top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multifunctional hydrogels for biomedical applications / / edited by Ricardo A. Pires, Iva Pashkuleva, Rui L. Reis
Multifunctional hydrogels for biomedical applications / / edited by Ricardo A. Pires, Iva Pashkuleva, Rui L. Reis
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (381 pages)
Disciplina 610.28
Soggetto topico Biomedical engineering
ISBN 3-527-82582-7
3-527-82581-9
3-527-82583-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Extracellular Matrix Hydrogels from Decellularized Tissues for Biological and Biomedical Applications -- 1.1 Introduction to Hydrogels -- 1.1.1 Definition and Use of Hydrogels in Biomedical Applications -- 1.1.2 Classification and Properties of Hydrogels -- 1.1.2.1 Synthetic Hydrogels -- 1.1.2.2 Natural Hydrogels -- 1.2 Key Features and Functions of the Extracellular Matrix in Homeostasis and Development -- 1.3 Extracellular Matrix‐Based Hydrogels Derived from Decellularization of Organs -- 1.3.1 Production of ECM Hydrogels -- 1.3.2 Characterization of ECM Hydrogels -- 1.3.3 Pancreatic ECM‐Derived Hydrogels -- 1.3.4 ECM Hydrogels Derived from Liver -- 1.3.5 Lung ECM Hydrogels -- 1.3.6 Hydrogels Derived from Decellularized Colon -- 1.3.7 ECM‐Derived Hydrogels from Small Intestine -- 1.3.8 Cellular Responses to ECM Hydrogels -- 1.4 Commercially Available Products -- References -- Chapter 2 Collagen‐Based Systems to Mimic the Extracellular Environment -- 2.1 Cells in Tissues -- 2.2 Collagen in Tissues -- 2.2.1 Structure of Collagen -- 2.2.2 Collagen Sources -- 2.3 Controlling Collagen Architecture -- 2.3.1 Direction: Collagen Orientation -- 2.3.2 Diameter: Collagen Fibril Diameter -- 2.3.3 Density: Fibril Packing and Cross‐Linking -- 2.4 Engineering Collagen Scaffolds -- 2.4.1 Collagen Cross‐Linking -- 2.4.2 Diffusion of Nutrients and Oxygen Through Collagen Scaffolds -- 2.4.3 Proliferation of Cells in 3D -- 2.4.4 Mechanical Stimulation and Bioreactors -- 2.4.5 Growth Factors -- 2.4.6 Drug‐Loaded Scaffolds -- 2.5 Conclusions -- References -- Chapter 3 Designing Elastin‐Like Recombinamers for Therapeutic and Regenerative Purposes -- 3.1 Introduction -- 3.2 ELR‐Based Hydrogels in Tissue Engineering -- 3.2.1 Hydrogels in Musculoskeletal Tissue Regeneration.
3.2.2 Hydrogels in Cardiovascular Tissue Regeneration -- 3.2.3 Hydrogels in Skin Tissue Regeneration -- 3.2.4 Hydrogels in Neural Tissue Regeneration -- 3.3 ELR‐Based Hydrogels for Drug Delivery -- 3.3.1 Physically Cross‐Linked Hydrogels -- 3.3.2 Chemically Cross‐Linked Hydrogels -- 3.4 Future Remarks -- References -- Chapter 4 Enzyme‐Assisted Hydrogel Formation for Tissue Engineering Applications -- 4.1 Introduction -- 4.2 Enzymatically Cross‐Linked Hydrogels -- 4.2.1 Oxidoreductases -- 4.2.1.1 Peroxidases - HRP -- 4.2.1.2 Tyrosinase -- 4.2.1.3 Laccase -- 4.2.2 Transferases: Transglutaminase -- 4.3 Supramolecular Enzyme‐Driven Hydrogelation -- 4.3.1 Hydrolases -- 4.3.1.1 Phosphatases -- 4.3.1.2 Metalloproteinases -- 4.3.1.3 Thermolysin -- 4.3.1.4 β‐Lactamases -- 4.3.2 DNA Polymerases -- 4.4 Conclusions -- References -- Chapter 5 Hierarchical Peptide‐ and Protein‐Based Biomaterials: From Molecular Structure to Directed Self‐assembly and Applications -- 5.1 Introduction -- 5.2 Molecular Design/Selection of Building Blocks for Hierarchical Self‐assembly -- 5.2.1 Hydrophobic Aromatic Amino Acids -- 5.2.2 Hydrophobic Aliphatic Amino Acids -- 5.2.3 Hydrophilic Charged Amino Acids -- 5.2.4 Others -- 5.3 Hierarchical Assembly Through Environmental Manipulation -- 5.3.1 Temperature -- 5.3.2 Magnetic Field -- 5.3.3 Electric Field -- 5.3.4 Patterned Substrates -- 5.3.5 Shear Forces -- 5.3.6 pH -- 5.3.7 Ultrasound -- 5.3.8 Other Methods -- 5.4 Techniques for the Characterization of Hierarchically Organized Biomaterials -- 5.4.1 Polarized Light Microscopy -- 5.4.2 High‐Resolution Microscopy (AFM, TEM, and SEM) -- 5.4.3 Small‐Angle X‐ray Scattering (SAXS) -- 5.5 Application of Hierarchical Self‐assembling Peptide‐ and Protein‐Based Biomaterials in Tissue Regeneration -- 5.5.1 Cornea -- 5.5.2 Blood Vessels -- 5.5.3 Skeletal Muscle -- 5.6 Conclusions.
Acknowledgments -- References -- Chapter 6 Short Peptide Hydrogels for Biomedical Applications -- 6.1 Introduction -- 6.2 Short Peptide Hydrogels -- 6.2.1 Fmoc‐Protected Short Peptides -- 6.2.2 Short Peptide Hydrogels with Alternating Hydrophobic/Hydrophilic Amino Acid Residues -- 6.2.3 β‐Hairpin Peptides -- 6.2.4 Acetyl‐Protected Short Peptides -- 6.3 Biomedical Applications of Short Peptide Hydrogels -- 6.3.1 2D/3D Cell Scaffolding -- 6.3.2 Tissue Engineering -- 6.3.3 Wound Healing -- 6.3.4 Drug Delivery -- 6.4 Conclusions and Outlook -- References -- Chapter 7 Supramolecular Assemblies of Glycopeptides as Mimics of the Extracellular Matrix -- 7.1 Introduction -- 7.2 Glycoproteins and Proteoglycans in the ECM -- 7.3 Design of Self‐assembling Peptide-Saccharide Conjugates -- 7.4 Supramolecular Systems Generated by Interfacial Co‐assembly -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Supramolecular Assemblies for Cancer Diagnosis and Treatment -- 8.1 Introduction -- 8.2 Cancer Diagnosis -- 8.2.1 Optical Imaging -- 8.2.2 Magnetic Resonance Imaging (MRI) -- 8.2.3 Photoacoustic Imaging -- 8.3 Cancer Treatment -- 8.3.1 Drug Delivery -- 8.3.2 Enzyme‐Instructed Self‐assembly (EISA for Cancer Therapy) -- 8.4 Future Perspectives -- References -- Chapter 9 Polyzwitterionic Hydrogels as Wound Dressing Materials -- 9.1 Polyzwitterions -- 9.1.1 General Structure and Properties -- 9.1.2 Nonfouling Properties -- 9.2 Wound Management and Wound Dressings -- 9.3 PZIs as Dressings Materials for Acute Wounds -- 9.3.1 Polycarboxybetaines (PCBs) -- 9.3.2 Polysulfobetaines -- 9.4 PZI as Dressings for Chronic Wounds Management -- 9.4.1 Dressings for Chronic Wounds Management Based on Polycarboxybetaines -- 9.4.2 Polysulfobetaines as Dressings for Chronic Wounds Management -- 9.5 Conclusions -- References.
Chapter 10 Hyaluronan‐Based Hydrogels as Modulators of Cellular Behavior -- 10.1 Introduction -- 10.2 Biological Relevance of Hyaluronan -- 10.2.1 Hyaluronan in Biological Tissues and Fluids -- 10.2.2 Hyaluronan as a Signaling Molecule -- 10.3 Hyaluronan‐Based Systems for Biomedical Applications -- 10.3.1 Hydrogels for Tissue Engineering -- 10.3.1.1 Differentiation of Stem Cells -- 10.3.1.2 Space Filling Hydrogels -- 10.3.2 3D Cancer Models -- 10.4 Conclusion and Future Remarks -- Acknowledgments -- References -- Chapter 11 Hydrogel Fibers Produced via Microfluidics -- 11.1 Introduction to Microfluidics and Microfluidic Wet Spinning -- 11.1.1 Fundamentals of Microfluidics -- 11.1.2 Application of Microfluidics to Fiber Production: Microfluidic Wet Spinning -- 11.2 Fabrication of Chips for Microfluidic Wet Spinning -- 11.3 Biomedical Applications of Hydrogel Fibers Produced via Microfluidics -- 11.3.1 Tissue Engineering -- 11.3.1.1 Single‐Fiber Scaffolds -- 11.3.1.2 Assembled Fiber Scaffolds -- 11.3.2 Sensors and Actuators -- 11.3.2.1 Sensors -- 11.3.2.2 Actuators -- 11.3.3 Controlled Drug Delivery -- 11.3.4 Other Biomedical Applications -- 11.4 Hydrogel Optical Fibers -- 11.4.1 Materials -- 11.4.2 Applications -- 11.5 Conclusions -- Acknowledgments -- References -- Chapter 12 Embedding Hydrogels into Microfluidic Chips: Vascular Transport Analyses and Drug Delivery Optimization -- 12.1 Introduction: Microfluidic Chips for Modeling Human Diseases and Developing New Therapies -- 12.2 Hydrogels to Mimic the Extracellular Matrix (ECM) -- 12.3 Fabrication of Microfluidic Chips -- 12.3.1 Single‐Channel Microfluidic Chips -- 12.3.2 Double‐Channel Microfluidic Chip -- 12.4 Applications of Microfluidic Chips in Biophysical Transport Analysis -- 12.4.1 Single‐Channel Microfluidic Chips -- 12.4.2 Double‐Channel Microfluidic Chips.
12.5 Nanoparticle Transport Analyses -- 12.6 Computer Simulations of Nanoparticle and Cell Transport -- 12.7 Conclusions and Future Directions -- References -- Chapter 13 Multifunctional Granular Hydrogels for Tissue‐Specific Repair -- 13.1 Introduction -- 13.2 Granular Hydrogels - Functional Features and Design -- 13.2.1 Injectability -- 13.2.2 Inter‐particle Annealing Toward MAPs Assembly -- 13.2.3 Void Spaces and Microporosity -- 13.2.4 Modularity and Multifunctionality in Granular Systems -- 13.2.5 Bioactive Molecules Delivery -- 13.3 Granular Hydrogels for Tissue‐Specific Repair -- 13.3.1 Vascularization Strategies -- 13.3.2 Skin Tissues Repair -- 13.3.3 Bone Tissue Repair -- 13.3.4 Emerging Trends and Applications -- 13.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 14 Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing -- 14.1 Wound Healing -- 14.1.1 Clinical Needs for Wound Healing -- 14.1.2 Wound Healing Pathology -- 14.1.2.1 Hemostasis -- 14.1.2.2 Inflammation -- 14.1.2.3 Proliferation -- 14.1.2.4 Remodeling -- 14.2 Stem Cells for Skin Wound Healing -- 14.2.1 Stem Cell Overview -- 14.2.2 Adipose‐Derived Stem Cells for Wound Healing -- 14.2.3 Current Limitations and Future Directions of SCs for Wound Healing -- 14.3 Injectable Hydrogel Dressing as a Delivery Platform -- 14.3.1 Types of Injectable Hydrogels -- 14.3.1.1 Naturally Derived Injectable Hydrogels -- 14.3.1.2 Synthetic Injectable Hydrogels -- 14.3.1.3 Hybrid Injectable Hydrogels -- 14.3.2 Injectable Hydrogels as Scaffolding for Stem Cells Delivery -- References -- Index -- EULA.
Record Nr. UNINA-9910573098103321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multifunctional hydrogels for biomedical applications / / edited by Ricardo A. Pires, Iva Pashkuleva, Rui L. Reis
Multifunctional hydrogels for biomedical applications / / edited by Ricardo A. Pires, Iva Pashkuleva, Rui L. Reis
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (381 pages)
Disciplina 610.28
Soggetto topico Biomedical engineering
ISBN 3-527-82582-7
3-527-82581-9
3-527-82583-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Extracellular Matrix Hydrogels from Decellularized Tissues for Biological and Biomedical Applications -- 1.1 Introduction to Hydrogels -- 1.1.1 Definition and Use of Hydrogels in Biomedical Applications -- 1.1.2 Classification and Properties of Hydrogels -- 1.1.2.1 Synthetic Hydrogels -- 1.1.2.2 Natural Hydrogels -- 1.2 Key Features and Functions of the Extracellular Matrix in Homeostasis and Development -- 1.3 Extracellular Matrix‐Based Hydrogels Derived from Decellularization of Organs -- 1.3.1 Production of ECM Hydrogels -- 1.3.2 Characterization of ECM Hydrogels -- 1.3.3 Pancreatic ECM‐Derived Hydrogels -- 1.3.4 ECM Hydrogels Derived from Liver -- 1.3.5 Lung ECM Hydrogels -- 1.3.6 Hydrogels Derived from Decellularized Colon -- 1.3.7 ECM‐Derived Hydrogels from Small Intestine -- 1.3.8 Cellular Responses to ECM Hydrogels -- 1.4 Commercially Available Products -- References -- Chapter 2 Collagen‐Based Systems to Mimic the Extracellular Environment -- 2.1 Cells in Tissues -- 2.2 Collagen in Tissues -- 2.2.1 Structure of Collagen -- 2.2.2 Collagen Sources -- 2.3 Controlling Collagen Architecture -- 2.3.1 Direction: Collagen Orientation -- 2.3.2 Diameter: Collagen Fibril Diameter -- 2.3.3 Density: Fibril Packing and Cross‐Linking -- 2.4 Engineering Collagen Scaffolds -- 2.4.1 Collagen Cross‐Linking -- 2.4.2 Diffusion of Nutrients and Oxygen Through Collagen Scaffolds -- 2.4.3 Proliferation of Cells in 3D -- 2.4.4 Mechanical Stimulation and Bioreactors -- 2.4.5 Growth Factors -- 2.4.6 Drug‐Loaded Scaffolds -- 2.5 Conclusions -- References -- Chapter 3 Designing Elastin‐Like Recombinamers for Therapeutic and Regenerative Purposes -- 3.1 Introduction -- 3.2 ELR‐Based Hydrogels in Tissue Engineering -- 3.2.1 Hydrogels in Musculoskeletal Tissue Regeneration.
3.2.2 Hydrogels in Cardiovascular Tissue Regeneration -- 3.2.3 Hydrogels in Skin Tissue Regeneration -- 3.2.4 Hydrogels in Neural Tissue Regeneration -- 3.3 ELR‐Based Hydrogels for Drug Delivery -- 3.3.1 Physically Cross‐Linked Hydrogels -- 3.3.2 Chemically Cross‐Linked Hydrogels -- 3.4 Future Remarks -- References -- Chapter 4 Enzyme‐Assisted Hydrogel Formation for Tissue Engineering Applications -- 4.1 Introduction -- 4.2 Enzymatically Cross‐Linked Hydrogels -- 4.2.1 Oxidoreductases -- 4.2.1.1 Peroxidases - HRP -- 4.2.1.2 Tyrosinase -- 4.2.1.3 Laccase -- 4.2.2 Transferases: Transglutaminase -- 4.3 Supramolecular Enzyme‐Driven Hydrogelation -- 4.3.1 Hydrolases -- 4.3.1.1 Phosphatases -- 4.3.1.2 Metalloproteinases -- 4.3.1.3 Thermolysin -- 4.3.1.4 β‐Lactamases -- 4.3.2 DNA Polymerases -- 4.4 Conclusions -- References -- Chapter 5 Hierarchical Peptide‐ and Protein‐Based Biomaterials: From Molecular Structure to Directed Self‐assembly and Applications -- 5.1 Introduction -- 5.2 Molecular Design/Selection of Building Blocks for Hierarchical Self‐assembly -- 5.2.1 Hydrophobic Aromatic Amino Acids -- 5.2.2 Hydrophobic Aliphatic Amino Acids -- 5.2.3 Hydrophilic Charged Amino Acids -- 5.2.4 Others -- 5.3 Hierarchical Assembly Through Environmental Manipulation -- 5.3.1 Temperature -- 5.3.2 Magnetic Field -- 5.3.3 Electric Field -- 5.3.4 Patterned Substrates -- 5.3.5 Shear Forces -- 5.3.6 pH -- 5.3.7 Ultrasound -- 5.3.8 Other Methods -- 5.4 Techniques for the Characterization of Hierarchically Organized Biomaterials -- 5.4.1 Polarized Light Microscopy -- 5.4.2 High‐Resolution Microscopy (AFM, TEM, and SEM) -- 5.4.3 Small‐Angle X‐ray Scattering (SAXS) -- 5.5 Application of Hierarchical Self‐assembling Peptide‐ and Protein‐Based Biomaterials in Tissue Regeneration -- 5.5.1 Cornea -- 5.5.2 Blood Vessels -- 5.5.3 Skeletal Muscle -- 5.6 Conclusions.
Acknowledgments -- References -- Chapter 6 Short Peptide Hydrogels for Biomedical Applications -- 6.1 Introduction -- 6.2 Short Peptide Hydrogels -- 6.2.1 Fmoc‐Protected Short Peptides -- 6.2.2 Short Peptide Hydrogels with Alternating Hydrophobic/Hydrophilic Amino Acid Residues -- 6.2.3 β‐Hairpin Peptides -- 6.2.4 Acetyl‐Protected Short Peptides -- 6.3 Biomedical Applications of Short Peptide Hydrogels -- 6.3.1 2D/3D Cell Scaffolding -- 6.3.2 Tissue Engineering -- 6.3.3 Wound Healing -- 6.3.4 Drug Delivery -- 6.4 Conclusions and Outlook -- References -- Chapter 7 Supramolecular Assemblies of Glycopeptides as Mimics of the Extracellular Matrix -- 7.1 Introduction -- 7.2 Glycoproteins and Proteoglycans in the ECM -- 7.3 Design of Self‐assembling Peptide-Saccharide Conjugates -- 7.4 Supramolecular Systems Generated by Interfacial Co‐assembly -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Supramolecular Assemblies for Cancer Diagnosis and Treatment -- 8.1 Introduction -- 8.2 Cancer Diagnosis -- 8.2.1 Optical Imaging -- 8.2.2 Magnetic Resonance Imaging (MRI) -- 8.2.3 Photoacoustic Imaging -- 8.3 Cancer Treatment -- 8.3.1 Drug Delivery -- 8.3.2 Enzyme‐Instructed Self‐assembly (EISA for Cancer Therapy) -- 8.4 Future Perspectives -- References -- Chapter 9 Polyzwitterionic Hydrogels as Wound Dressing Materials -- 9.1 Polyzwitterions -- 9.1.1 General Structure and Properties -- 9.1.2 Nonfouling Properties -- 9.2 Wound Management and Wound Dressings -- 9.3 PZIs as Dressings Materials for Acute Wounds -- 9.3.1 Polycarboxybetaines (PCBs) -- 9.3.2 Polysulfobetaines -- 9.4 PZI as Dressings for Chronic Wounds Management -- 9.4.1 Dressings for Chronic Wounds Management Based on Polycarboxybetaines -- 9.4.2 Polysulfobetaines as Dressings for Chronic Wounds Management -- 9.5 Conclusions -- References.
Chapter 10 Hyaluronan‐Based Hydrogels as Modulators of Cellular Behavior -- 10.1 Introduction -- 10.2 Biological Relevance of Hyaluronan -- 10.2.1 Hyaluronan in Biological Tissues and Fluids -- 10.2.2 Hyaluronan as a Signaling Molecule -- 10.3 Hyaluronan‐Based Systems for Biomedical Applications -- 10.3.1 Hydrogels for Tissue Engineering -- 10.3.1.1 Differentiation of Stem Cells -- 10.3.1.2 Space Filling Hydrogels -- 10.3.2 3D Cancer Models -- 10.4 Conclusion and Future Remarks -- Acknowledgments -- References -- Chapter 11 Hydrogel Fibers Produced via Microfluidics -- 11.1 Introduction to Microfluidics and Microfluidic Wet Spinning -- 11.1.1 Fundamentals of Microfluidics -- 11.1.2 Application of Microfluidics to Fiber Production: Microfluidic Wet Spinning -- 11.2 Fabrication of Chips for Microfluidic Wet Spinning -- 11.3 Biomedical Applications of Hydrogel Fibers Produced via Microfluidics -- 11.3.1 Tissue Engineering -- 11.3.1.1 Single‐Fiber Scaffolds -- 11.3.1.2 Assembled Fiber Scaffolds -- 11.3.2 Sensors and Actuators -- 11.3.2.1 Sensors -- 11.3.2.2 Actuators -- 11.3.3 Controlled Drug Delivery -- 11.3.4 Other Biomedical Applications -- 11.4 Hydrogel Optical Fibers -- 11.4.1 Materials -- 11.4.2 Applications -- 11.5 Conclusions -- Acknowledgments -- References -- Chapter 12 Embedding Hydrogels into Microfluidic Chips: Vascular Transport Analyses and Drug Delivery Optimization -- 12.1 Introduction: Microfluidic Chips for Modeling Human Diseases and Developing New Therapies -- 12.2 Hydrogels to Mimic the Extracellular Matrix (ECM) -- 12.3 Fabrication of Microfluidic Chips -- 12.3.1 Single‐Channel Microfluidic Chips -- 12.3.2 Double‐Channel Microfluidic Chip -- 12.4 Applications of Microfluidic Chips in Biophysical Transport Analysis -- 12.4.1 Single‐Channel Microfluidic Chips -- 12.4.2 Double‐Channel Microfluidic Chips.
12.5 Nanoparticle Transport Analyses -- 12.6 Computer Simulations of Nanoparticle and Cell Transport -- 12.7 Conclusions and Future Directions -- References -- Chapter 13 Multifunctional Granular Hydrogels for Tissue‐Specific Repair -- 13.1 Introduction -- 13.2 Granular Hydrogels - Functional Features and Design -- 13.2.1 Injectability -- 13.2.2 Inter‐particle Annealing Toward MAPs Assembly -- 13.2.3 Void Spaces and Microporosity -- 13.2.4 Modularity and Multifunctionality in Granular Systems -- 13.2.5 Bioactive Molecules Delivery -- 13.3 Granular Hydrogels for Tissue‐Specific Repair -- 13.3.1 Vascularization Strategies -- 13.3.2 Skin Tissues Repair -- 13.3.3 Bone Tissue Repair -- 13.3.4 Emerging Trends and Applications -- 13.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 14 Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing -- 14.1 Wound Healing -- 14.1.1 Clinical Needs for Wound Healing -- 14.1.2 Wound Healing Pathology -- 14.1.2.1 Hemostasis -- 14.1.2.2 Inflammation -- 14.1.2.3 Proliferation -- 14.1.2.4 Remodeling -- 14.2 Stem Cells for Skin Wound Healing -- 14.2.1 Stem Cell Overview -- 14.2.2 Adipose‐Derived Stem Cells for Wound Healing -- 14.2.3 Current Limitations and Future Directions of SCs for Wound Healing -- 14.3 Injectable Hydrogel Dressing as a Delivery Platform -- 14.3.1 Types of Injectable Hydrogels -- 14.3.1.1 Naturally Derived Injectable Hydrogels -- 14.3.1.2 Synthetic Injectable Hydrogels -- 14.3.1.3 Hybrid Injectable Hydrogels -- 14.3.2 Injectable Hydrogels as Scaffolding for Stem Cells Delivery -- References -- Index -- EULA.
Record Nr. UNINA-9910831087703321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase flows for process industries : fundamentals and applications / / edited by Vivek V. Ranade, Ranjeet P. Utikar
Multiphase flows for process industries : fundamentals and applications / / edited by Vivek V. Ranade, Ranjeet P. Utikar
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (695 pages)
Disciplina 620.1064
Soggetto topico Manufacturing processes
Soggetto genere / forma Electronic books.
ISBN 3-527-81206-7
3-527-81204-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Multiphase Flows and Process Industries -- 1.1 The Process Industry -- 1.2 Multiphase Flows -- 1.3 Organization of This Book -- References -- Part II Fundamentals of Multiphase Flows -- Chapter 2 Multiphase Flows: Flow Regimes, Lower Order Models, and Correlations -- 2.1 Introduction -- 2.2 Modeling of Multiphase Flows -- 2.3 Chronological Development of Mathematical Models -- 2.4 Zero‐Dimensional Two‐Equation Model -- 2.5 Homogeneous Equilibrium Model -- 2.6 Drift Flux Model -- 2.7 One‐Dimensional Five‐Equation Models -- 2.8 One‐Dimensional Six‐Equation Two‐Phase Flow Models: Axial Variation of Field Variables -- 2.8.1 Mathematical Formulations -- 2.8.2 Closure -- 2.8.2.1 Regime Maps and Criteria for Transition -- 2.8.2.2 Momentum Closure -- 2.8.2.3 Energy Closure -- 2.8.3 Software (RELAP5) -- 2.8.4 Application and Validation of Various One‐D Models and CFD -- 2.8.4.1 Nodalization for the One‐Dimensional Models -- 2.8.4.2 Model Details -- 2.8.4.3 Comparison Between Three‐, Five‐, and Six‐Equation Model with Experimental Data -- 2.9 One‐Dimensional Six‐Equation Two‐Phase Flow Models: Radial Variation of Field Variables -- 2.9.1 Hydrodynamic Regimes and Criteria for Transition -- 2.9.2 Mathematical Model -- 2.9.3 Stepwise Solution Procedure -- 2.9.3.1 Model Equation -- 2.9.3.2 Model for Eddy Diffusivity -- 2.9.3.3 Solution Procedure -- 2.10 Prediction of Design Parameters Using One‐Dimensional Models -- 2.10.1 Pressure Drop -- 2.10.2 Prediction of Heat Transfer Coefficient -- 2.10.3 Mixing Time and Liquid Phase Dispersion Coefficient -- 2.11 Process Design Using One‐Dimensional Models -- 2.12 The Three‐Dimensional CFD Simulations to Overcome the Limitations of One‐Dimensional Models: The Current Status -- Nomenclature -- Greek Letters -- References.
Chapter 3 Multiscale Modeling of Multiphase Flows -- 3.1 General Introduction to Multiphase Flows -- 3.2 Multiscale Modeling of Multiphase Flows -- 3.3 Euler-Euler Modeling -- 3.3.1 Introduction -- 3.3.2 Governing Equations -- 3.3.3 Numerical Solution Method -- 3.3.4 Results -- 3.3.4.1 Hydrodynamics of a Pseudo Two‐Dimensional Gas‐Fluidized Bed -- 3.3.4.2 Hydrodynamics of a 3D Cylindrical Bed -- 3.3.4.3 Gas‐Fluidized Bed with Heat Production -- 3.3.5 Conclusions and Outlook -- 3.4 Euler-Lagrange Modeling -- 3.4.1 Introduction -- 3.4.2 Discrete Particle Modeling -- 3.4.2.1 Soft Sphere -- 3.4.2.2 Hard Sphere -- 3.4.2.3 Fluid-Particle Coupling -- 3.4.3 Discrete Bubble Model -- 3.4.3.1 Collision, Coalescence, and Break‐up -- 3.4.4 Direct Simulation Monte Carlo -- 3.4.5 Conclusions and Outlook -- 3.5 Immersed Boundary Methods -- 3.5.1 Introduction -- 3.5.2 Methods -- 3.5.2.1 Governing Equations -- 3.5.2.2 Continuous Forcing or Diffuse IBM -- 3.5.2.3 Discrete Forcing or Sharp IBM -- 3.5.2.4 Mass and Heat Transport -- 3.5.3 Recent Results -- 3.5.3.1 Hydrodynamics Using Diffuse IBM -- 3.5.3.2 Hydrodynamics Using Sharp IBM -- 3.5.3.3 Heat and Mass Transport Using Diffuse IBM -- 3.5.3.4 Heat and Mass Transport Using Sharp IBM -- 3.5.4 Discussion and Outlook -- 3.6 Direct Numerical Simulations of Gas-Liquid and Gas-Liquid-Solid Flows -- 3.6.1 Introduction -- 3.6.2 Governing Equations -- 3.6.3 Moving Grid Methods -- 3.6.4 Fixed Grid Methods -- 3.6.4.1 Volume of Fluid Method -- 3.6.4.2 Level‐Set Method -- 3.6.4.3 Front Tracking -- 3.6.5 Results -- 3.6.5.1 Verification -- 3.6.5.2 Validation -- 3.6.5.3 Drag Coefficient of Bubble Swarms -- 3.6.5.4 Droplet-Droplet Interactions -- 3.6.6 Gas-Liquid-Solid Three Phase Flows -- 3.6.7 Discussion and Outlook -- 3.7 Verification, Experimental Validation, and Uncertainty Quantification -- Acknowledgments -- References.
Chapter 4 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Liquid and Gas-Liquid-Solid Processes -- 4.1 Introduction -- 4.2 "Tools" for Process Innovation of Gas-Liquid and Gas-Liquid-Solid Processes -- 4.3 Process Innovations in Multiphase Reactors -- 4.3.1 Stirred Tank Reactors -- 4.3.2 Bubble Column and Slurry Bubble Column Reactors -- 4.3.3 Spinning Disc Reactors -- 4.3.4 Oscillatory Baffled Reactors -- 4.3.5 Cavitation Reactors -- 4.3.5.1 Ultrasound Cavitation Reactors -- 4.3.5.2 Hydrodynamic Cavitation Reactor -- 4.3.6 Monolith Reactors -- 4.3.7 Microreactors -- 4.4 Process Innovations in Multiphase Unit Operations -- 4.4.1 Mixing in Multiphase Systems -- 4.4.2 Multiphase Separation -- 4.4.2.1 HiGee Distillation -- 4.4.2.2 Cyclic Distillation -- 4.5 Summary -- Acknowledgments -- List of Abbreviations -- References -- Part III Enabling Process Innovations via Mastering Multiphase Flows -- Chapter 5 Liquid-Liquid Processes: Mass Transfer Processes and Chemical Reactions -- 5.1 Overview -- 5.2 Liquid-Liquid Thermodynamics and Processes -- 5.2.1 Ternary Systems and Triangle Diagrams -- 5.2.2 Single‐Step Extraction -- 5.2.3 Cross‐Flow Extraction -- 5.2.4 Counter‐current Extraction -- 5.2.5 Solvent Selection Criteria -- 5.3 Mass Transfer in Liquid-Liquid Systems -- 5.3.1 Interface of Droplets -- 5.3.2 Numerical Simulation of Droplet Flow -- 5.3.3 Modeling of Mass Transfer -- 5.3.4 Extraction Processes -- 5.4 Liquid-Liquid Reactions and Applications -- 5.4.1 Mass Transfer and Chemical Reaction at the Liquid-Liquid Interface -- 5.4.2 Interfacial Area and Specific Surface -- 5.4.3 Turbulent Mixing and Dispersion -- 5.4.4 Scale‐Up Considerations -- 5.5 Liquid-Liquid Process Equipment and Typical Applications -- 5.5.1 Overview of Liquid-Liquid Extraction Equipment -- 5.5.2 Liquid-Liquid Extraction Columns -- 5.5.3 Centrifugal Extractors.
5.5.4 Applications of Reactive Extraction -- 5.5.5 Chemical Reactors for Liquid-Liquid Processes -- 5.5.6 Future Development in Liquid-Liquid Process Equipment and Applications -- 5.6 Conclusion -- References -- Chapter 6 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Solid Processes -- 6.1 Introduction -- 6.2 Process Equipment -- 6.3 Gas-Solid Flow Investigation Methods -- 6.4 Case Study 1: FCC Riser -- 6.4.1 Introduction -- 6.4.2 Challenge in CFD Modeling of Gas-Solid Flow in Riser -- 6.4.3 EMMS Approach -- 6.4.4 Verification of EMMS Drag Model -- 6.4.5 Calculation of EMMS Drag -- 6.4.6 CFD of Cold‐Flow FCC Riser -- 6.4.7 CFD of Reactive Flow in FCC Riser -- 6.4.7.1 Effect of Baffles -- 6.4.7.2 Effect of Pulsating Flow -- 6.4.8 Conclusion -- 6.5 Case Study 2: FCC Stripper -- 6.5.1 Introduction -- 6.5.2 Experiments -- 6.5.3 CFD Modeling -- 6.5.4 Results and Discussion -- 6.5.4.1 Experimental Data and Model Validation -- 6.5.4.2 Effect of Packing -- 6.5.5 Conclusion -- 6.6 Case Study 3: Rotary Cement Kiln -- 6.6.1 Introduction -- 6.6.2 Gas-Solid Flow in a Cement Kiln -- 6.6.3 CFD Modeling -- 6.6.3.1 Model for Bed Region -- 6.6.3.2 Model for Freeboard Region -- 6.6.3.3 Radiation Modeling -- 6.6.3.4 Mass Transfer From Bed to Freeboard -- 6.6.4 Coupling Between Two Models -- 6.6.5 Simulations of Rotary Cement Kilns -- 6.6.6 Effect of Burner Operational Parameters -- 6.6.7 Conclusions -- 6.7 Case Study 4: Bubbling Fluidized Bed -- 6.7.1 Introduction -- 6.7.2 CFD‐DEM Model -- 6.7.2.1 Governing Equation of Gas Phase -- 6.7.2.2 Governing Equation of Solid Phase -- 6.7.2.3 Closure Models -- 6.7.3 Gas-Solid Drag Models -- 6.7.4 Simulation Setup -- 6.7.5 Simulation Results for Goldschmidt et al. -- 6.7.6 Simulation Results for NETL Challenge Problem -- 6.7.7 Discussion -- 6.7.8 Conclusion -- 6.8 Summary and Outlook -- References.
Chapter 7 Liquid-Solid Processes -- 7.1 Introduction -- 7.2 Slurry Transportation -- 7.2.1 Hydrodynamics and Flow Regimes -- 7.2.2 Modeling of Slurry Transport System -- 7.2.2.1 Non‐Settling Slurries -- 7.2.2.2 Settling Slurries -- 7.2.3 Applications -- 7.3 Agitation and Mixing in Stirred Vessel -- 7.3.1 Hydrodynamics of Non‐settling Slurries -- 7.3.1.1 Kneading and Muller Mixer -- 7.3.1.2 Vertical/Horizontal Screw Mixer -- 7.3.1.3 High‐Shear and Ultra‐High‐Shear Mixer -- 7.3.1.4 Planetary Mixer -- 7.3.1.5 Triple Shaft Anchor/Helical Mixer -- 7.3.2 Modeling of Non‐settling Slurries -- 7.3.3 Applications -- 7.3.4 Hydrodynamics of Settling Slurries -- 7.3.4.1 Minimum Impeller Speed for Solid Suspension -- 7.3.4.2 Solid Suspension Characterization Using Cloud Height -- 7.3.4.3 Solid Concentration or Homogeneity -- 7.3.5 Modeling of Settling Slurries -- 7.3.6 Applications -- 7.4 Fluidized Bed Reactor -- 7.4.1 Hydrodynamics and Flow Regimes -- 7.4.1.1 Minimum Fluidization Velocity -- 7.4.1.2 Flow Instability in Conventional Fluidization Regime -- 7.4.1.3 Average Solids Holdup -- 7.4.1.4 Radial Solids Holdup and Liquids Velocity -- 7.4.2 Models for Liquid-Solid Fluidized Bed -- 7.4.2.1 Drift Flux Model -- 7.4.2.2 Core‐Annulus Model -- 7.4.2.3 Computational Modeling of Liquid-Solid Fluidized Bed Reactors -- 7.4.3 Applications -- 7.4.3.1 Bioreactor and Bioprocesses -- 7.4.3.2 Reflux Classifier -- 7.4.3.3 Fluidized Bed Crystallizers (FBCs) -- 7.5 Hydrocyclones -- 7.5.1 Flow Fields in Hydrocyclones -- 7.5.1.1 Velocity Components -- 7.5.1.2 Particle Separation -- 7.5.2 Modeling of Hydrocyclones -- 7.5.2.1 Empirical Correlations -- 7.5.3 Applications -- 7.6 Summary and Path Forward -- References -- Chapter 8 Three or More Phase Reactors -- 8.1 Introduction -- 8.2 Selection of Multiphase Reactor -- 8.2.1 Transport Effects on Scale‐Up Relative to Kinetics.
8.2.2 Ease of Operation and Safety at Scale.
Record Nr. UNINA-9910566698503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase flows for process industries : fundamentals and applications / / edited by Vivek V. Ranade, Ranjeet P. Utikar
Multiphase flows for process industries : fundamentals and applications / / edited by Vivek V. Ranade, Ranjeet P. Utikar
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (695 pages)
Disciplina 620.1064
Soggetto topico Manufacturing processes
ISBN 3-527-81206-7
3-527-81204-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Multiphase Flows and Process Industries -- 1.1 The Process Industry -- 1.2 Multiphase Flows -- 1.3 Organization of This Book -- References -- Part II Fundamentals of Multiphase Flows -- Chapter 2 Multiphase Flows: Flow Regimes, Lower Order Models, and Correlations -- 2.1 Introduction -- 2.2 Modeling of Multiphase Flows -- 2.3 Chronological Development of Mathematical Models -- 2.4 Zero‐Dimensional Two‐Equation Model -- 2.5 Homogeneous Equilibrium Model -- 2.6 Drift Flux Model -- 2.7 One‐Dimensional Five‐Equation Models -- 2.8 One‐Dimensional Six‐Equation Two‐Phase Flow Models: Axial Variation of Field Variables -- 2.8.1 Mathematical Formulations -- 2.8.2 Closure -- 2.8.2.1 Regime Maps and Criteria for Transition -- 2.8.2.2 Momentum Closure -- 2.8.2.3 Energy Closure -- 2.8.3 Software (RELAP5) -- 2.8.4 Application and Validation of Various One‐D Models and CFD -- 2.8.4.1 Nodalization for the One‐Dimensional Models -- 2.8.4.2 Model Details -- 2.8.4.3 Comparison Between Three‐, Five‐, and Six‐Equation Model with Experimental Data -- 2.9 One‐Dimensional Six‐Equation Two‐Phase Flow Models: Radial Variation of Field Variables -- 2.9.1 Hydrodynamic Regimes and Criteria for Transition -- 2.9.2 Mathematical Model -- 2.9.3 Stepwise Solution Procedure -- 2.9.3.1 Model Equation -- 2.9.3.2 Model for Eddy Diffusivity -- 2.9.3.3 Solution Procedure -- 2.10 Prediction of Design Parameters Using One‐Dimensional Models -- 2.10.1 Pressure Drop -- 2.10.2 Prediction of Heat Transfer Coefficient -- 2.10.3 Mixing Time and Liquid Phase Dispersion Coefficient -- 2.11 Process Design Using One‐Dimensional Models -- 2.12 The Three‐Dimensional CFD Simulations to Overcome the Limitations of One‐Dimensional Models: The Current Status -- Nomenclature -- Greek Letters -- References.
Chapter 3 Multiscale Modeling of Multiphase Flows -- 3.1 General Introduction to Multiphase Flows -- 3.2 Multiscale Modeling of Multiphase Flows -- 3.3 Euler-Euler Modeling -- 3.3.1 Introduction -- 3.3.2 Governing Equations -- 3.3.3 Numerical Solution Method -- 3.3.4 Results -- 3.3.4.1 Hydrodynamics of a Pseudo Two‐Dimensional Gas‐Fluidized Bed -- 3.3.4.2 Hydrodynamics of a 3D Cylindrical Bed -- 3.3.4.3 Gas‐Fluidized Bed with Heat Production -- 3.3.5 Conclusions and Outlook -- 3.4 Euler-Lagrange Modeling -- 3.4.1 Introduction -- 3.4.2 Discrete Particle Modeling -- 3.4.2.1 Soft Sphere -- 3.4.2.2 Hard Sphere -- 3.4.2.3 Fluid-Particle Coupling -- 3.4.3 Discrete Bubble Model -- 3.4.3.1 Collision, Coalescence, and Break‐up -- 3.4.4 Direct Simulation Monte Carlo -- 3.4.5 Conclusions and Outlook -- 3.5 Immersed Boundary Methods -- 3.5.1 Introduction -- 3.5.2 Methods -- 3.5.2.1 Governing Equations -- 3.5.2.2 Continuous Forcing or Diffuse IBM -- 3.5.2.3 Discrete Forcing or Sharp IBM -- 3.5.2.4 Mass and Heat Transport -- 3.5.3 Recent Results -- 3.5.3.1 Hydrodynamics Using Diffuse IBM -- 3.5.3.2 Hydrodynamics Using Sharp IBM -- 3.5.3.3 Heat and Mass Transport Using Diffuse IBM -- 3.5.3.4 Heat and Mass Transport Using Sharp IBM -- 3.5.4 Discussion and Outlook -- 3.6 Direct Numerical Simulations of Gas-Liquid and Gas-Liquid-Solid Flows -- 3.6.1 Introduction -- 3.6.2 Governing Equations -- 3.6.3 Moving Grid Methods -- 3.6.4 Fixed Grid Methods -- 3.6.4.1 Volume of Fluid Method -- 3.6.4.2 Level‐Set Method -- 3.6.4.3 Front Tracking -- 3.6.5 Results -- 3.6.5.1 Verification -- 3.6.5.2 Validation -- 3.6.5.3 Drag Coefficient of Bubble Swarms -- 3.6.5.4 Droplet-Droplet Interactions -- 3.6.6 Gas-Liquid-Solid Three Phase Flows -- 3.6.7 Discussion and Outlook -- 3.7 Verification, Experimental Validation, and Uncertainty Quantification -- Acknowledgments -- References.
Chapter 4 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Liquid and Gas-Liquid-Solid Processes -- 4.1 Introduction -- 4.2 "Tools" for Process Innovation of Gas-Liquid and Gas-Liquid-Solid Processes -- 4.3 Process Innovations in Multiphase Reactors -- 4.3.1 Stirred Tank Reactors -- 4.3.2 Bubble Column and Slurry Bubble Column Reactors -- 4.3.3 Spinning Disc Reactors -- 4.3.4 Oscillatory Baffled Reactors -- 4.3.5 Cavitation Reactors -- 4.3.5.1 Ultrasound Cavitation Reactors -- 4.3.5.2 Hydrodynamic Cavitation Reactor -- 4.3.6 Monolith Reactors -- 4.3.7 Microreactors -- 4.4 Process Innovations in Multiphase Unit Operations -- 4.4.1 Mixing in Multiphase Systems -- 4.4.2 Multiphase Separation -- 4.4.2.1 HiGee Distillation -- 4.4.2.2 Cyclic Distillation -- 4.5 Summary -- Acknowledgments -- List of Abbreviations -- References -- Part III Enabling Process Innovations via Mastering Multiphase Flows -- Chapter 5 Liquid-Liquid Processes: Mass Transfer Processes and Chemical Reactions -- 5.1 Overview -- 5.2 Liquid-Liquid Thermodynamics and Processes -- 5.2.1 Ternary Systems and Triangle Diagrams -- 5.2.2 Single‐Step Extraction -- 5.2.3 Cross‐Flow Extraction -- 5.2.4 Counter‐current Extraction -- 5.2.5 Solvent Selection Criteria -- 5.3 Mass Transfer in Liquid-Liquid Systems -- 5.3.1 Interface of Droplets -- 5.3.2 Numerical Simulation of Droplet Flow -- 5.3.3 Modeling of Mass Transfer -- 5.3.4 Extraction Processes -- 5.4 Liquid-Liquid Reactions and Applications -- 5.4.1 Mass Transfer and Chemical Reaction at the Liquid-Liquid Interface -- 5.4.2 Interfacial Area and Specific Surface -- 5.4.3 Turbulent Mixing and Dispersion -- 5.4.4 Scale‐Up Considerations -- 5.5 Liquid-Liquid Process Equipment and Typical Applications -- 5.5.1 Overview of Liquid-Liquid Extraction Equipment -- 5.5.2 Liquid-Liquid Extraction Columns -- 5.5.3 Centrifugal Extractors.
5.5.4 Applications of Reactive Extraction -- 5.5.5 Chemical Reactors for Liquid-Liquid Processes -- 5.5.6 Future Development in Liquid-Liquid Process Equipment and Applications -- 5.6 Conclusion -- References -- Chapter 6 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Solid Processes -- 6.1 Introduction -- 6.2 Process Equipment -- 6.3 Gas-Solid Flow Investigation Methods -- 6.4 Case Study 1: FCC Riser -- 6.4.1 Introduction -- 6.4.2 Challenge in CFD Modeling of Gas-Solid Flow in Riser -- 6.4.3 EMMS Approach -- 6.4.4 Verification of EMMS Drag Model -- 6.4.5 Calculation of EMMS Drag -- 6.4.6 CFD of Cold‐Flow FCC Riser -- 6.4.7 CFD of Reactive Flow in FCC Riser -- 6.4.7.1 Effect of Baffles -- 6.4.7.2 Effect of Pulsating Flow -- 6.4.8 Conclusion -- 6.5 Case Study 2: FCC Stripper -- 6.5.1 Introduction -- 6.5.2 Experiments -- 6.5.3 CFD Modeling -- 6.5.4 Results and Discussion -- 6.5.4.1 Experimental Data and Model Validation -- 6.5.4.2 Effect of Packing -- 6.5.5 Conclusion -- 6.6 Case Study 3: Rotary Cement Kiln -- 6.6.1 Introduction -- 6.6.2 Gas-Solid Flow in a Cement Kiln -- 6.6.3 CFD Modeling -- 6.6.3.1 Model for Bed Region -- 6.6.3.2 Model for Freeboard Region -- 6.6.3.3 Radiation Modeling -- 6.6.3.4 Mass Transfer From Bed to Freeboard -- 6.6.4 Coupling Between Two Models -- 6.6.5 Simulations of Rotary Cement Kilns -- 6.6.6 Effect of Burner Operational Parameters -- 6.6.7 Conclusions -- 6.7 Case Study 4: Bubbling Fluidized Bed -- 6.7.1 Introduction -- 6.7.2 CFD‐DEM Model -- 6.7.2.1 Governing Equation of Gas Phase -- 6.7.2.2 Governing Equation of Solid Phase -- 6.7.2.3 Closure Models -- 6.7.3 Gas-Solid Drag Models -- 6.7.4 Simulation Setup -- 6.7.5 Simulation Results for Goldschmidt et al. -- 6.7.6 Simulation Results for NETL Challenge Problem -- 6.7.7 Discussion -- 6.7.8 Conclusion -- 6.8 Summary and Outlook -- References.
Chapter 7 Liquid-Solid Processes -- 7.1 Introduction -- 7.2 Slurry Transportation -- 7.2.1 Hydrodynamics and Flow Regimes -- 7.2.2 Modeling of Slurry Transport System -- 7.2.2.1 Non‐Settling Slurries -- 7.2.2.2 Settling Slurries -- 7.2.3 Applications -- 7.3 Agitation and Mixing in Stirred Vessel -- 7.3.1 Hydrodynamics of Non‐settling Slurries -- 7.3.1.1 Kneading and Muller Mixer -- 7.3.1.2 Vertical/Horizontal Screw Mixer -- 7.3.1.3 High‐Shear and Ultra‐High‐Shear Mixer -- 7.3.1.4 Planetary Mixer -- 7.3.1.5 Triple Shaft Anchor/Helical Mixer -- 7.3.2 Modeling of Non‐settling Slurries -- 7.3.3 Applications -- 7.3.4 Hydrodynamics of Settling Slurries -- 7.3.4.1 Minimum Impeller Speed for Solid Suspension -- 7.3.4.2 Solid Suspension Characterization Using Cloud Height -- 7.3.4.3 Solid Concentration or Homogeneity -- 7.3.5 Modeling of Settling Slurries -- 7.3.6 Applications -- 7.4 Fluidized Bed Reactor -- 7.4.1 Hydrodynamics and Flow Regimes -- 7.4.1.1 Minimum Fluidization Velocity -- 7.4.1.2 Flow Instability in Conventional Fluidization Regime -- 7.4.1.3 Average Solids Holdup -- 7.4.1.4 Radial Solids Holdup and Liquids Velocity -- 7.4.2 Models for Liquid-Solid Fluidized Bed -- 7.4.2.1 Drift Flux Model -- 7.4.2.2 Core‐Annulus Model -- 7.4.2.3 Computational Modeling of Liquid-Solid Fluidized Bed Reactors -- 7.4.3 Applications -- 7.4.3.1 Bioreactor and Bioprocesses -- 7.4.3.2 Reflux Classifier -- 7.4.3.3 Fluidized Bed Crystallizers (FBCs) -- 7.5 Hydrocyclones -- 7.5.1 Flow Fields in Hydrocyclones -- 7.5.1.1 Velocity Components -- 7.5.1.2 Particle Separation -- 7.5.2 Modeling of Hydrocyclones -- 7.5.2.1 Empirical Correlations -- 7.5.3 Applications -- 7.6 Summary and Path Forward -- References -- Chapter 8 Three or More Phase Reactors -- 8.1 Introduction -- 8.2 Selection of Multiphase Reactor -- 8.2.1 Transport Effects on Scale‐Up Relative to Kinetics.
8.2.2 Ease of Operation and Safety at Scale.
Record Nr. UNINA-9910830264603321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanoengineering of biomaterials : drug delivery & biomedical applications / / edited by Sougata Jana, Subrata Jana
Nanoengineering of biomaterials : drug delivery & biomedical applications / / edited by Sougata Jana, Subrata Jana
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (1062 pages)
Disciplina 610.28
Soggetto topico Nanomedicine
Soggetto genere / forma Electronic books.
ISBN 3-527-83210-6
3-527-83209-2
3-527-83208-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555178503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanoengineering of biomaterials : drug delivery & biomedical applications / / edited by Sougata Jana, Subrata Jana
Nanoengineering of biomaterials : drug delivery & biomedical applications / / edited by Sougata Jana, Subrata Jana
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (1062 pages)
Disciplina 610.28
Soggetto topico Nanomedicine
ISBN 3-527-83210-6
3-527-83209-2
3-527-83208-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910686755403321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Natural flavours, fragrances, and perfumes : chemistry, production and sensory approach / / edited by Sreeraj Gopi [and three others]
Natural flavours, fragrances, and perfumes : chemistry, production and sensory approach / / edited by Sreeraj Gopi [and three others]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (259 pages)
Disciplina 338.47661806
Soggetto topico Plant products - Synthesis
Essences and essential oils industry
ISBN 3-527-82481-2
3-527-82479-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I Biodiversity -- Chapter 1 Natural Product Diversity and its Biomolecular Aspects in Flavors and Fragrances -- 1.1 Introduction -- 1.2 Genetic Resources and Plant Breeding -- 1.3 Agricultural Diversification -- 1.4 Conservation of Agrobiodiversity -- 1.4.1 Strategies for Conservation of Medicinal Plants -- 1.4.1.1 Importance of Genebanks -- 1.4.2 Molecule-Based Phylogenetics -- 1.4.3 Metabolomic-Based Phylogeny or Chemosystematics -- 1.5 Economically Important Natural Products Used in Flavors and Fragrances -- 1.5.1 Flavors -- 1.5.1.1 Cardamom -- 1.5.1.2 Cinnamon -- 1.5.1.3 Cocoa -- 1.5.1.4 Fenugreek -- 1.5.1.5 Marigold -- 1.5.1.6 Nutmeg -- 1.5.1.7 Vanilla -- 1.5.1.8 Paprika -- 1.5.1.9 Rosemary -- 1.5.2 Fragrances -- 1.5.2.1 Davana Oil -- 1.5.2.2 Olibanum Carterii/Serrata -- 1.5.2.3 Lavender -- 1.5.2.4 Vetiver -- 1.6 Conclusion -- Acknowledgment -- Declaration of Interest -- References -- Part II Commercial Biotechnology Pathways, and Their Applications to Industrial Sustainability -- Chapter 2 Biogenesis of Plant-Derived Flavor Compounds -- 2.1 Introduction -- 2.2 Primary and Secondary Flavor Compounds -- 2.2.1 Primary Metabolites -- 2.2.1.1 Organic Acids -- 2.2.1.2 Phytohormones -- 2.2.1.3 Vitamins -- 2.2.1.4 Amino Acids -- 2.2.1.5 Fermentation Products -- 2.2.1.6 Proteins, Lipids, and Carbohydrates -- 2.2.2 Secondary Metabolites -- 2.2.3 Secondary Metabolites with Nitrogen -- 2.2.3.1 Alkaloids -- 2.2.3.2 Glucosinolates -- 2.2.4 Secondary Metabolites Without Nitrogen -- 2.2.4.1 Terpenoids -- 2.2.4.2 Phenolics -- 2.3 Mechanistic Pathways of Flavor Formation -- 2.3.1 Primary Metabolites -- 2.3.2 Secondary Metabolites -- 2.3.2.1 Purine Metabolism -- 2.3.2.2 Aminoacid Metabolism -- 2.3.2.3 Carotenoid Metabolism -- 2.3.2.4 Fatty Acid Metabolism -- 2.3.2.5 Carbohydrate Metabolism.
2.3.2.6 Organic Acid Metabolism -- 2.4 Conclusion -- References -- Chapter 3 A Sense of Design: Pathway Unravelling and Rational Metabolic Flow Switching for the Production of Novel Flavor Materials -- 3.1 Introduction -- 3.2 Elicitation of Plants -- 3.2.1 Biotic Elicitors -- 3.2.2 Abiotic Elicitors -- 3.3 Transformation Within Cells -- 3.4 Metabolic Engineering -- 3.4.1 Upregulating Pathways with Transcription Factors -- 3.4.2 Redirecting with Tailored Enzymes -- 3.4.3 Downregulating Pathways Using Knockout of the Gene/Enzyme -- 3.5 Plant Tissue Culture -- 3.6 Transgenic (Genetically Modified Organisms) Organisms -- References -- Part III Flavor Technology -- Chapter 4 Flavor Technology and Flavor Delivering Systems -- 4.1 Introduction -- 4.2 Flavor Delivery Systems -- 4.2.1 Microencapsulation -- 4.2.2 Nanoencapsulation -- 4.3 Encapsulation Techniques -- 4.3.1 Coacervation -- 4.3.2 Molecular Inclusion -- 4.3.3 Spray Drying -- 4.3.4 Spray Chilling -- 4.3.5 Extrusion -- 4.3.6 Fluidized Bed Coating -- 4.4 Future Perspectives -- References -- Chapter 5 Flavor Signatures of Beverages and Confectionaries -- 5.1 Introduction -- 5.2 Classification of Flavor Compounds -- 5.2.1 Based on Type of Flavor Compounds -- 5.2.2 Based on Flavor Generation -- 5.3 Plant Parts as Flavoring Compounds -- 5.4 Flavor Signatures -- 5.4.1 Effect of Maillard Reaction -- 5.4.2 Effect of Baking -- 5.4.3 Enhancement by Addition of Flavorings -- 5.4.3.1 Flavor-Active Esters -- 5.4.3.2 Xyloligosaccharides -- 5.4.3.3 Flax Seeds -- 5.4.3.4 1,2-Dicarbonyl Compounds -- 5.5 Role of Flavor Compounds in Sensory Attributes -- 5.6 Conclusion -- References -- Chapter 6 Flavor Biochemistry of Fermented Alcoholic Beverages -- 6.1 Introduction -- 6.2 General Aspects of Alcohol Fermentation -- 6.3 General Aspects of Flavor -- 6.4 Flavor Biochemistry in Fermented Beverages -- 6.4.1 Wines.
6.4.1.1 Flavor Precursors -- 6.4.1.2 Esters -- 6.4.1.3 Carbonyl Compounds -- 6.4.2 Mezcal -- 6.5 Conclusions -- References -- Part IV Food Industry Ingredients -- Chapter 7 The Resinoids: Their Chemistry and Uses -- 7.1 Introduction -- 7.1.1 Asafoetida (Ferula assa-foetida) -- 7.1.2 Galbanum (Ferula gummosa) -- 7.1.3 Elemi (Canarium luzonicum) -- 7.1.4 Styrax (Liquidambar orientalis Mill. and Liquidambar styraciflua) -- 7.2 Benzoin Siam (Styrax tonkinensis craib ex hartwiss) and Benzoin Sumatra (Styrax benzoin) -- 7.3 Labdanum (Cistus ladaniferus) -- 7.4 Myrrh (Commiphora myrrha) -- 7.5 Conclusions -- References -- Chapter 8 Seasoning, Herbs, and Spices -- 8.1 Introduction -- 8.2 Spices as Seasoning Ingredient -- 8.2.1 Ajwain (Trachyspermum ammi ) -- 8.2.2 Asafoetida (Ferula asa-foetida) -- 8.2.3 Black Pepper (Piper nigrum) -- 8.2.4 Celery (Apium graveolens) -- 8.2.5 Chili (Capsicum annum) -- 8.2.6 Cinnamon (Cinnamomum cassia) -- 8.2.7 Clove (Syzyium aromaticum) -- 8.2.8 Coriander (Coriandrum sativum) -- 8.2.9 Cumin (Cuminium cyminum) -- 8.2.10 Fennel (Foneiculum vulgare) -- 8.2.11 Fenugreek (Trigonella foenum graecum) -- 8.2.12 Garlic (Allium sativum) -- 8.2.13 Ginger (Zingiber officinale) -- 8.2.14 Green Cardamom (Elletaria cardamomum) -- 8.2.15 Nutmeg and Mace (Myristica fragrans) -- 8.2.16 Onion (Allium cepa) -- 8.2.17 Star Anise (Illicium verum) -- 8.2.18 Turmeric (Curcuma domestica) -- 8.3 Herbs as Seasoning Ingredient -- 8.3.1 Basil (Osimum basilicum) -- 8.3.2 Oregano (Origanum vulgare) -- 8.3.3 Parsley (Petroselinum sativum) -- 8.3.4 Rosemary (Rosmarinus offinialis) -- 8.3.5 Thyme (Thymus vulgaris) -- 8.4 Seasoning Blends -- 8.5 Future Aspects -- References -- Part V Regulations, Consumer Trends, and In Silico Biology -- Chapter 9 Regulatory Aspects for Flavor and Fragrance Materials -- 9.1 Introduction -- 9.2 Biosynthesis of Food Flavors.
9.2.1 Enzymes Used for Food Flavor Synthesis -- 9.2.2 Biosynthesis of Flavors by Fermentation -- 9.2.3 Production of Flavors from Agro Waste -- 9.2.4 Production of Flavors through Plant Cells -- 9.3 Safety Evaluation of Added Flavors by FDA -- 9.4 Conclusion -- References -- Chapter 10 Sensory Science and its Perceptual Properties -- 10.1 Introduction -- 10.2 Sensorial Characteristics -- 10.2.1 Appearance -- 10.2.2 Color -- 10.2.3 Shape-Size -- 10.2.4 Defects -- 10.2.5 Odor -- 10.2.6 Taste -- 10.2.7 Texture -- 10.2.8 Flavor -- 10.3 Sensory Evaluation - Perception - Acceptance of Foods -- 10.3.1 Sensory Evaluation Tests -- 10.4 Sensory Control of Foods - Methodology -- 10.4.1 Sensory Laboratory -- 10.4.2 Assessors/Panelists - Training -- 10.4.3 Samples -- 10.4.4 Sensory Tests and Methods -- 10.4.5 Presentation of Sensory Analyses Results - Correlation to Objective Analyses -- 10.5 Conclusions -- References -- Chapter 11 Challenges of Sensory Science: Retention and Release -- 11.1 Introduction -- 11.2 Bottlenecks and Novel Insights of Sensory Science -- 11.3 Sensorium Organs -- 11.3.1 Sensory of Sight -- 11.3.2 Sensory of Olfaction -- 11.3.3 Sense of Touch -- 11.3.4 Sensory of Taste -- 11.3.5 Sense of Hear -- 11.4 Factors Affecting Flavor Retention and Release -- 11.4.1 Flavor Binding and Entrapment -- 11.4.2 Flavor-Matrix Interaction -- 11.5 Future Prospects -- References -- Chapter 12 Virtual Screening: An In Silico Approach to Flavor Compounds -- 12.1 Introduction -- 12.2 Flavor Bioinformatics -- 12.2.1 Comparative Genomics -- 12.2.2 Omics Technologies -- 12.2.3 Bioactive Peptides -- 12.3 Computational Strategies -- 12.3.1 Homology Modeling -- 12.3.2 Synthetic Ligands for Taste Receptors -- 12.3.3 Molecular Docking of Flavor Compounds -- 12.3.4 Virtual Screening Tools for Flavor Compounds -- 12.3.4.1 QSAR-Based Virtual Screening for Flavor Compounds.
12.3.4.2 Model Validation -- 12.3.4.3 Docking Setups -- 12.3.5 Structural Motifs in Flavor Compounds -- 12.4 Quality and Safety of Flavor Compounds -- 12.5 Conclusion -- References -- Chapter 13 Endpoint: A Sensory Perception of Future -- 13.1 Introduction -- 13.2 Sensory Perception -- 13.3 Flavor Perception -- 13.3.1 Flavor Receptors -- 13.3.2 Food Oral Processing -- 13.4 Consumer Perception -- 13.4.1 Food Choice -- 13.4.2 Food Psychology -- 13.5 Future of Flavors -- 13.6 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910829819103321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Natural sciences
Natural sciences
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]-
Descrizione fisica 1 online resource
Soggetto topico Natural Science Disciplines
Research
Science
Biology
Biomedical engineering
Chemistry
Engineering
Medical sciences
Physics
Soggetto genere / forma Periodical
Periodicals.
ISSN 2698-6248
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910492127903321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Natural sciences
Natural sciences
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]-
Descrizione fisica 1 online resource
Soggetto topico Natural Science Disciplines
Research
Science
Biology
Biomedical engineering
Chemistry
Engineering
Medical sciences
Physics
Soggetto genere / forma Periodical
Periodicals.
ISSN 2698-6248
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996448852503316
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Neuromorphic devices for brain-inspired computing : artificial intelligence, perception and robotics / / edited by Qing Wan, Yi Shi
Neuromorphic devices for brain-inspired computing : artificial intelligence, perception and robotics / / edited by Qing Wan, Yi Shi
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (259 pages)
Disciplina 006.382
Soggetto topico Artificial intelligence
Soggetto genere / forma Electronic books.
ISBN 3-527-83529-6
3-527-83531-8
3-527-83530-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910554804303321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui