top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Neuromorphic devices for brain-inspired computing : artificial intelligence, perception and robotics / / edited by Qing Wan, Yi Shi
Neuromorphic devices for brain-inspired computing : artificial intelligence, perception and robotics / / edited by Qing Wan, Yi Shi
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (259 pages)
Disciplina 006.382
Soggetto topico Artificial intelligence
Soggetto genere / forma Electronic books.
ISBN 3-527-83529-6
3-527-83531-8
3-527-83530-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910554804303321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Neuromorphic devices for brain-inspired computing : artificial intelligence, perception and robotics / / edited by Qing Wan, Yi Shi
Neuromorphic devices for brain-inspired computing : artificial intelligence, perception and robotics / / edited by Qing Wan, Yi Shi
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (259 pages)
Disciplina 006.382
Soggetto topico Neuromorphics
Artificial intelligence
ISBN 3-527-83529-6
3-527-83531-8
3-527-83530-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Two-Terminal Neuromorphic Memristors / Hui-Kai He, He-Ming Huang, Rui Yang -- Spintronic Neuromorphic Devices / Deming Zhang, Sai Li, Xinran Wang, Ao Du, Wang Kang, Lang Zeng, Weisheng Zhao -- Multiterminal Neuromorphic Devices with Cognitive Behaviors / Li Qiang Zhu, Jia Cheng Cai, Zheng Yu Ren, Wen Xiong, Qing Wan -- Neuromorphic Devices Based on Chalcogenide Materials / Jia Chen, Yifan Lu, Zhe Yang, Yi Li, Xiangshui Miao -- Neuromorphic Devices Based on Organic Materials / Junyao Zhang, Jia Huang -- Neuromorphic Computing Systems with Emerging Devices / Qiumeng Wei, Jianshi Tang, Bin Gao, Xinyi Li, He Qian, Huaqiang Wu -- Neuromorphic Perceptual Systems with Emerging Devices / Ying Zhu, Changjin Wan, Qing Wan.
Record Nr. UNINA-9910829880703321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nitroalkanes : synthesis, reactivity, and applications / / Roberto Ballini, Alessandro Palmieri
Nitroalkanes : synthesis, reactivity, and applications / / Roberto Ballini, Alessandro Palmieri
Autore Ballini Roberto
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (323 pages) : illustrations
Disciplina QD305.N8
Soggetto topico Nitroalkanes
Soggetto genere / forma Electronic books.
ISBN 3-527-82677-7
3-527-82678-5
3-527-82676-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555063703321
Ballini Roberto  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nitroalkanes : synthesis, reactivity, and applications / / Roberto Ballini, Alessandro Palmieri
Nitroalkanes : synthesis, reactivity, and applications / / Roberto Ballini, Alessandro Palmieri
Autore Ballini Roberto
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (323 pages) : illustrations
Disciplina QD305.N8
Soggetto topico Nitroalkanes
ISBN 3-527-82677-7
3-527-82678-5
3-527-82676-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830262203321
Ballini Roberto  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Perovskite solar cells : materials, processes, and devices / / editors, Shahzada Ahmad, Samrana Kazim, Michael Grätzel
Perovskite solar cells : materials, processes, and devices / / editors, Shahzada Ahmad, Samrana Kazim, Michael Grätzel
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (578 pages) : illustrations
Disciplina 621.31244
Soggetto topico Perovskite solar cells
Photovoltaic cells - Materials
Solar cells - Materials
Soggetto genere / forma Electronic books.
ISBN 3-527-82580-0
3-527-82579-7
3-527-82578-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Hybrid organo-inorganic perovskite solar cells : architecture evolution, materials of functional layers, photoelectric characteristics, properties, and efficiency / P.P. Gladyshev, M. Banavoth, T. Swetha, N. Bingwa, Ya. B. Martynov, T. Yu. Zelenyak, V.A. Kinev and R.G. Nazmitdinov Mechanisms of radiation-induced degradation of hybryd perovskites based solar cells and ways to increase their radiation tolerance / Boris L. Oksengendler, Nigora N. Turaeva, Marlen I. Akhmedov and Olga V. Karpova Perovskite : material and device optimization for solar cell applications / Antonio Frontera, Yaroslav Martynov, Rashid Nazmitdinov and Andreu Moìa-Pol
Record Nr. UNINA-9910555069103321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Perovskite solar cells : materials, processes, and devices / / editors, Shahzada Ahmad, Samrana Kazim, Michael Grätzel
Perovskite solar cells : materials, processes, and devices / / editors, Shahzada Ahmad, Samrana Kazim, Michael Grätzel
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (578 pages) : illustrations
Disciplina 621.31244
Soggetto topico Perovskite solar cells
Photovoltaic cells - Materials
Solar cells - Materials
ISBN 3-527-82580-0
3-527-82579-7
3-527-82578-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Hybrid organo-inorganic perovskite solar cells : architecture evolution, materials of functional layers, photoelectric characteristics, properties, and efficiency / P.P. Gladyshev, M. Banavoth, T. Swetha, N. Bingwa, Ya. B. Martynov, T. Yu. Zelenyak, V.A. Kinev and R.G. Nazmitdinov Mechanisms of radiation-induced degradation of hybryd perovskites based solar cells and ways to increase their radiation tolerance / Boris L. Oksengendler, Nigora N. Turaeva, Marlen I. Akhmedov and Olga V. Karpova Perovskite : material and device optimization for solar cell applications / Antonio Frontera, Yaroslav Martynov, Rashid Nazmitdinov and Andreu Moìa-Pol
Record Nr. UNINA-9910686760403321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
PhotoMat
PhotoMat
Pubbl/distr/stampa [Milton, Australia] : , : [John Wiley & Sons Australia, Ltd.]
Disciplina 621.381045
Soggetto topico Optoelectronics - Materials
ISSN 2771-3164
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910719760903321
[Milton, Australia] : , : [John Wiley & Sons Australia, Ltd.]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymer nanocomposite materials : applications in integrated electronic devices / / edited by Ye Zhou, Guanglong Ding
Polymer nanocomposite materials : applications in integrated electronic devices / / edited by Ye Zhou, Guanglong Ding
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (307 pages) : illustrations
Disciplina 620.115
Soggetto topico Polymers
Soggetto genere / forma Electronic books.
ISBN 3-527-82648-3
3-527-82649-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction of Polymer Nanocomposites -- 1.1 Introduction -- 1.2 The Advantage of Nanocomposites -- 1.3 Classification of Nanoscale Fillers -- 1.3.1 One‐Dimensional Nanofillers -- 1.3.2 Two‐Dimensional Nanofillers -- 1.3.3 Three‐Dimensional Nanofillers -- 1.4 The Properties of Polymer Nanocomposites -- 1.5 Synthesis of Polymer Nanocomposites -- 1.5.1 Ultrasonication‐assisted Solution Mixing -- 1.5.2 Shear Mixing -- 1.5.3 Three Roll Milling -- 1.5.4 Ball Milling -- 1.5.5 Double‐screw Extrusion -- 1.5.6 In Situ Synthesis -- 1.6 Conclusions and Future Outlook -- References -- Chapter 2 Fabrication of Conductive Polymer Composites and Their Applications in Sensors -- 2.1 Introduction -- 2.2 Fabrication Methods for CPCs -- 2.2.1 Melt Blending -- 2.2.2 Solution Blending -- 2.2.3 In Situ Polymerization -- 2.3 Morphologies -- 2.3.1 Random Dispersion of Nanofiller in the Polymer Matrix -- 2.3.2 Selective Distribution of Nanofillers on the Interface -- 2.3.2.1 Segregated Structure -- 2.3.2.2 Surface Coating -- 2.4 Application in Sensors -- 2.4.1 Strain Sensor -- 2.4.2 Piezoresistive Sensor -- 2.4.3 Gas Sensor -- 2.4.4 Temperature Sensor -- 2.5 Conclusion -- References -- Chapter 3 Biodegradable Polymer Nanocomposites for Electronics -- 3.1 Introduction -- 3.2 Biodegradable Polymer Nanocomposites in Electronics -- 3.2.1 Polylactide -- 3.2.2 PCL -- 3.2.3 PVA -- 3.2.4 PVP -- 3.2.5 Cellulose -- 3.2.6 Chitosan -- 3.2.7 Silk -- 3.3 Challenges and Prospects -- List of Abbreviations -- References -- Chapter 4 Polymer Nanocomposites for Photodetectors -- 4.1 Introduction -- 4.2 Photodetector Brief -- 4.2.1 Photodiode -- 4.2.2 Photoconductor -- 4.3 Photodetectors Based on Novel Semiconductors -- 4.4 Photodetectors Based on Polymer Nanocomposites -- 4.4.1 Polymer-Polymer Nanocomposite.
4.4.2 Polymer-Small Molecular Organic Nanocomposite -- 4.4.2.1 MEH‐PPV-Small Molecular Organic Nanocomposite -- 4.4.2.2 P3HT‐Small Molecular Organic Nanocomposite -- 4.4.3 Polymer-Polymer-Small Molecular Organic Nanocomposite -- 4.4.4 Polymer-Small Molecular Organic-Small Molecular Organic Nanocomposite -- 4.4.5 Polymer-Inorganic Nanocrystals Nanocomposite -- 4.4.5.1 MEH‐PPV-Inorganic Nanocrystals Nanocomposite -- 4.4.5.2 P3HT-Inorganic Nanocrystals Nanocomposite -- 4.4.6 Polymer-Small Molecular Organic-Inorganic Nanocrystals Nanocomposite -- 4.5 Outlook -- List of Abbreviations -- References -- Chapter 5 Polymer Nanocomposites for Pressure Sensors -- 5.1 Introduction -- 5.2 Parameters for Pressure Sensors -- 5.2.1 Pressure Sensitivity -- 5.2.2 Linear Sensing Range -- 5.2.3 LOD and Response Speed -- 5.2.4 Reliability -- 5.3 Working Principles and Examples of Polymer Nanocomposite Based Pressure Sensors -- 5.3.1 Capacitive Pressure Sensors -- 5.3.2 Piezoresistive Pressure Sensors -- 5.3.3 Piezoelectric and Triboelectric Tactile Sensors Based on Polymer Nanocomposites -- 5.4 Applications of the Polymer Nanocomposite Based Pressure Sensors -- 5.4.1 Human Wrist Pulse Detection -- 5.4.2 Subtle Human Motion Detection -- 5.4.3 Texture Roughness Detection -- 5.4.4 E‐skin Application -- 5.5 Performance of Pressure Sensors with the Polymer Nanocomposites Reported Over the Past Decade -- 5.6 Conclusion -- References -- Chapter 6 The Application of Polymer Nanocomposites in Energy Storage Devices -- 6.1 Introduction -- 6.2 Electrodes -- 6.2.1 For Battery -- 6.2.1.1 Polymer-Graphene/Carbon Nanotube -- 6.2.1.2 Polymer Inorganic -- 6.2.1.3 Polymer-Organic Salt Graphene -- 6.2.2 For Supercapacitor -- 6.2.2.1 Polymer-Metal Oxide -- 6.2.2.2 Polymer-Graphene/Carbon Nanotube -- 6.2.2.3 Polymer-Metal Oxide-Graphene/Carbon Nanotubes -- 6.3 Electrolytes.
6.3.1 For Battery -- 6.3.2 For Supercapacitor -- 6.4 Separator -- 6.4.1 For Battery -- 6.4.2 For Supercapacitors -- 6.5 Conclusion -- References -- Chapter 7 Functional Polymer Nanocomposite for Triboelectric Nanogenerators -- 7.1 Introduction -- 7.2 Triboelectric Nanogenerators -- 7.3 Functional Polymer Nanocomposite -- 7.4 Self‐healing Triboelectric Nanogenerators -- 7.5 Shape Memory Triboelectric Nanogenerators -- 7.6 Biodegradable Triboelectric Nanogenerators -- 7.7 Conclusion -- References -- Chapter 8 Polymer Nanocomposites for Resistive Switching Memory -- 8.1 Introduction -- 8.2 Resistive Switching Memory for Polymer Nanocomposite -- 8.2.1 Resistive Switching -- 8.2.2 Resistive Switching Memory Operating Mechanism -- 8.2.2.1 Formation and Rupture of Conductive Filaments -- 8.2.2.2 Cations and Anions Migration -- 8.2.2.3 Electrons Trapping and De‐tapping -- 8.2.2.4 Other Conduction Mechanisms -- 8.2.3 Fabrication Techniques -- 8.2.4 Polymer Nanocomposite Materials -- 8.3 Polymer Nanocomposite Based RSM Devices -- 8.3.1 Oxide Based Polymer Nanocomposite RSM -- 8.3.2 Metal Based Nanoparticles for Polymer Nanocomposite RSM -- 8.3.3 Graphene Based Polymer Nanocomposite RSM -- 8.3.4 Quantum Dot Based Polymer Nanocomposite RSM -- 8.3.5 Polymer Based Nanocomposites for RSM -- 8.3.6 2D Material Based Polymer Nanocomposites RSM -- 8.3.7 Other Materials Used for Polymer Nanocomposite Based RSM -- 8.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Polymer Nanocomposites for Temperature Sensing and Self‐regulating Heating Devices -- 9.1 Introduction -- 9.2 Conducting Mechanism and Percolation Theory -- 9.3 PTC Theory -- 9.4 Main Factors Influencing the PTC Effect -- 9.4.1 Effect of Filler Size and Shape -- 9.4.2 Effect of Filler Dispersion and Distribution -- 9.4.3 Effect of Mixed Filler.
9.4.4 Effect of Polymer Thermal Expansion and Crystallinity -- 9.4.5 Effect of Polymer Transition Temperature -- 9.4.6 Effect of Polymer Blend -- 9.5 Temperature Sensors -- 9.6 Self‐regulating Heating Devices -- 9.7 Conclusions -- References -- Chapter 10 Polymer Nanocomposites for EMI Shielding Application -- 10.1 Introduction -- 10.2 Mechanism of EMI Shielding of Polymer Composites -- 10.2.1 Materials for EMI Shielding -- 10.3 Polymer Nanocomposites for EMI Shielding Application -- 10.3.1 Nanofiller Incorporated Conducting Polymer Composites -- 10.3.2 Polymer Blend Nanocomposites for Electromagnetic Interference (EMI) Shielding -- 10.3.3 Conducting Polymers for EMI Shielding Application -- 10.4 Characterization Techniques Used for the Electrical Studies of Polymer Composites -- 10.4.1 Conductivity Studies of Polymer Composites -- 10.4.2 Electromagnetic Interference (EMI) Shielding Studies -- 10.5 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910554878003321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymer nanocomposite materials : applications in integrated electronic devices / / edited by Ye Zhou, Guanglong Ding
Polymer nanocomposite materials : applications in integrated electronic devices / / edited by Ye Zhou, Guanglong Ding
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (307 pages) : illustrations
Disciplina 620.115
Soggetto topico Polymers
ISBN 3-527-82648-3
3-527-82649-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction of Polymer Nanocomposites -- 1.1 Introduction -- 1.2 The Advantage of Nanocomposites -- 1.3 Classification of Nanoscale Fillers -- 1.3.1 One‐Dimensional Nanofillers -- 1.3.2 Two‐Dimensional Nanofillers -- 1.3.3 Three‐Dimensional Nanofillers -- 1.4 The Properties of Polymer Nanocomposites -- 1.5 Synthesis of Polymer Nanocomposites -- 1.5.1 Ultrasonication‐assisted Solution Mixing -- 1.5.2 Shear Mixing -- 1.5.3 Three Roll Milling -- 1.5.4 Ball Milling -- 1.5.5 Double‐screw Extrusion -- 1.5.6 In Situ Synthesis -- 1.6 Conclusions and Future Outlook -- References -- Chapter 2 Fabrication of Conductive Polymer Composites and Their Applications in Sensors -- 2.1 Introduction -- 2.2 Fabrication Methods for CPCs -- 2.2.1 Melt Blending -- 2.2.2 Solution Blending -- 2.2.3 In Situ Polymerization -- 2.3 Morphologies -- 2.3.1 Random Dispersion of Nanofiller in the Polymer Matrix -- 2.3.2 Selective Distribution of Nanofillers on the Interface -- 2.3.2.1 Segregated Structure -- 2.3.2.2 Surface Coating -- 2.4 Application in Sensors -- 2.4.1 Strain Sensor -- 2.4.2 Piezoresistive Sensor -- 2.4.3 Gas Sensor -- 2.4.4 Temperature Sensor -- 2.5 Conclusion -- References -- Chapter 3 Biodegradable Polymer Nanocomposites for Electronics -- 3.1 Introduction -- 3.2 Biodegradable Polymer Nanocomposites in Electronics -- 3.2.1 Polylactide -- 3.2.2 PCL -- 3.2.3 PVA -- 3.2.4 PVP -- 3.2.5 Cellulose -- 3.2.6 Chitosan -- 3.2.7 Silk -- 3.3 Challenges and Prospects -- List of Abbreviations -- References -- Chapter 4 Polymer Nanocomposites for Photodetectors -- 4.1 Introduction -- 4.2 Photodetector Brief -- 4.2.1 Photodiode -- 4.2.2 Photoconductor -- 4.3 Photodetectors Based on Novel Semiconductors -- 4.4 Photodetectors Based on Polymer Nanocomposites -- 4.4.1 Polymer-Polymer Nanocomposite.
4.4.2 Polymer-Small Molecular Organic Nanocomposite -- 4.4.2.1 MEH‐PPV-Small Molecular Organic Nanocomposite -- 4.4.2.2 P3HT‐Small Molecular Organic Nanocomposite -- 4.4.3 Polymer-Polymer-Small Molecular Organic Nanocomposite -- 4.4.4 Polymer-Small Molecular Organic-Small Molecular Organic Nanocomposite -- 4.4.5 Polymer-Inorganic Nanocrystals Nanocomposite -- 4.4.5.1 MEH‐PPV-Inorganic Nanocrystals Nanocomposite -- 4.4.5.2 P3HT-Inorganic Nanocrystals Nanocomposite -- 4.4.6 Polymer-Small Molecular Organic-Inorganic Nanocrystals Nanocomposite -- 4.5 Outlook -- List of Abbreviations -- References -- Chapter 5 Polymer Nanocomposites for Pressure Sensors -- 5.1 Introduction -- 5.2 Parameters for Pressure Sensors -- 5.2.1 Pressure Sensitivity -- 5.2.2 Linear Sensing Range -- 5.2.3 LOD and Response Speed -- 5.2.4 Reliability -- 5.3 Working Principles and Examples of Polymer Nanocomposite Based Pressure Sensors -- 5.3.1 Capacitive Pressure Sensors -- 5.3.2 Piezoresistive Pressure Sensors -- 5.3.3 Piezoelectric and Triboelectric Tactile Sensors Based on Polymer Nanocomposites -- 5.4 Applications of the Polymer Nanocomposite Based Pressure Sensors -- 5.4.1 Human Wrist Pulse Detection -- 5.4.2 Subtle Human Motion Detection -- 5.4.3 Texture Roughness Detection -- 5.4.4 E‐skin Application -- 5.5 Performance of Pressure Sensors with the Polymer Nanocomposites Reported Over the Past Decade -- 5.6 Conclusion -- References -- Chapter 6 The Application of Polymer Nanocomposites in Energy Storage Devices -- 6.1 Introduction -- 6.2 Electrodes -- 6.2.1 For Battery -- 6.2.1.1 Polymer-Graphene/Carbon Nanotube -- 6.2.1.2 Polymer Inorganic -- 6.2.1.3 Polymer-Organic Salt Graphene -- 6.2.2 For Supercapacitor -- 6.2.2.1 Polymer-Metal Oxide -- 6.2.2.2 Polymer-Graphene/Carbon Nanotube -- 6.2.2.3 Polymer-Metal Oxide-Graphene/Carbon Nanotubes -- 6.3 Electrolytes.
6.3.1 For Battery -- 6.3.2 For Supercapacitor -- 6.4 Separator -- 6.4.1 For Battery -- 6.4.2 For Supercapacitors -- 6.5 Conclusion -- References -- Chapter 7 Functional Polymer Nanocomposite for Triboelectric Nanogenerators -- 7.1 Introduction -- 7.2 Triboelectric Nanogenerators -- 7.3 Functional Polymer Nanocomposite -- 7.4 Self‐healing Triboelectric Nanogenerators -- 7.5 Shape Memory Triboelectric Nanogenerators -- 7.6 Biodegradable Triboelectric Nanogenerators -- 7.7 Conclusion -- References -- Chapter 8 Polymer Nanocomposites for Resistive Switching Memory -- 8.1 Introduction -- 8.2 Resistive Switching Memory for Polymer Nanocomposite -- 8.2.1 Resistive Switching -- 8.2.2 Resistive Switching Memory Operating Mechanism -- 8.2.2.1 Formation and Rupture of Conductive Filaments -- 8.2.2.2 Cations and Anions Migration -- 8.2.2.3 Electrons Trapping and De‐tapping -- 8.2.2.4 Other Conduction Mechanisms -- 8.2.3 Fabrication Techniques -- 8.2.4 Polymer Nanocomposite Materials -- 8.3 Polymer Nanocomposite Based RSM Devices -- 8.3.1 Oxide Based Polymer Nanocomposite RSM -- 8.3.2 Metal Based Nanoparticles for Polymer Nanocomposite RSM -- 8.3.3 Graphene Based Polymer Nanocomposite RSM -- 8.3.4 Quantum Dot Based Polymer Nanocomposite RSM -- 8.3.5 Polymer Based Nanocomposites for RSM -- 8.3.6 2D Material Based Polymer Nanocomposites RSM -- 8.3.7 Other Materials Used for Polymer Nanocomposite Based RSM -- 8.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Polymer Nanocomposites for Temperature Sensing and Self‐regulating Heating Devices -- 9.1 Introduction -- 9.2 Conducting Mechanism and Percolation Theory -- 9.3 PTC Theory -- 9.4 Main Factors Influencing the PTC Effect -- 9.4.1 Effect of Filler Size and Shape -- 9.4.2 Effect of Filler Dispersion and Distribution -- 9.4.3 Effect of Mixed Filler.
9.4.4 Effect of Polymer Thermal Expansion and Crystallinity -- 9.4.5 Effect of Polymer Transition Temperature -- 9.4.6 Effect of Polymer Blend -- 9.5 Temperature Sensors -- 9.6 Self‐regulating Heating Devices -- 9.7 Conclusions -- References -- Chapter 10 Polymer Nanocomposites for EMI Shielding Application -- 10.1 Introduction -- 10.2 Mechanism of EMI Shielding of Polymer Composites -- 10.2.1 Materials for EMI Shielding -- 10.3 Polymer Nanocomposites for EMI Shielding Application -- 10.3.1 Nanofiller Incorporated Conducting Polymer Composites -- 10.3.2 Polymer Blend Nanocomposites for Electromagnetic Interference (EMI) Shielding -- 10.3.3 Conducting Polymers for EMI Shielding Application -- 10.4 Characterization Techniques Used for the Electrical Studies of Polymer Composites -- 10.4.1 Conductivity Studies of Polymer Composites -- 10.4.2 Electromagnetic Interference (EMI) Shielding Studies -- 10.5 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830829703321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical guide to materials characterization : techniques and applications / / Khalid Sultan
Practical guide to materials characterization : techniques and applications / / Khalid Sultan
Autore Sultan Khalid (Professor)
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (226 pages)
Disciplina 620.11
Soggetto topico Materials
ISBN 3-527-83882-1
3-527-83883-X
3-527-83884-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Practical Guide to Materials Characterization -- Contents -- List of Figures -- List of Tables -- Preface -- 1 Basics of Material Characterization Techniques -- 1.1 Introduction -- 1.2 Electromagnetic Spectrum -- 1.3 Fundamentals of Crystallography -- 1.4 Molecular Vibrations -- 1.5 Magnetism in Solids -- 1.6 Optical Properties of Solids -- References -- 2 X-ray Diffraction -- 2.1 Introduction -- 2.2 Bragg's Law -- 2.3 Von Laue Treatment: Laue's Equation -- 2.4 Experimental Techniques -- 2.4.1 Laue Method -- 2.4.2 Rotating Crystal Method -- 2.4.3 Powder Method -- 2.5 Geometry and Instrumentation -- 2.6 Standard XRD Pattern -- 2.7 Applications -- 2.7.1 Orientation of Single Crystals -- 2.7.2 Structure of Polycrystalline Aggregates -- 2.7.3 XRD in the Pharmaceutical Field and Forensic Science -- 2.7.4 XRD in the Geological Field -- 2.8 Examples and Illustrations -- 2.8.1 XRD Data and Interpretation in the PrFe1-xMnxO3 System -- 2.8.2 XRD Data and Interpretation in the La1-xCaxMnO3 System -- 2.8.3 XRD Analysis of EuFe1-xMnxO3 (x = 0.0, 0.3, 0.5) -- References -- 3 Raman Spectroscopy -- 3.1 Introduction -- 3.2 Infrared and Raman Spectroscopy -- 3.3 Raman Spectra: Origin -- 3.4 Classical Theory of Raman Scattering -- 3.5 Quantum Theory of Raman Spectroscopy -- 3.6 Raman Spectrometer -- 3.6.1 Excitation Source -- 3.6.2 Sample Illumination -- 3.6.3 Wavelength Selector -- 3.6.4 Detection and Control System -- 3.7 Resonance Raman Spectroscopy -- 3.8 Special Techniques -- 3.8.1 High-pressure Raman Spectroscopy -- 3.8.2 Raman Microscopy -- 3.8.3 Surface-enhanced Raman Spectroscopy -- 3.8.4 Raman Spectroelectrochemistry -- 3.9 Applications and Illustrations -- 3.9.1 Raman Spectra of the PrFe1-xMnxO3 System at Different Concentrations of Mn Doped in Place of Fe.
3.9.2 Raman Spectra and Measurements of the La1-xCaxMnO3 System (x = 0.0, 0.3, 0.5, and 0.7) -- 3.9.3 Temperature-dependent Raman Study of La1−xCaxMnO3 (x = 0.0 and 0.3) -- References -- 4 X-ray Spectroscopic Techniques -- 4.1 X-ray Absorption Spectroscopy -- 4.1.1 Introduction -- 4.1.2 Basic Principle of XAS -- 4.1.3 Experimental Aspects -- 4.1.3.1 Synchrotron Radiation -- 4.1.3.2 Experimental Setup -- 4.1.3.3 Transmission Mode -- 4.1.3.4 Fluorescence Mode -- 4.1.3.5 Electron Yield Mode -- 4.1.4 Examples and Analysis -- 4.1.4.1 X-ray Absorption Spectra of La1-xCaxMnO3 (x = 0.0, 0.3, 0.5, 0.7) Samples -- 4.1.4.2 Electronic Structure of PrFe1-xMnxO3 by X-Ray Absorption Spectroscopy -- 4.2 X-ray Photoelectron Spectroscopy -- 4.2.1 Introduction -- 4.2.2 Basic Principle -- 4.2.3 Energy Referencing -- 4.2.4 Instrumentation -- 4.2.5 XPS Spectra and Their Features -- 4.3 Auger Electron Spectroscopy -- 4.3.1 Introduction -- 4.3.2 Interactions of Electrons with Matter -- 4.3.3 Competition Between X-ray and Auger Electron Emissions -- 4.3.4 Auger Process -- 4.3.5 Kinetic Energy of the Auger Electron -- 4.3.6 Auger Spectra -- 4.3.7 Instrumentation -- References -- 5 Magnetic Measurements -- 5.1 Introduction -- 5.2 Magnetization Measuring Instruments -- 5.2.1 Extraction Technique -- 5.2.2 Vibrating Sample Magnetometer -- 5.2.3 SQUID Magnetometer -- 5.3 Advantages and Disadvantage of a Vibrating Sample Magnetometer -- 5.4 Susceptibility Measurement -- 5.5 Examples and Illustrations -- 5.5.1 Magnetic Behavior Shown by Thin Films of the PrFe1-xMnxO3 System Deposited on Substrate Si (100) -- 5.5.2 Magnetic Behavior of the La1-xCaxMnO3 System Where x is the Concentration of Ca as Dopant and Equals 0.0, 0.3, 0.5, or 0.7 -- 5.5.3 Magnetic Behavior of La1-xCaxMnO3 Thin Films Deposited on Si(100) with x = 0.0, 0.3, 0.5, and 0.7 Being the Concentrations of Ca.
References -- 6 Dielectric Measurements -- 6.1 Introduction -- 6.2 Polarization and Dielectric Constant -- 6.2.1 Electronic or Optical Polarization -- 6.2.2 Orientational Polarization -- 6.2.3 Atomic Polarizability -- 6.2.4 Interfacial Polarization -- 6.3 Mechanism for the Colossal Dielectric Response -- 6.4 Frequency Dependence of Polarizability -- 6.5 Classification of Dielectric Materials -- 6.5.1 Nonferroelectric Materials -- 6.5.2 Nonpolar Materials -- 6.5.3 Polar Materials -- 6.5.4 Dipolar Materials -- 6.6 Dielectric Dispersion: A Brief Discussion -- 6.7 Dielectric Loss and Relaxation -- 6.8 Complex Permittivity -- 6.9 Polarization Buildup -- 6.10 Jonscher's Universal Law -- 6.11 Examples and Illustrations -- 6.11.1 Dielectric Behavior of PrFe1-xMnxO3 with x = 0.0, 0.1, 0.3, and 0.5 Being the Concentration of Mn Doped in a Pristine Compound -- 6.11.1.1 Frequency and Temperature Dependence of Dielectric Properties -- 6.11.2 Dielectric Properties of the EuFe1-xMnxO3 System in Which Different Concentrations of Mn Are Doped in EuFeO3 -- 6.11.2.1 Dependence of Dielectric Behavior on Frequency -- 6.11.2.2 Dependence of Dielectric Behavior on Temperature -- References -- 7 Electron Microscopy -- 7.1 Introduction -- 7.2 Generation of an Electron Beam -- 7.3 Interaction of an Electron Beam with a Sample -- 7.4 Inelastic Scattering and Absorption -- 7.5 The Family of Electron Microscopes -- 7.5.1 The X-ray Microscope -- 7.5.2 The Transmission Electron Microscope -- 7.5.3 The Scanning Electron Microscope -- 7.5.4 The Scanning Transmission Electron Microscope -- 7.6 Atomic Force Microscopy -- 7.7 Examples and Illustrations -- 7.7.1 AFM Studies of PrFe1-xMnxO3 (x = 0.0, 0.1, 0.3, 0.5) Thin Films Grown on Si (100) -- 7.7.2 Atomic Force Microscopy in the Case of La1-xCaxMnO3 for (a) x = 0.0, (b) x = 0.3, (c) x = 0.5, and (d) x = 0.7.
7.7.3 Morphological Studies and Elemental Analysis of EuFe1-xMnxO3 (x = 0.0, 0.3, and 0.5) -- References -- 8 Infrared Spectroscopy -- 8.1 Introduction -- 8.2 Instrumentation for FTIR -- 8.3 Fourier Transform -- 8.4 Electromagnetic Radiation -- 8.5 Infrared Absorption -- 8.6 Normal Modes of Vibration -- 8.7 Complicating Factors -- 8.8 Applications of IR Spectroscopy -- 8.8.1 Food Science -- 8.8.2 Chemistry in Clinical Practice -- 8.8.3 Plants -- 8.8.4 Disease Diagnosis -- 8.8.5 Environmental Applications -- References -- Index -- EULA.
Record Nr. UNINA-9910643011203321
Sultan Khalid (Professor)  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui