to‐Chemical Conversions -- Chapter 2 Artificial Photosynthesis and Solar Fuels -- 2.1 Introduction of Solar Fuels -- 2.2 Photosynthesis -- 2.2.1 Natural Photosynthesis -- 2.2.2 Artificial Photosynthesis -- 2.3 Principles of Photocatalysis -- 2.4 Products of Artificial Photosynthesis -- 2.4.1 Hydrocarbons -- 2.4.1.1 Methane (CH4) -- 2.4.1.2 Methanol (CH3OH) -- 2.4.1.3 Formaldehyde (HCHO) -- 2.4.1.4 Formic Acid (HCOOH) -- 2.4.1.5 C2 Hydrocarbons -- 2.4.1.6 Other Hydrocarbons -- 2.4.2 Carbon Monoxide (CO) -- 2.4.3 Dioxygen (O2) -- 2.5 Perspective -- Acknowledgments -- References -- Chapter 3 Natural and Artificial Photosynthesis -- 3.1 Introduction -- 3.2 Overview of Natural Photosynthesis -- 3.3 Light Harvesting and Excitation Energy Transfer -- 3.4 Charge Separation and Electron Transfer -- 3.5 Water Oxidation -- 3.6 Carbon Fixation -- 3.7 Conclusions -- References -- Chapter 4 Photocatalytic Hydrogen Evolution -- 4.1 Introduction -- 4.2 Fundamentals of Photocatalytic H2 Evolution -- 4.3 Photocatalytic H2 Evolution Under UV Light -- 4.3.1 Titanium Dioxide (TiO2)‐Based Semiconductors -- 4.3.2 Other Types of UV‐Responsive Photocatalysts -- 4.4 Photocatalytic H2 Evolution Under Visible Light -- 4.4.1 Carbon Nitride (C3N4)‐Based Semiconductor -- 4.4.2 Other Types of Visible‐Light‐Responsive Photocatalysts -- 4.5 Photocatalytic H2 Evolution Under Near‐Infrared Light -- 4.6 Roles of Sacrificial Reagents and Reaction Pathways -- 4.7 Summary and Outlook -- References -- Chapter 5 Photoelectrochemical Hydrogen Evolution -- 5.1 Background of Photoelectrocatalytic Water Splitting -- 5.2 Mechanism of Charge Separation and Transfer -- 5.3 Strategy for Improving Charge Transfer -- 5.3.1 Improving the Charge Transfer in Continuous Film.
5.3.2 Improving the Charge Transfer in Particulate Photoelectrodes -- 5.4 Strategy for Improving Electron-Hole Separation -- 5.4.1 Heterojunction Formation -- 5.4.2 Crystal Facet Control -- 5.4.3 Surface Passivation -- 5.5 Surface Cocatalyst Design -- 5.6 Unbiased PEC Water Splitting -- 5.7 Conclusion and Perspective -- References -- Chapter 6 Photocatalytic Oxygen Evolution -- 6.1 Introduction -- 6.1.1 Configuration of Photocatalytic Water Oxidation -- 6.1.2 Mechanism, Thermodynamics, and Kinetics Toward Efficient Oxygen Evolution -- 6.2 Homogeneous Photocatalytic Water Oxidation -- 6.2.1 Molecular Complexes and Polyoxometalates -- 6.2.2 Mechanism Details and the Stability -- 6.3 Heterogeneous Photocatalytic Water Oxidation -- 6.3.1 Unique Properties of Nanosized Semiconductor System -- 6.3.1.1 Quantum Confinement -- 6.3.1.2 Localized Surface Plasmon Resonance (LSPR) -- 6.3.1.3 Surface Area and Exposed Facet‐Enhanced Charge Transfer -- 6.3.2 Zero‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.2.1 0D Metal Complexes and Nanoclusters -- 6.3.2.2 Metal Oxide Quantum Dots and Nanocrystals -- 6.3.3 One‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.4 Two‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.4.1 2D Metal Oxide Nanosheets for Photocatalytic Water Oxidation -- 6.3.4.2 Layered Double Hydroxide (LDH) Nanosheets for Photocatalytic Water Oxidation -- 6.3.4.3 Metal‐Based Oxyhalide Semiconductors for Photocatalytic Water Oxidation -- 6.3.5 LD Semiconductor‐Based Hybrids for Photocatalytic Oxygen Evolution -- 6.3.5.1 1D‐Based (0D/1D and 1D/1D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation -- 6.3.5.2 2D‐Based (2D/2D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation -- 6.3.5.3 Metal‐Free‐Based Semiconductors for Water Oxidation.
6.4 Catalytic Active Site-Catalysis Correlation in LD Semiconductors -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Photoelectrochemical Oxygen Evolution -- 7.1 Introduction -- 7.2 Honda-Fujishima Effect -- 7.3 Factors Affecting the Photoanodic Current -- 7.4 Electrode Potentials at Different pH -- 7.5 Evaluation of PEC Performance -- 7.6 Flat Band Potential and Photocurrent Onset Potential -- 7.7 Selection of Materials -- 7.8 Enhancement of PEC Properties -- 7.8.1 Nanostructuring and Morphology Control -- 7.8.2 Donor Doping -- 7.8.3 Modification of Photoanode Surface -- 7.8.4 Electron‐Conductive Materials -- 7.9 PEC Device for Water Splitting -- 7.10 Conclusions and Outlook -- References -- Chapter 8 Photocatalytic and Photoelectrochemical Overall Water Splitting -- 8.1 Introduction -- 8.2 Photocatalytic Overall Water Splitting -- 8.2.1 Principles and Mechanism -- 8.2.2 Key Performance Indicators -- 8.2.3 Materials for One‐Step Photoexcitation Toward Overall Water Splitting -- 8.2.3.1 Semiconductors -- 8.2.3.2 Incorporation of Cocatalysts -- 8.2.3.3 Plasmonic Nanostructures -- 8.2.4 Hybrid Systems for Two‐Step Photoexcitation Toward Overall Water Splitting -- 8.2.4.1 Z‐Schemes -- 8.3 Photoelectrochemical Overall Water Splitting -- 8.3.1 Principles and Mechanism -- 8.3.2 Key Performance Indicators -- 8.3.3 Materials Design -- 8.3.3.1 Photoanode Materials -- 8.3.3.2 Photocathode Materials -- 8.3.4 Unassisted Photoelectrochemical Overall Water Splitting -- 8.3.4.1 Photoanode-Photocathode Tandem Cells -- 8.3.4.2 Photovoltaic-Photoelectrode Devices -- 8.4 Concluding Remarks and Outlook -- Acknowledgments -- References -- Chapter 9 Photocatalytic CO2 Reduction -- 9.1 Introduction -- 9.2 Principle of Photocatalytic Reduction of CO2 -- 9.3 Energy and Mass Transfers in Photocatalytic Reduction of CO2.
9.3.1 Energy Flow from the Concentrator to Reactor -- 9.3.2 Energy Flow on the Surface of the Photocatalyst -- 9.3.3 Mass Flow in CO2 Photocatalytic Reduction -- 9.3.4 Product Selectivity in CO2 Photocatalytic Reaction -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Photoelectrochemical CO2 Reduction -- 10.1 Introduction -- 10.1.1 Introduction of Photoelectrocatalytic Reduction of CO2 -- 10.1.2 Principles of Photoelectrocatalytic Reduction of CO2 -- 10.1.3 System Configurations of Photoelectrocatalytic Reduction of CO2 -- 10.2 PEC CO2 Reduction Principles -- 10.2.1 Thermodynamics and Kinetics of CO2 Reduction -- 10.2.2 Reaction Conditions -- 10.2.2.1 Reaction Temperature and Pressure -- 10.2.2.2 pH Value -- 10.2.2.3 Solvent -- 10.2.2.4 External Electrical Bias -- 10.2.3 Performance Evaluation of PEC CO2 Reduction -- 10.2.3.1 Product Evolution Rate and Catalytic Current Density -- 10.2.3.2 Turnover Number and Turnover Frequency -- 10.2.3.3 Overpotential -- 10.2.3.4 Faradaic Efficiency -- 10.3 Application of Solar‐to‐Chemical Energy Conversion in PEC CO2 Reduction -- 10.3.1 PEC CO2 Reduction on Semiconductors -- 10.3.1.1 Oxide Semiconductors -- 10.3.1.2 Non‐oxide Semiconductors -- 10.3.1.3 Chalcogenide Semiconductors -- 10.3.2 PEC CO2 Reduction on Cocatalyst Systems -- 10.3.2.1 Metal Nanoparticles -- 10.3.2.2 Metal Complexes -- 10.3.3 PEC CO2 Reduction on Hybrid Semiconductors -- 10.3.3.1 Conductive Polymers -- 10.3.3.2 Enzymatic Biocatalysts -- 10.3.3.3 Organic Molecules -- 10.4 Other Configurations for PEC CO2 Reduction -- 10.5 Conclusion and Outlook -- Acknowledgments -- Conflict of Interest -- References -- Chapter 11 Photocatalytic and Photoelectrochemical Nitrogen Fixation -- 11.1 Introduction -- 11.2 Fundamental Principles and Present Challenges -- 11.2.1 Principles in N2 Reduction for NH3 Production.
11.2.2 Challenges for N2 Reduction to NH3 -- 11.3 Strategies for Catalyst Design and Fabrication -- 11.3.1 Defect Engineering -- 11.3.1.1 Vacancies -- 11.3.1.2 Heteroatom Doping -- 11.3.1.3 Amorphization -- 11.3.2 Structure Engineering -- 11.3.2.1 Morphology Regulation -- 11.3.2.2 Facet Control -- 11.3.3 Interface Engineering -- 11.3.4 Heterojunction Engineering -- 11.3.5 Co‐catalyst Engineering -- 11.3.6 Biomimetic Engineering -- 11.4 Conclusions and Outlook -- References -- Chapter 12 Photocatalytic Production of Hydrogen Peroxide Using MOF Materials -- 12.1 Introduction -- 12.2 Photocatalytic H2O2 Production Through Selective Two‐Electron Reduction of O2 Utilizing NiO/MIL‐125‐NH2 -- 12.3 Two‐Phase System Utilizing Linker‐Alkylated Hydrophobic MIL‐125‐NH2 for Photocatalytic H2O2 Production -- 12.4 Ti Cluster‐Alkylated Hydrophobic MIL‐125‐NH2 for Photocatalytic H2O2 Production in Two‐Phase System -- 12.5 Conclusion and Outlooks -- Reference -- Chapter 13 Photocatalytic and Photoelectrochemical Reforming of Methane -- 13.1 Introduction -- 13.2 Photo‐Mediated Processes -- 13.3 Differences Between Photo‐Assisted Catalysis and Thermocatalysis -- 13.3.1 Catalyst Involved -- 13.3.2 Reactors -- 13.3.3 Mechanism -- 13.3.4 Equations for Quantum Efficiency -- 13.4 Reactions of Methane Conversion via Photo‐Assisted Catalysis -- 13.4.1 Methane Dry Reforming -- 13.4.2 Methane Steam Reforming -- 13.4.3 Methane Coupling -- 13.4.4 Methane Oxidation -- 13.4.5 Methane Dehydroaromatization -- 13.5 Conclusions and Perspectives -- Acknowledgment -- References -- Chapter 14 Photocatalytic and Photoelectrochemical Reforming of Biomass -- 14.1 Introduction -- 14.2 Fundamentals of Photocatalytic and Photoelectrochemical Processes -- 14.2.1 Photocatalytic Process -- 14.2.2 Photoelectrochemical Process -- 14.3 Photocatalytic Reforming of Biomass.
14.3.1 Photocatalytic Reforming of Lignin.
Record Nr. UNINA-9910830868803321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Solvent-free methods in nanocatalysis : from catalyst design to applications / / edited by Rafael Luque, [and three others]
Solvent-free methods in nanocatalysis : from catalyst design to applications / / edited by Rafael Luque, [and three others]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (352 pages)
Disciplina 730
Soggetto topico Nanostructured materials
ISBN 3-527-83146-0
3-527-83145-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction: Scope of the Book -- 1.1 Introduction: Green Chemistry, Solvent‐free Synthesis, and Nanocatalysts -- 1.2 Topics Covered in this Book -- 1.3 Solvent‐Free Synthesis of Nanocatalysts -- 1.4 Solvent and Catalyst‐Free Organic Transformations -- 1.5 Solvent‐Free Reactions Using NCs -- 1.5.1 Different Metal Oxides as a Catalyst/Support in Solvent‐Free Reaction -- 1.5.1.1 Titanium Oxide -- 1.5.1.2 Tin Oxide -- 1.5.1.3 Manganese Oxide (MnOx) -- 1.5.1.4 Zinc Oxide -- 1.5.1.5 Aluminum Oxide -- 1.5.1.6 Iron Oxide -- 1.5.2 Silica‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 1.5.3 Carbon‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 1.5.4 Nitride‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 1.5.5 Ionic Liquid‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 1.6 Present Status and Future Direction -- References -- Chapter 2 Strategies for the Preparation of Nanocatalysts and Supports Under Solvent‐Free Conditions -- 2.1 Introduction -- 2.2 Mechanochemistry -- 2.2.1 Ball Milling -- 2.2.2 Mortar and Pestle -- 2.3 Thermal Treatment -- 2.3.1 Simple Thermal Treatment -- 2.3.2 Thermal Decomposition -- 2.3.3 Microwave Heating Energy -- 2.4 Plasma‐Assisted Methods -- 2.4.1 Thermal Plasma Method -- 2.4.2 Cold Thermal Plasma Method -- 2.5 Deposition Method -- 2.5.1 Atomic Layer Deposition (ALD) Method -- 2.5.2 Chemical Vapor Deposition (CVD) Method -- 2.6 Conclusion and Future Perspective -- Acknowledgments -- References -- Chapter 3 Solvent‐ and Catalyst‐Free Organic Transformation -- 3.1 Introduction -- 3.2 Solvent‐ and Catalyst‐Free Organic Transformations -- 3.2.1 Mechanochemistry -- 3.2.2 Microwave Irradiation -- 3.2.3 Classical Heating -- 3.2.4 Ultrasound Irradiation.
3.3 Conclusion -- References -- Chapter 4 Metal Oxides as Catalysts/Supports in Solvent‐Free Organic Reactions -- 4.1 Introduction -- 4.2 Different Metal Oxides as a Catalyst/Support in Solvent‐Free Reactions -- 4.2.1 Titanium Dioxide‐Based Catalysts -- 4.2.2 Tin Oxide‐Based Catalysts -- 4.2.3 Manganese Oxide‐Based Catalysts -- 4.2.4 Zinc Oxide‐Based Catalysts -- 4.2.5 Aluminum Oxide‐Based Catalysts -- 4.2.6 Iron Oxide‐Based Catalysts -- 4.2.6.1 Fe3O4‐Based Catalyst/Support -- 4.2.6.2 Fe2O3‐Based Catalyst/Support -- 4.3 Conclusion -- References -- Chapter 5 Silica‐Based Materials as Catalysts or Supports in Solvent‐Free Organic Reactions -- 5.1 Solvent‐Free Reactions Over Silica Gel -- 5.2 Silica Nanoparticles and its Applications -- 5.3 Zeolites and Hierarchical Zeolite Structures -- 5.4 Conclusion -- References -- Chapter 6 Carbon‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 6.1 Introduction -- 6.2 Solvent‐Free Catalysis Using Carbon‐Based Materials -- 6.2.1 Activated Carbons (ACs) -- 6.2.1.1 Acetylation Reactions -- 6.2.1.2 Oxidation of Cyclohexane -- 6.2.2 Carbon‐Based Solid Acid (CBSA) Catalysts -- 6.2.2.1 Cross‐Aldol Condensation of Ketones with Aromatic Aldehydes -- 6.2.2.2 Substituted Imidazoles -- 6.2.2.3 Amidoalkyl Naphthols -- 6.2.2.4 Reductive Amination of Aldehydes and Ketones -- 6.2.2.5 Xanthenes and Dibenzoxanthenes -- 6.2.2.6 Dihydropyrimidinone Compounds (Biginelli Reaction) -- 6.2.2.7 Acylation, Acetalization, Thioacetalization of Aldehydes -- 6.2.3 Carbon Nanotubes (CNTs) -- 6.2.3.1 Esterification of Alcohols -- 6.2.3.2 Benzyl Alcohol Oxidation -- 6.2.3.3 Phenol Derivatives Antioxidants -- 6.2.3.4 Acrylonitrile Derivatives -- 6.2.4 Graphene Oxide (GO) -- 6.2.4.1 Alkylaminophenols Derivatives -- 6.2.4.2 N‐Arylation Reactions -- 6.2.4.3 Oxidation of Benzylic Alcohols.
6.2.4.4 Aldol and Konevenagel Condensation Reaction -- 6.2.4.5 Oxidation of Cyclohexene -- 6.2.4.6 Oxidation of Hydrazide and Pyrazole Derivatives -- 6.2.5 Porous Carbon Materials -- 6.2.5.1 Oxidation of Alcohol and Hydrocarbons -- 6.2.5.2 Coupling of Amines -- 6.3 Summary and Future Perspectives -- References -- Chapter 7 Nitride‐Based Nanostructures for Solvent‐Free Catalysis -- 7.1 Carbon Nitride -- 7.1.1 Introduction -- 7.1.2 Synthesis of Carbon Nitride -- 7.1.3 Modification of Carbon Nitrides -- 7.1.4 Solvent‐Free Catalysis with Carbon Nitrides -- 7.2 Boron Nitride -- 7.2.1 Introduction -- 7.2.2 Synthesis and Modification of Boron Nitride -- 7.3 Molybdenum Nitride -- 7.3.1 Introduction -- 7.3.2 Synthesis of Molybdenum Nitride -- 7.3.3 Solvent‐Free Catalytic Application of Molybdenum Nitride -- 7.4 Aluminum Nitride -- 7.4.1 Introduction -- 7.4.2 Synthesis of Aluminum Nitride -- 7.4.2.1 Solvent‐Free Synthesis -- 7.4.3 Solvent‐Free Application of Aluminum Nitride -- 7.5 Conclusion -- References -- Chapter 8 Supported Ionic Liquids for Solvent‐Free Catalysis -- 8.1 Introduction -- 8.2 Supported Ionic Liquids -- 8.3 Building Blocks of SILs -- 8.3.1 Ionic Segment -- 8.3.2 Solid‐Support Segment -- 8.3.2.1 Silica Gels -- 8.3.2.2 Ordered Mesoporous Silicas -- 8.3.2.3 Carbon Nanotubes (CNTs) -- 8.3.2.4 Silica‐Coated Magnetic Nanoparticles (SMNPs) -- 8.4 SIL Catalytic Systems -- 8.5 Supported IL Solvent‐Free Catalysis -- 8.6 Solvent‐Free Hydrogenation of Olefins -- 8.7 Solvent‐Free Heck Reaction -- 8.8 Solvent‐Free Multicomponent Reactions -- 8.8.1 Synthesis of Pyran‐Based Heterocycles -- 8.8.2 Synthesis of 1,4‐Dihydropyridine (Hantzsch Reaction) -- 8.8.3 Synthesis of 3,4‐Dihydropyrimidine‐2(1H)‐One/Thiones (Biginelli Reaction) -- 8.8.4 Synthesis of 1‐Amidoalkyl Naphthol -- 8.8.5 Miscellaneous Solvent‐Free Multicomponent Reactions.
8.9 Solvent‐Free Condensation Reactions -- 8.9.1 Solvent‐Free Friedländer Condensation -- 8.9.2 Solvent‐Free Knoevenagel Condensation -- 8.9.3 Esterification -- 8.10 Solvent‐Free CO2 Conversion Reactions -- 8.11 Solvent‐Free Oxidation Reactions -- 8.12 Miscellaneous Solvent‐Free Organic Reactions -- 8.13 Conclusion -- References -- Chapter 9 Present Status and Future Outlook -- 9.1 Summary -- 9.2 Future Outlook -- Acknowledgments -- References -- Index -- EULA.
Record Nr. UNINA-9910830683003321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The SQUID handbook / / edited by John Clarke, Alex I. Braginski
The SQUID handbook / / edited by John Clarke, Alex I. Braginski
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Descrizione fisica 1 online resource (413 p.)
Disciplina 530.12
Soggetto topico Superconducting quantum interference devices
Soggetto genere / forma Electronic books.
ISBN 1-280-51987-8
9786610519873
3-527-60364-6
3-527-60458-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 2.2.3.1 General Considerations2.2.3.2 Numerical Simulations (Langevin Equation); 2.2.3.3 Analytical Theory of the dc SQUID; 2.2.4 Effect of Asymmetry; 2.3 Theory of the rf SQUID; 2.3.1 Introduction; 2.3.2 SQUID Potential and the Equation of Motion for the Phase Difference; 2.3.3 Unitary Theory for Output Signal and Noise; 2.3.4 Noise as a Small Perturbation; 2.3.4.1 Introduction; 2.3.4.2 Adiabatic Operation; Hysteretic Phase Diagram; 2.3.4.3 Non-adiabatic Regime; 3 SQUID Fabrication Technology; 3.1 Junction Electrode Materials and Tunnel Barriers; 3.2 Low-temperature SQUID Devices
3.2.1 Refractory Junction Electrodes3.2.2 Tunnel Barrier Technology; 3.2.3 Deposition Techniques; 3.2.4 Junction Definition; 3.2.5 Dielectric Insulation; 3.2.6 Patterning Techniques; 3.2.7 Passive Components for Device Fabrication; 3.2.8 Integrated SQUID Fabrication Process; 3.3 High-temperature SQUID Devices; 3.3.1 General Requirements and Problems; 3.3.2 Thin-film Deposition; 3.3.3 Patterning Techniques; 3.3.4 Junction Fabrication; 3.3.5 Fabrication of Single-layer Devices; 3.3.6 Fabrication of Multilayer Devices; 3.3.7 Device Passivation and Encapsulation; 3.4 Future Trends
4.4.2 Basic Building Blocks of rf SQUID Readout Electronics4.4.3 Construction of the Tank Circuit; 4.4.4 Coupling of the Tank Circuit to the Transmission Line; 4.4.5 Cryogenic Preamplifiers; 4.4.6 Optimization for Maximum Sensitivity; 4.4.7 Multiplexed Readouts for Multichannel rf SQUID Systems; 4.5 Trends in SQUID Electronics; 5 Practical DC SQUIDS: Configuration and Performance; 5.1 Introduction; 5.2 Basic dc SQUID Design; 5.2.1 Uncoupled SQUIDs; 5.2.2 Coupled SQUIDs; 5.3 Magnetometers; 5.3.1 Overview; 5.3.2 Magnetometers for High Spatial Resolution
5.3.3 Magnetometers for High Field Resolution
Record Nr. UNINA-9910144731003321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The SQUID handbook / / edited by John Clarke, Alex I. Braginski
The SQUID handbook / / edited by John Clarke, Alex I. Braginski
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Descrizione fisica 1 online resource (413 p.)
Disciplina 530.12
Soggetto topico Superconducting quantum interference devices
ISBN 1-280-51987-8
9786610519873
3-527-60364-6
3-527-60458-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 2.2.3.1 General Considerations2.2.3.2 Numerical Simulations (Langevin Equation); 2.2.3.3 Analytical Theory of the dc SQUID; 2.2.4 Effect of Asymmetry; 2.3 Theory of the rf SQUID; 2.3.1 Introduction; 2.3.2 SQUID Potential and the Equation of Motion for the Phase Difference; 2.3.3 Unitary Theory for Output Signal and Noise; 2.3.4 Noise as a Small Perturbation; 2.3.4.1 Introduction; 2.3.4.2 Adiabatic Operation; Hysteretic Phase Diagram; 2.3.4.3 Non-adiabatic Regime; 3 SQUID Fabrication Technology; 3.1 Junction Electrode Materials and Tunnel Barriers; 3.2 Low-temperature SQUID Devices
3.2.1 Refractory Junction Electrodes3.2.2 Tunnel Barrier Technology; 3.2.3 Deposition Techniques; 3.2.4 Junction Definition; 3.2.5 Dielectric Insulation; 3.2.6 Patterning Techniques; 3.2.7 Passive Components for Device Fabrication; 3.2.8 Integrated SQUID Fabrication Process; 3.3 High-temperature SQUID Devices; 3.3.1 General Requirements and Problems; 3.3.2 Thin-film Deposition; 3.3.3 Patterning Techniques; 3.3.4 Junction Fabrication; 3.3.5 Fabrication of Single-layer Devices; 3.3.6 Fabrication of Multilayer Devices; 3.3.7 Device Passivation and Encapsulation; 3.4 Future Trends
4.4.2 Basic Building Blocks of rf SQUID Readout Electronics4.4.3 Construction of the Tank Circuit; 4.4.4 Coupling of the Tank Circuit to the Transmission Line; 4.4.5 Cryogenic Preamplifiers; 4.4.6 Optimization for Maximum Sensitivity; 4.4.7 Multiplexed Readouts for Multichannel rf SQUID Systems; 4.5 Trends in SQUID Electronics; 5 Practical DC SQUIDS: Configuration and Performance; 5.1 Introduction; 5.2 Basic dc SQUID Design; 5.2.1 Uncoupled SQUIDs; 5.2.2 Coupled SQUIDs; 5.3 Magnetometers; 5.3.1 Overview; 5.3.2 Magnetometers for High Spatial Resolution
5.3.3 Magnetometers for High Field Resolution
Record Nr. UNINA-9910830469503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui