top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Halogen bonding in solution / / edited by Stefan Huber
Halogen bonding in solution / / edited by Stefan Huber
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (415 pages) : illustrations
Disciplina 546.73
Soggetto topico Halogen compounds
Halogens
Soggetto genere / forma Electronic books.
ISBN 3-527-82574-6
3-527-82573-8
3-527-82572-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555082903321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Halogen bonding in solution / / edited by Stefan Huber
Halogen bonding in solution / / edited by Stefan Huber
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (415 pages) : illustrations
Disciplina 546.73
Soggetto topico Halogen compounds
Halogens
ISBN 3-527-82574-6
3-527-82573-8
3-527-82572-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910829911903321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heterogeneous catalysis for sustainable energy / / edited by Justin S. J. Hargreaves, Landong Li
Heterogeneous catalysis for sustainable energy / / edited by Justin S. J. Hargreaves, Landong Li
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (585 pages)
Disciplina 333.794
Soggetto topico Renewable energy sources
ISBN 3-527-81590-2
3-527-81589-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Hydrogen Economy -- Chapter 1 Catalytic Hydrogen Production -- 1.1 Introduction -- 1.1.1 Thermocatalytic Decomposition of Methane -- 1.1.1.1 Metal Catalysts -- 1.1.1.2 Carbon Catalysts -- 1.1.2 Partial Oxidation of Methane -- 1.1.3 Catalytic Reforming of Methane -- 1.1.3.1 Steam Reforming of Methane (SRM) -- 1.1.3.2 Oxidative Steam Reforming of Methane (OSRM) -- 1.1.3.3 CO2/Dry Reforming of Methane -- 1.1.4 Thermocatalytic Conversion of Other Fossil Fuels -- 1.2 Conclusions and Prospects -- References -- Chapter 2 Catalytic Reforming of Oxygen‐Containing Chemicals -- 2.1 Introduction -- 2.2 Catalytic Hydrogen Production from Methanol -- 2.2.1 Catalytic Hydrogen Production from Decomposition of Methanol -- 2.2.2 Catalytic Hydrogen Production from Partial Oxidation of Methanol -- 2.2.3 Catalytic Hydrogen Production from Steam Reforming of Methanol -- 2.2.4 Catalytic Hydrogen Production from Combined Reforming of Methanol -- 2.2.5 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Methanol -- 2.3 Catalytic Hydrogen Production from Ethanol -- 2.3.1 Catalytic Hydrogen Production from Steam Reforming of Ethanol -- 2.3.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethanol -- 2.4 Catalytic Hydrogen Production from Dimethyl Ether -- 2.4.1 Catalytic Hydrogen Production from Partial Oxidation of Dimethyl Ether -- 2.4.2 Catalytic Hydrogen Production from Autothermal Reforming of Dimethyl Ether -- 2.4.3 Catalytic Hydrogen Production from Steam Reforming of Dimethyl Ether -- 2.4.3.1 Mixed Bifunctional Catalysts -- 2.4.3.2 Supported Bifunctional Catalysts -- 2.5 Catalytic Hydrogen Production from Glycerol -- 2.5.1 Catalytic Hydrogen Production from Steam Reforming of Glycerol -- 2.5.1.1 Noble Metal Catalysts -- 2.5.1.2 Non‐noble Metal Catalysts.
2.5.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Glycerol -- 2.6 Catalytic Hydrogen Production from Ethylene Glycol -- 2.6.1 Catalytic Hydrogen Production from Steam Reforming of Ethylene Glycol -- 2.6.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethylene Glycol -- 2.7 Catalytic Hydrogen Production from Sorbitol -- 2.8 Conclusions and Future Outlook -- References -- Chapter 3 Advances in Fischer-Tropsch Synthesis for the Production of Fuels and Chemicals -- 3.1 Introduction -- 3.2 Catalyst Development for Fischer-Tropsch Synthesis -- 3.2.1 Fe‐Based FTS -- 3.2.2 Co‐Based FTS -- 3.3 Selectivity Control for the Production of Hydrocarbon Liquid Fuels -- 3.3.1 Modified FTS Catalysts for Selectivity Control of Liquid Fuels -- 3.3.2 Bifunctional Catalysts for Selectivity Control of Liquid Fuels -- 3.4 Selectivity Control for Production of Chemicals -- 3.4.1 Syngas to Olefins -- 3.4.1.1 Fe‐Based FTO -- 3.4.1.2 Co‐Based FTO -- 3.4.1.3 Bifunctional Catalysts for Syngas to Olefins -- 3.4.2 Syngas to Aromatics -- 3.4.2.1 STA via Olefins as Intermediates (SOA) -- 3.4.2.2 STA via Methanol/Dimethyl Ether as Intermediates (SMA) -- 3.4.3 Syngas to C2+ Oxygenates -- 3.4.3.1 Co2C‐Containing Co‐Based Catalyst for Syngas to C2+ Oxygenates -- 3.4.3.2 Cu‐Modified FTS Catalysts -- 3.5 Summary and Outlook -- References -- Part II Methane Activation -- Chapter 4 Steam and Dry Reforming of Methane -- 4.1 Introduction -- 4.1.1 Steam Reforming of Methane -- 4.1.2 Dry Reforming of Methane -- 4.1.3 Thermodynamic Analysis of the SRM and DRM Reactions -- 4.2 Heterogeneous Catalysts for the SRM -- 4.2.1 Ni‐Based and Other Catalysts -- 4.2.2 Theoretical Studies on the SRM -- 4.3 Heterogeneous Catalysts for the DRM -- 4.3.1 Noble Metal Catalysts -- 4.3.2 Ni‐Based Catalysts -- 4.3.3 Co‐Based and Other Catalysts.
4.3.4 Theoretical Studies on the DRM -- 4.4 Comments on Both SRM and DRM Processes -- 4.5 Final Remarks -- References -- Chapter 5 Methane Activation Over Zeolites -- 5.1 Introduction -- 5.1.1 The Direct Conversion of Methane -- 5.1.2 Introduction to Zeolites -- 5.2 Oxidative Coupling of Methane over Zeolite Catalysts -- 5.3 Methane Dehydroaromatization (MDA) -- 5.4 Metal‐Modified Zeolites for dMtM -- 5.4.1 Fe‐Modified Zeolites -- 5.4.2 Cu‐Modified Zeolites -- 5.4.2.1 Active Sites for Methane Partial Oxidation in Copper‐Modified Zeolites -- 5.4.2.2 Reaction Mechanism for the Partial Oxidation of Methane over Copper‐Modified Zeolites -- 5.4.2.3 Alternatives to Stepwise Methanol Production: Isothermal and Direct Catalytic Conversion of Methane to Methanol over Copper‐Modified Zeolites -- 5.4.2.4 Effect of Framework Topology and Composition on Methane Partial Oxidation over Copper‐Modified Zeolites -- 5.4.3 Zn‐Modified Zeolites -- 5.4.3.1 Mechanism of C-H Activation in Zinc‐Exchanged Zeolites -- 5.4.3.2 Zinc Oxide Clusters in Zeolites -- 5.4.3.3 The Role of Brønsted Acid Sites in C-H Activation -- 5.4.3.4 Reactivity of Methane with Small Molecules on Zinc‐Modified Zeolites -- 5.4.4 Other d‐Block Metals in Zeolites -- 5.5 Outlook -- References -- Chapter 6 The Selective Oxidation of Methane to Oxygenates Using Heterogeneous Catalysts -- 6.1 Introduction and Historical Context -- 6.2 Liquid‐Phase Reactions -- 6.2.1 Zeolite Catalysts -- 6.2.2 Noble Metal Catalysts -- 6.3 Gas‐Phase Reactions -- 6.3.1 Non‐zeolite Catalysts -- 6.3.2 Zeolite Catalysts -- 6.3.2.1 Copper as the Active Component -- 6.3.2.2 Iron as the Active Component -- 6.4 Conclusions and Outlook -- References -- Part III Alkane Activation -- Chapter 7 Catalytic Cracking of Hydrocarbons to Light Olefins -- 7.1 Background Introduction -- 7.2 Reaction Mechanism of Catalytic Cracking over Zeolites.
7.2.1 Monomolecular or α‐Protolytic Cracking Mechanism -- 7.2.2 Bimolecular Cracking Mechanism -- 7.2.3 Monomolecular and Bimolecular Cracking Mechanism -- 7.3 Development of Zeolite Catalysts -- 7.3.1 Zeolites with Different Framework Structures -- 7.3.2 Adjustment of Acid Properties of ZSM‐5 Zeolite -- 7.3.2.1 Effect of Si/Al Ratio of ZSM‐5 Zeolite -- 7.3.2.2 Tuning of Al Siting and Distribution in ZSM‐5 Zeolite -- 7.3.2.3 Modification of ZSM‐5 Zeolites with Different Elements -- 7.3.3 Alkaline Metal‐ and Alkali Earth Metal‐Modified ZSM‐5 -- 7.3.4 Transition Metal‐Modified ZSM‐5 -- 7.3.5 Rare Earth Element‐Modified ZSM‐5 -- 7.3.6 Phosphorus‐Modified ZSM‐5 -- 7.4 Nano‐ZSM‐5 Zeolite -- 7.5 Hierarchical ZSM‐5 Zeolites -- 7.5.1 Mesoporous/Microporous ZSM‐5 Zeolites -- 7.5.1.1 Hard Template Method -- 7.5.1.2 Post‐treatment Method -- 7.5.1.3 Soft Template Method -- 7.5.1.4 Other Methods -- 7.5.2 Macroporous/Mesoporous/Microporous ZSM‐5 -- 7.5.3 Composite Zeolites -- 7.6 Outlook -- References -- Chapter 8 Catalytic Dehydrogenation of Light Alkanes -- 8.1 Introduction -- 8.2 Direct Dehydrogenation -- 8.2.1 Commercial Dehydrogenation Processes -- 8.2.1.1 Catofin Process -- 8.2.1.2 Oleflex Process -- 8.2.1.3 ADHO Technology -- 8.2.1.4 Other Processes -- 8.2.2 Direct Alkane Dehydrogenation Catalysts -- 8.2.2.1 CrOx‐Based Catalysts -- 8.2.2.2 Pt‐Based Catalysts -- 8.3 Oxidative Dehydrogenation -- 8.3.1 Transition Metal Oxide and Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.1 Vanadium Oxide‐Based Catalysts -- 8.3.1.2 MoVTeNbOx Catalysts -- 8.3.1.3 Nickel Oxide‐Based Catalysts -- 8.3.1.4 Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.5 Chemical Looping ODH -- 8.3.2 Boron‐Based Catalysts -- 8.3.2.1 Development of Boron‐Based Catalysts -- 8.3.2.2 Active Sites of Boron‐Based Catalysts -- 8.3.2.3 Possible Reaction Pathway -- 8.3.3 Carbon‐Based Catalysts.
8.3.3.1 Development of Carbon‐Based Catalysts -- 8.3.3.2 Identification of Active Sites -- 8.3.3.3 Selectivity Control of Olefins -- 8.4 Summary and Outlook -- References -- Part IV Zeolite Catalysis -- Chapter 9 Zeolites for Sustainable Chemical Transformations -- 9.1 Introduction to Zeolites and Zeolite Chemistry -- 9.1.1 Zeolite Chemistry -- 9.1.2 Zeolites as Catalysts -- 9.1.3 Size Discrimination: Molecular Sieves -- 9.1.4 Zeolites as Supports for Metal Catalysts -- 9.1.4.1 Methods of Metal Deposition -- 9.1.5 Metals in the Zeolite Framework -- 9.1.5.1 Methods of Preparation -- 9.2 The Nature of Active Sites and Deactivation of Zeolite‐Based Catalysts -- 9.2.1 Active Sites in Zeolite Catalysis -- 9.2.1.1 Acid Sites -- 9.2.1.2 Basic Sites -- 9.2.1.3 Redox Sites in Zeolite Catalysts -- 9.3 Causes of Deactivation in Zeolite Catalysts -- 9.3.1 Poisoning -- 9.3.1.1 Deactivation through Carbonaceous Deposits (Coking) -- 9.3.1.2 Inhibition of Catalyst Activity Due to Water -- 9.3.1.3 Poisoning of Palladium Combustion Catalysts -- 9.3.2 Particle Sintering and Agglomeration -- 9.3.2.1 Particle Agglomeration in Ventilation Air Methane Oxidation Catalysts -- 9.4 Future Directions for Zeolite Catalysis -- References -- Chapter 10 Methanol to Hydrocarbons -- 10.1 Background Introduction -- 10.2 The Direct Mechanism for MTH Reaction -- 10.2.1 The Development and Milestones of the Direct Mechanism -- 10.2.2 The First C C Bond Formation -- 10.3 The Indirect Reaction Mechanism for MTH Reaction -- 10.3.1 Hydrocarbon Pool Mechanism -- 10.3.2 Dual‐Cycle Mechanism -- 10.3.3 The Connection Between the Dual Cycles -- 10.4 Bridging the Direct and Indirect Mechanisms -- 10.5 Zeolite Catalysts for MTH Conversion -- 10.6 Summary and Outlook -- References -- Part V Carbon Dioxide as C1 Building Block -- Chapter 11 Overview on CO2 Emission and Capture -- 11.1 Introduction.
11.2 CO2 Emission and Related Problems.
Record Nr. UNINA-9910566699903321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Heterogeneous catalysis for sustainable energy / / edited by Justin S. J. Hargreaves, Landong Li
Heterogeneous catalysis for sustainable energy / / edited by Justin S. J. Hargreaves, Landong Li
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (585 pages)
Disciplina 333.794
Soggetto topico Renewable energy sources
ISBN 3-527-81590-2
3-527-81589-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Hydrogen Economy -- Chapter 1 Catalytic Hydrogen Production -- 1.1 Introduction -- 1.1.1 Thermocatalytic Decomposition of Methane -- 1.1.1.1 Metal Catalysts -- 1.1.1.2 Carbon Catalysts -- 1.1.2 Partial Oxidation of Methane -- 1.1.3 Catalytic Reforming of Methane -- 1.1.3.1 Steam Reforming of Methane (SRM) -- 1.1.3.2 Oxidative Steam Reforming of Methane (OSRM) -- 1.1.3.3 CO2/Dry Reforming of Methane -- 1.1.4 Thermocatalytic Conversion of Other Fossil Fuels -- 1.2 Conclusions and Prospects -- References -- Chapter 2 Catalytic Reforming of Oxygen‐Containing Chemicals -- 2.1 Introduction -- 2.2 Catalytic Hydrogen Production from Methanol -- 2.2.1 Catalytic Hydrogen Production from Decomposition of Methanol -- 2.2.2 Catalytic Hydrogen Production from Partial Oxidation of Methanol -- 2.2.3 Catalytic Hydrogen Production from Steam Reforming of Methanol -- 2.2.4 Catalytic Hydrogen Production from Combined Reforming of Methanol -- 2.2.5 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Methanol -- 2.3 Catalytic Hydrogen Production from Ethanol -- 2.3.1 Catalytic Hydrogen Production from Steam Reforming of Ethanol -- 2.3.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethanol -- 2.4 Catalytic Hydrogen Production from Dimethyl Ether -- 2.4.1 Catalytic Hydrogen Production from Partial Oxidation of Dimethyl Ether -- 2.4.2 Catalytic Hydrogen Production from Autothermal Reforming of Dimethyl Ether -- 2.4.3 Catalytic Hydrogen Production from Steam Reforming of Dimethyl Ether -- 2.4.3.1 Mixed Bifunctional Catalysts -- 2.4.3.2 Supported Bifunctional Catalysts -- 2.5 Catalytic Hydrogen Production from Glycerol -- 2.5.1 Catalytic Hydrogen Production from Steam Reforming of Glycerol -- 2.5.1.1 Noble Metal Catalysts -- 2.5.1.2 Non‐noble Metal Catalysts.
2.5.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Glycerol -- 2.6 Catalytic Hydrogen Production from Ethylene Glycol -- 2.6.1 Catalytic Hydrogen Production from Steam Reforming of Ethylene Glycol -- 2.6.2 Catalytic Hydrogen Production from Aqueous‐Phase Reforming of Ethylene Glycol -- 2.7 Catalytic Hydrogen Production from Sorbitol -- 2.8 Conclusions and Future Outlook -- References -- Chapter 3 Advances in Fischer-Tropsch Synthesis for the Production of Fuels and Chemicals -- 3.1 Introduction -- 3.2 Catalyst Development for Fischer-Tropsch Synthesis -- 3.2.1 Fe‐Based FTS -- 3.2.2 Co‐Based FTS -- 3.3 Selectivity Control for the Production of Hydrocarbon Liquid Fuels -- 3.3.1 Modified FTS Catalysts for Selectivity Control of Liquid Fuels -- 3.3.2 Bifunctional Catalysts for Selectivity Control of Liquid Fuels -- 3.4 Selectivity Control for Production of Chemicals -- 3.4.1 Syngas to Olefins -- 3.4.1.1 Fe‐Based FTO -- 3.4.1.2 Co‐Based FTO -- 3.4.1.3 Bifunctional Catalysts for Syngas to Olefins -- 3.4.2 Syngas to Aromatics -- 3.4.2.1 STA via Olefins as Intermediates (SOA) -- 3.4.2.2 STA via Methanol/Dimethyl Ether as Intermediates (SMA) -- 3.4.3 Syngas to C2+ Oxygenates -- 3.4.3.1 Co2C‐Containing Co‐Based Catalyst for Syngas to C2+ Oxygenates -- 3.4.3.2 Cu‐Modified FTS Catalysts -- 3.5 Summary and Outlook -- References -- Part II Methane Activation -- Chapter 4 Steam and Dry Reforming of Methane -- 4.1 Introduction -- 4.1.1 Steam Reforming of Methane -- 4.1.2 Dry Reforming of Methane -- 4.1.3 Thermodynamic Analysis of the SRM and DRM Reactions -- 4.2 Heterogeneous Catalysts for the SRM -- 4.2.1 Ni‐Based and Other Catalysts -- 4.2.2 Theoretical Studies on the SRM -- 4.3 Heterogeneous Catalysts for the DRM -- 4.3.1 Noble Metal Catalysts -- 4.3.2 Ni‐Based Catalysts -- 4.3.3 Co‐Based and Other Catalysts.
4.3.4 Theoretical Studies on the DRM -- 4.4 Comments on Both SRM and DRM Processes -- 4.5 Final Remarks -- References -- Chapter 5 Methane Activation Over Zeolites -- 5.1 Introduction -- 5.1.1 The Direct Conversion of Methane -- 5.1.2 Introduction to Zeolites -- 5.2 Oxidative Coupling of Methane over Zeolite Catalysts -- 5.3 Methane Dehydroaromatization (MDA) -- 5.4 Metal‐Modified Zeolites for dMtM -- 5.4.1 Fe‐Modified Zeolites -- 5.4.2 Cu‐Modified Zeolites -- 5.4.2.1 Active Sites for Methane Partial Oxidation in Copper‐Modified Zeolites -- 5.4.2.2 Reaction Mechanism for the Partial Oxidation of Methane over Copper‐Modified Zeolites -- 5.4.2.3 Alternatives to Stepwise Methanol Production: Isothermal and Direct Catalytic Conversion of Methane to Methanol over Copper‐Modified Zeolites -- 5.4.2.4 Effect of Framework Topology and Composition on Methane Partial Oxidation over Copper‐Modified Zeolites -- 5.4.3 Zn‐Modified Zeolites -- 5.4.3.1 Mechanism of C-H Activation in Zinc‐Exchanged Zeolites -- 5.4.3.2 Zinc Oxide Clusters in Zeolites -- 5.4.3.3 The Role of Brønsted Acid Sites in C-H Activation -- 5.4.3.4 Reactivity of Methane with Small Molecules on Zinc‐Modified Zeolites -- 5.4.4 Other d‐Block Metals in Zeolites -- 5.5 Outlook -- References -- Chapter 6 The Selective Oxidation of Methane to Oxygenates Using Heterogeneous Catalysts -- 6.1 Introduction and Historical Context -- 6.2 Liquid‐Phase Reactions -- 6.2.1 Zeolite Catalysts -- 6.2.2 Noble Metal Catalysts -- 6.3 Gas‐Phase Reactions -- 6.3.1 Non‐zeolite Catalysts -- 6.3.2 Zeolite Catalysts -- 6.3.2.1 Copper as the Active Component -- 6.3.2.2 Iron as the Active Component -- 6.4 Conclusions and Outlook -- References -- Part III Alkane Activation -- Chapter 7 Catalytic Cracking of Hydrocarbons to Light Olefins -- 7.1 Background Introduction -- 7.2 Reaction Mechanism of Catalytic Cracking over Zeolites.
7.2.1 Monomolecular or α‐Protolytic Cracking Mechanism -- 7.2.2 Bimolecular Cracking Mechanism -- 7.2.3 Monomolecular and Bimolecular Cracking Mechanism -- 7.3 Development of Zeolite Catalysts -- 7.3.1 Zeolites with Different Framework Structures -- 7.3.2 Adjustment of Acid Properties of ZSM‐5 Zeolite -- 7.3.2.1 Effect of Si/Al Ratio of ZSM‐5 Zeolite -- 7.3.2.2 Tuning of Al Siting and Distribution in ZSM‐5 Zeolite -- 7.3.2.3 Modification of ZSM‐5 Zeolites with Different Elements -- 7.3.3 Alkaline Metal‐ and Alkali Earth Metal‐Modified ZSM‐5 -- 7.3.4 Transition Metal‐Modified ZSM‐5 -- 7.3.5 Rare Earth Element‐Modified ZSM‐5 -- 7.3.6 Phosphorus‐Modified ZSM‐5 -- 7.4 Nano‐ZSM‐5 Zeolite -- 7.5 Hierarchical ZSM‐5 Zeolites -- 7.5.1 Mesoporous/Microporous ZSM‐5 Zeolites -- 7.5.1.1 Hard Template Method -- 7.5.1.2 Post‐treatment Method -- 7.5.1.3 Soft Template Method -- 7.5.1.4 Other Methods -- 7.5.2 Macroporous/Mesoporous/Microporous ZSM‐5 -- 7.5.3 Composite Zeolites -- 7.6 Outlook -- References -- Chapter 8 Catalytic Dehydrogenation of Light Alkanes -- 8.1 Introduction -- 8.2 Direct Dehydrogenation -- 8.2.1 Commercial Dehydrogenation Processes -- 8.2.1.1 Catofin Process -- 8.2.1.2 Oleflex Process -- 8.2.1.3 ADHO Technology -- 8.2.1.4 Other Processes -- 8.2.2 Direct Alkane Dehydrogenation Catalysts -- 8.2.2.1 CrOx‐Based Catalysts -- 8.2.2.2 Pt‐Based Catalysts -- 8.3 Oxidative Dehydrogenation -- 8.3.1 Transition Metal Oxide and Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.1 Vanadium Oxide‐Based Catalysts -- 8.3.1.2 MoVTeNbOx Catalysts -- 8.3.1.3 Nickel Oxide‐Based Catalysts -- 8.3.1.4 Alkaline‐Earth Metal Oxychloride Catalysts -- 8.3.1.5 Chemical Looping ODH -- 8.3.2 Boron‐Based Catalysts -- 8.3.2.1 Development of Boron‐Based Catalysts -- 8.3.2.2 Active Sites of Boron‐Based Catalysts -- 8.3.2.3 Possible Reaction Pathway -- 8.3.3 Carbon‐Based Catalysts.
8.3.3.1 Development of Carbon‐Based Catalysts -- 8.3.3.2 Identification of Active Sites -- 8.3.3.3 Selectivity Control of Olefins -- 8.4 Summary and Outlook -- References -- Part IV Zeolite Catalysis -- Chapter 9 Zeolites for Sustainable Chemical Transformations -- 9.1 Introduction to Zeolites and Zeolite Chemistry -- 9.1.1 Zeolite Chemistry -- 9.1.2 Zeolites as Catalysts -- 9.1.3 Size Discrimination: Molecular Sieves -- 9.1.4 Zeolites as Supports for Metal Catalysts -- 9.1.4.1 Methods of Metal Deposition -- 9.1.5 Metals in the Zeolite Framework -- 9.1.5.1 Methods of Preparation -- 9.2 The Nature of Active Sites and Deactivation of Zeolite‐Based Catalysts -- 9.2.1 Active Sites in Zeolite Catalysis -- 9.2.1.1 Acid Sites -- 9.2.1.2 Basic Sites -- 9.2.1.3 Redox Sites in Zeolite Catalysts -- 9.3 Causes of Deactivation in Zeolite Catalysts -- 9.3.1 Poisoning -- 9.3.1.1 Deactivation through Carbonaceous Deposits (Coking) -- 9.3.1.2 Inhibition of Catalyst Activity Due to Water -- 9.3.1.3 Poisoning of Palladium Combustion Catalysts -- 9.3.2 Particle Sintering and Agglomeration -- 9.3.2.1 Particle Agglomeration in Ventilation Air Methane Oxidation Catalysts -- 9.4 Future Directions for Zeolite Catalysis -- References -- Chapter 10 Methanol to Hydrocarbons -- 10.1 Background Introduction -- 10.2 The Direct Mechanism for MTH Reaction -- 10.2.1 The Development and Milestones of the Direct Mechanism -- 10.2.2 The First C C Bond Formation -- 10.3 The Indirect Reaction Mechanism for MTH Reaction -- 10.3.1 Hydrocarbon Pool Mechanism -- 10.3.2 Dual‐Cycle Mechanism -- 10.3.3 The Connection Between the Dual Cycles -- 10.4 Bridging the Direct and Indirect Mechanisms -- 10.5 Zeolite Catalysts for MTH Conversion -- 10.6 Summary and Outlook -- References -- Part V Carbon Dioxide as C1 Building Block -- Chapter 11 Overview on CO2 Emission and Capture -- 11.1 Introduction.
11.2 CO2 Emission and Related Problems.
Record Nr. UNINA-9910830880903321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High-entropy materials : from basics to applications / / Huimin Xiang, Fu-Zhi Dai, Yanchun Zhou
High-entropy materials : from basics to applications / / Huimin Xiang, Fu-Zhi Dai, Yanchun Zhou
Autore Xiang Huimin
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (274 pages)
Disciplina 621
Soggetto topico Thermodynamics
ISBN 3-527-83720-5
3-527-83718-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction to High-Entropy Materials -- 1.1 History of High-Entropy Materials -- 1.2 Definition of High-Entropy Materials -- 1.3 Core Effects of HEMs -- 1.3.1 High-Entropy Effect -- 1.3.2 Lattice Distortion -- 1.3.3 Sluggish Diffusion -- 1.3.4 Cocktail Effect -- 1.4 Development of the HEMs -- References -- Chapter 2 Structural Features and Thermodynamics of High-Entropy Materials -- 2.1 Structural Features of High-Entropy Materials -- 2.1.1 Crystal Structure of High-Entropy Alloys -- 2.1.2 Crystal Structure of High-Entropy Ceramics -- 2.1.3 Atomic Distribution -- 2.1.3.1 Atomic Distribution in HEAs -- 2.1.3.2 Atomic Distribution in HECs -- 2.1.4 Lattice Distortion -- 2.2 Electronic Structure and Band Gap Engineering -- 2.2.1 Electronic Structure of HEAs -- 2.2.2 Electronic Structure of HECs -- 2.3 Lattice Dynamics and Phonon Dispersion -- 2.4 Thermodynamics and Phase Formation -- 2.4.1 High-Entropy Alloys -- 2.4.1.1 Thermodynamic Criteria -- 2.4.1.2 Valence Electron Concentration Criteria -- 2.4.1.3 Residual Strain Criteria -- 2.4.2 High-Entropy Ceramics -- 2.4.2.1 Thermodynamic Criteria -- 2.4.2.2 Other Criteria -- References -- Chapter 3 Theoretical Design Aspects in High-Entropy Materials -- 3.1 Introduction -- 3.2 Formability Prediction -- 3.2.1 Empirical Models -- 3.2.2 Thermodynamic Computations -- 3.3 Properties Prediction -- 3.3.1 Lattice Distortions -- 3.3.2 Elastic Properties -- 3.3.3 Stacking Fault Energy -- 3.3.4 Thermal Properties -- 3.3.5 Simulation on Defects -- 3.4 Conclusions and Perspectives -- References -- Chapter 4 Synthesis and Processing of High-Entropy Materials -- 4.1 Powders -- 4.1.1 Powders of HEAs -- 4.1.1.1 Mechanical Alloying -- 4.1.1.2 Atomization -- 4.1.1.3 Wet Chemistry -- 4.1.1.4 Hydrogenation-Dehydrogenation -- 4.1.2 Powders of HECs.
4.1.2.1 Mechanical Alloy -- 4.1.2.2 Wet Chemistry -- 4.1.2.3 Solid-State Reaction -- 4.2 Dense and Porous Bulks -- 4.2.1 HEAs -- 4.2.2 HECs -- 4.3 Films and Coatings -- 4.3.1 Laser Cladding -- 4.3.2 Spray Techniques -- 4.3.3 Vapor Deposition -- 4.3.3.1 Magnetron Sputtering -- 4.3.3.2 Pulsed Laser Deposition -- 4.4 Other Novel Synthesis and Processing Methods -- 4.4.1 Additive Manufacturing -- 4.4.2 Carbothermal Shock Synthesis -- 4.4.3 Severe Plastic Deformation Process -- References -- Chapter 5 Characterization of High-Entropy Materials -- 5.1 Phase Identification -- 5.2 Elemental Distribution -- 5.3 Lattice Distortion -- 5.4 Microstructure Evolutions -- 5.5 Other Advanced Characterization Methods -- References -- Chapter 6 Mechanical Properties -- 6.1 Introduction -- 6.2 Exceptional Toughness at Cryogenic Temperatures -- 6.3 Superior Performances at Elevated Temperatures -- 6.4 Improved Hardness: Toward Super Hard Materials -- 6.5 More Examples on HEMs with Intriguing Mechanical Properties -- 6.6 Strengthen Mechanisms -- 6.6.1 Theory on Yield Strength -- 6.6.2 Short Range Order -- 6.6.3 Grain Boundary Segregation -- 6.7 Microstructure-Mechanism-Based Design Approaches -- 6.8 Conclusions and Perspectives -- References -- Chapter 7 Functional Properties -- 7.1 Thermal Conductivity -- 7.2 Thermal Expansion -- 7.3 Oxidation Resistance -- 7.4 Molten Salt Corrosion Resistance -- 7.5 Irradiation Resistance -- 7.6 Electronic and Ionic Conductivity -- 7.7 Dielectric Properties -- 7.8 Magnetic Properties -- References -- Chapter 8 Applications of High-Entropy Materials -- 8.1 Introduction -- 8.2 Structural Applications -- 8.3 Thermal Protection and Management -- 8.4 Thermoelectricity -- 8.5 Electromagnetic Wave (EMW) Absorption -- 8.6 Rechargeable Batteries -- 8.7 Other Applications -- 8.8 Summary and Perspectives -- References.
Chapter 9 Challenges and Future Directions of High-Entropy Materials -- 9.1 Introduction -- 9.2 Vastness of Tunable Elements, Microstructures, and Properties -- 9.3 Preparation, Characterization, and Modeling -- 9.4 Materials Database, Materials Screening, and Design -- 9.5 Conclusions -- References -- Index -- EULA.
Record Nr. UNINA-9910830444503321
Xiang Huimin  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Highlights in bioorganic chemistry : methods and applications / / edited by Carsten Schmuck, Helma Wennemers
Highlights in bioorganic chemistry : methods and applications / / edited by Carsten Schmuck, Helma Wennemers
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Descrizione fisica 1 online resource (601 p.)
Disciplina 572
Soggetto topico Bioorganic chemistry
Soggetto genere / forma Electronic books.
ISBN 1-280-51955-X
9786610519552
3-527-60372-7
3-527-60408-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Biomolecules and their conformation. Equilibria of RNA secondary structures / Ronald Micura, Claudia Höbartner -- Synthesis and application of proline and pipecolic acid derivatives : tools for stabilization of peptide secondary structures / Wolfgang Maison -- Stabilization of peptide microstructures by coordination of metal ions / Markus Albrecht -- Conformational restriction of sphingolipids / Thomas Kolter -- [Beta]-amino acids in nature / Franz von Nussbaum, Peter Spiteller -- Biosynthesis of [Beta]-amino acids / Peter Spiteller, Franz von Nussbaum -- pt. 2. Non-covalent intermolecular interactions. Carbohydrate recognition by artificial receptors / Arne Lützen -- Cyclopeptides as macrocyclic host molecules for charged guests / Stephen Kubik -- Bioorganic receptors for amino acids and peptides : combining rational design with combinatorial chemistry / Carsten Schmuck, Wolfgang Wienand, Lars Geiger -- Artificial receptors for the stabilization of [beta]-sheet structures / Thomas Schrader, Markus Wehner, Petra Rzepecki -- Evaluation of the DNA-binding properties of cationic dyes by absorption and emission spectroscopy / Heiko Ihmels, Katja Faulhaber, Giampietro Viola -- Interaction of nitrogen monoxide and peroxynitrite with hemoglobin and myoglobin / Susanna Herold -- Synthetic approaches to study multivalent carbohydrate-lectin interactions / Valentin Wittmann -- pt. 3. Studies in drug developments. Building a bridge between chemistry and biology : molecular forceps that inhibit the farnesylation of RAS / Hans Peter Nestler -- Inhibitors against human mast cell tryptase : a potential approach to attack asthma? / Thomas J. Martin -- Preparation of novel steroids by microbiological and combinatorial chemistry / Christoph Huwe, Hermann Künzer, Ludwig Zorn -- Enantiomeric nucleic acids, spiegelmers / Sven Klussmann -- Aspartic proteases involved in Alzheimer's disease / Boris Schmidt, Alexander Siegler -- Novel polymer and linker reagents for the preparation of protease-inhibitor libraries / Jörg Rademann -- pt. 4. Studies in diagnostic developments. Selectivity of DNA replication / Andreas Marx, Daniel Summerer, Michael Strerath -- Homogeneous DNA detection / Oliver Seitz -- Exploring the capabilities of nucleic acid polymerases by use of directed evolution / Susanne Brakmann, Marina Schlicke -- Labeling of fusion proteins with small molecules in vivo / Susanne Gendreizig ... [et al.] -- Oxidative splitting of pyrimidine cyclobutane dimers / Uta Wille -- Charge transfer in DNA / Hans-Achim Wagenknecht -- pt. 5. Catalysis. Protease-catalyzed formation of C-N bonds / Frank Bordusa -- Twin ribozymes / Sabine Müller ... [et al.] -- RNA as a catalyst : the Diels-Alderase ribozyme / Sonja Keiper ... [et al.] -- Combinatorial methods for the discovery of catalysts / Helma Wennemers -- pt. 6. Methodology, bioengineering and bioinspired assemblies. Linkers for solid-phase synthesis / Kerstin Knepper, Carmen Gil, Stefan Bräse -- Small molecule arrays / Rolf Breinbauer, Maja Köhn, Carsten Peters -- Biotechnological production of D-pantothenic acid and its precursor D-pantolactone / Maria Kessler -- Microbially produced functionalized cyclohexadiene-trans-diols as a new class of chiral building blocks in organic synthesis : on the way to green and combinatorial chemistry / Volker Lorbach ... [et al.] -- Artificial molecular rotary motors based on rotaxanes / Thorsten Felder, Christoph A. Schalley --
Record Nr. UNINA-9910144299503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Highlights in bioorganic chemistry : methods and applications / / edited by Carsten Schmuck, Helma Wennemers
Highlights in bioorganic chemistry : methods and applications / / edited by Carsten Schmuck, Helma Wennemers
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Descrizione fisica 1 online resource (601 p.)
Disciplina 572
Soggetto topico Bioorganic chemistry
ISBN 1-280-51955-X
9786610519552
3-527-60372-7
3-527-60408-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Biomolecules and their conformation. Equilibria of RNA secondary structures / Ronald Micura, Claudia Höbartner -- Synthesis and application of proline and pipecolic acid derivatives : tools for stabilization of peptide secondary structures / Wolfgang Maison -- Stabilization of peptide microstructures by coordination of metal ions / Markus Albrecht -- Conformational restriction of sphingolipids / Thomas Kolter -- [Beta]-amino acids in nature / Franz von Nussbaum, Peter Spiteller -- Biosynthesis of [Beta]-amino acids / Peter Spiteller, Franz von Nussbaum -- pt. 2. Non-covalent intermolecular interactions. Carbohydrate recognition by artificial receptors / Arne Lützen -- Cyclopeptides as macrocyclic host molecules for charged guests / Stephen Kubik -- Bioorganic receptors for amino acids and peptides : combining rational design with combinatorial chemistry / Carsten Schmuck, Wolfgang Wienand, Lars Geiger -- Artificial receptors for the stabilization of [beta]-sheet structures / Thomas Schrader, Markus Wehner, Petra Rzepecki -- Evaluation of the DNA-binding properties of cationic dyes by absorption and emission spectroscopy / Heiko Ihmels, Katja Faulhaber, Giampietro Viola -- Interaction of nitrogen monoxide and peroxynitrite with hemoglobin and myoglobin / Susanna Herold -- Synthetic approaches to study multivalent carbohydrate-lectin interactions / Valentin Wittmann -- pt. 3. Studies in drug developments. Building a bridge between chemistry and biology : molecular forceps that inhibit the farnesylation of RAS / Hans Peter Nestler -- Inhibitors against human mast cell tryptase : a potential approach to attack asthma? / Thomas J. Martin -- Preparation of novel steroids by microbiological and combinatorial chemistry / Christoph Huwe, Hermann Künzer, Ludwig Zorn -- Enantiomeric nucleic acids, spiegelmers / Sven Klussmann -- Aspartic proteases involved in Alzheimer's disease / Boris Schmidt, Alexander Siegler -- Novel polymer and linker reagents for the preparation of protease-inhibitor libraries / Jörg Rademann -- pt. 4. Studies in diagnostic developments. Selectivity of DNA replication / Andreas Marx, Daniel Summerer, Michael Strerath -- Homogeneous DNA detection / Oliver Seitz -- Exploring the capabilities of nucleic acid polymerases by use of directed evolution / Susanne Brakmann, Marina Schlicke -- Labeling of fusion proteins with small molecules in vivo / Susanne Gendreizig ... [et al.] -- Oxidative splitting of pyrimidine cyclobutane dimers / Uta Wille -- Charge transfer in DNA / Hans-Achim Wagenknecht -- pt. 5. Catalysis. Protease-catalyzed formation of C-N bonds / Frank Bordusa -- Twin ribozymes / Sabine Müller ... [et al.] -- RNA as a catalyst : the Diels-Alderase ribozyme / Sonja Keiper ... [et al.] -- Combinatorial methods for the discovery of catalysts / Helma Wennemers -- pt. 6. Methodology, bioengineering and bioinspired assemblies. Linkers for solid-phase synthesis / Kerstin Knepper, Carmen Gil, Stefan Bräse -- Small molecule arrays / Rolf Breinbauer, Maja Köhn, Carsten Peters -- Biotechnological production of D-pantothenic acid and its precursor D-pantolactone / Maria Kessler -- Microbially produced functionalized cyclohexadiene-trans-diols as a new class of chiral building blocks in organic synthesis : on the way to green and combinatorial chemistry / Volker Lorbach ... [et al.] -- Artificial molecular rotary motors based on rotaxanes / Thorsten Felder, Christoph A. Schalley --
Record Nr. UNINA-9910830954503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Holography : a practical approach / / Gerhard K. Ackermann, Jürgen Eichler
Holography : a practical approach / / Gerhard K. Ackermann, Jürgen Eichler
Autore Ackermann Gerhard K.
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2007]
Descrizione fisica 1 online resource (339 p.)
Disciplina 621.3675
Soggetto topico Holography
Soggetto genere / forma Electronic books.
ISBN 1-281-76462-0
9786611764623
3-527-61913-5
3-527-61914-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Holography A Practical Approach; Contents; Preface; Part 1 Fundamentals of Holography; 1 Introduction; 1.1 Photography and Holography; 1.1.1 Object Wave; 1.1.2 Photography; 1.1.3 Holography; 1.2 Interference and Diffraction; 1.2.1 Interference During Recording; 1.2.2 Diffraction During Reconstruction; 1.3 History of Holography; Problems; 2 General View of Holography; 2.1 Interference of Light Waves; 2.1.1 Wave; 2.1.2 Interference; 2.1.3 Visibility; 2.1.4 Influence of Polarization; 2.2 Holographic Recording and Reconstruction; 2.2.1 Recording; 2.2.2 Reconstruction; 2.3 Mathematical Approach
2.3.1 Object and Reference Wave2.3.2 Recording; 2.3.3 Gratings; 2.3.4 Reconstruction; 2.4 Conjugated Image; 2.4.1 Conjugated Object Wave; 2.4.2 Position of the Conjugated Image; 2.4.3 Reversal of the Reconstruction Wave; 2.5 Spatial Frequencies; 2.6 Diffraction Grating and Fresnel Lens; 2.6.1 Diffraction Grating; 2.6.2 Fresnel Zone Lens; Problems; 3 Fundamental Imaging Techniques in Holography; 3.1 In-Line Hologram (Gabor); 3.2 Off-Axis Hologram (Leith-Upatnieks); 3.3 Fourier Hologram (Lensless); 3.4 Fraunhofer Hologram; 3.5 Reflection Hologram (Denisyuk); Problems
4 Holograms of Holographic Images4.1 Image-Plane Hologram; 4.2 Transmission and Reflection Hologram in Two Steps; 4.3 Rainbow Hologram; 4.4 Double-Sided Hologram; 4.5 Fourier Hologram; 4.5.1 Principle; 4.5.2 Calculation; Problems; 5 Optical Properties of Holographic Images; 5.1 Hologram of an Object Point; 5.1.1 Image Equations; 5.1.2 Magnification; 5.1.3 Angular Magnification; 5.1.4 Longitudinal Magnification; 5.1.5 Image Aberrations; 5.2 Properties of the Light Source; 5.2.1 Spectral Bandwidth; 5.2.2 Image-Plane Holograms; 5.3 Image Luminance; 5.3.1 Without Pupil; 5.3.2 With Pupil
5.3.3 Image-Plane Holograms5.4 Speckles; 5.4.1 Diffuser; 5.4.2 Resolution; 5.4.3 Incoherent Illumination; 5.4.4 Further Techniques; 5.5 Resolution; Problems; 6 Types of Holograms; 6.1 Introduction; 6.1.1 Transmission and Reflection Holograms; 6.1.2 Thick and Thin Holograms; 6.2 Thin Holograms; 6.2.1 Thin Amplitude Holograms; 6.2.2 Thin Phase Holograms; 6.3 Volume Holograms; 6.3.1 Theory of Coupled Waves; 6.3.2 Phase Holograms; 6.3.3 Amplitude Holograms; 6.3.4 Comparison of Diffraction Efficiency; 6.3.5 Distinction Criteria for Holograms; Problems; Part 2 Basic Experiments
7 Optical Systems and Lasers for Holography7.1 Coherence and Interferometers; 7.1.1 Coherence; 7.1.2 Spatial Coherence; 7.1.3 Temporal Coherence; 7.2 Modes and Coherence; 7.2.1 Gaussian Beam; 7.2.2 Longitudinal Modes; 7.2.3 Coherence Length; 7.2.4 Etalon; 7.3 Gas Lasers for Holography; 7.3.1 He-Ne Laser; 7.3.2 Ion Laser; 7.3.3 He-Cd Laser; 7.4 Solid-State Lasers for Holography; 7.4.1 Ruby Laser; 7.4.2 Nd:YAG Laser; 7.5 Lenses and Spatial Filters; 7.5.1 Gaussian Beam; 7.5.2 Focusing; 7.5.3 Geometrical Optics; 7.5.4 Spatial Filters; 7.5.5 Beam Expansion; 7.6 Polarizers and Beam Splitters
7.6.1 Polarization
Record Nr. UNINA-9910144593903321
Ackermann Gerhard K.  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Holography : a practical approach / / Gerhard K. Ackermann, Jürgen Eichler
Holography : a practical approach / / Gerhard K. Ackermann, Jürgen Eichler
Autore Ackermann Gerhard K.
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2007]
Descrizione fisica 1 online resource (339 p.)
Disciplina 621.3675
Soggetto topico Holography
ISBN 1-281-76462-0
9786611764623
3-527-61913-5
3-527-61914-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Holography A Practical Approach; Contents; Preface; Part 1 Fundamentals of Holography; 1 Introduction; 1.1 Photography and Holography; 1.1.1 Object Wave; 1.1.2 Photography; 1.1.3 Holography; 1.2 Interference and Diffraction; 1.2.1 Interference During Recording; 1.2.2 Diffraction During Reconstruction; 1.3 History of Holography; Problems; 2 General View of Holography; 2.1 Interference of Light Waves; 2.1.1 Wave; 2.1.2 Interference; 2.1.3 Visibility; 2.1.4 Influence of Polarization; 2.2 Holographic Recording and Reconstruction; 2.2.1 Recording; 2.2.2 Reconstruction; 2.3 Mathematical Approach
2.3.1 Object and Reference Wave2.3.2 Recording; 2.3.3 Gratings; 2.3.4 Reconstruction; 2.4 Conjugated Image; 2.4.1 Conjugated Object Wave; 2.4.2 Position of the Conjugated Image; 2.4.3 Reversal of the Reconstruction Wave; 2.5 Spatial Frequencies; 2.6 Diffraction Grating and Fresnel Lens; 2.6.1 Diffraction Grating; 2.6.2 Fresnel Zone Lens; Problems; 3 Fundamental Imaging Techniques in Holography; 3.1 In-Line Hologram (Gabor); 3.2 Off-Axis Hologram (Leith-Upatnieks); 3.3 Fourier Hologram (Lensless); 3.4 Fraunhofer Hologram; 3.5 Reflection Hologram (Denisyuk); Problems
4 Holograms of Holographic Images4.1 Image-Plane Hologram; 4.2 Transmission and Reflection Hologram in Two Steps; 4.3 Rainbow Hologram; 4.4 Double-Sided Hologram; 4.5 Fourier Hologram; 4.5.1 Principle; 4.5.2 Calculation; Problems; 5 Optical Properties of Holographic Images; 5.1 Hologram of an Object Point; 5.1.1 Image Equations; 5.1.2 Magnification; 5.1.3 Angular Magnification; 5.1.4 Longitudinal Magnification; 5.1.5 Image Aberrations; 5.2 Properties of the Light Source; 5.2.1 Spectral Bandwidth; 5.2.2 Image-Plane Holograms; 5.3 Image Luminance; 5.3.1 Without Pupil; 5.3.2 With Pupil
5.3.3 Image-Plane Holograms5.4 Speckles; 5.4.1 Diffuser; 5.4.2 Resolution; 5.4.3 Incoherent Illumination; 5.4.4 Further Techniques; 5.5 Resolution; Problems; 6 Types of Holograms; 6.1 Introduction; 6.1.1 Transmission and Reflection Holograms; 6.1.2 Thick and Thin Holograms; 6.2 Thin Holograms; 6.2.1 Thin Amplitude Holograms; 6.2.2 Thin Phase Holograms; 6.3 Volume Holograms; 6.3.1 Theory of Coupled Waves; 6.3.2 Phase Holograms; 6.3.3 Amplitude Holograms; 6.3.4 Comparison of Diffraction Efficiency; 6.3.5 Distinction Criteria for Holograms; Problems; Part 2 Basic Experiments
7 Optical Systems and Lasers for Holography7.1 Coherence and Interferometers; 7.1.1 Coherence; 7.1.2 Spatial Coherence; 7.1.3 Temporal Coherence; 7.2 Modes and Coherence; 7.2.1 Gaussian Beam; 7.2.2 Longitudinal Modes; 7.2.3 Coherence Length; 7.2.4 Etalon; 7.3 Gas Lasers for Holography; 7.3.1 He-Ne Laser; 7.3.2 Ion Laser; 7.3.3 He-Cd Laser; 7.4 Solid-State Lasers for Holography; 7.4.1 Ruby Laser; 7.4.2 Nd:YAG Laser; 7.5 Lenses and Spatial Filters; 7.5.1 Gaussian Beam; 7.5.2 Focusing; 7.5.3 Geometrical Optics; 7.5.4 Spatial Filters; 7.5.5 Beam Expansion; 7.6 Polarizers and Beam Splitters
7.6.1 Polarization
Record Nr. UNINA-9910677137703321
Ackermann Gerhard K.  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
In-situ transmission electron microscopy experiments : design and practice / / Renu Sharma
In-situ transmission electron microscopy experiments : design and practice / / Renu Sharma
Autore Sharma Renu <1961->
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (383 pages)
Disciplina 620.115
Soggetto topico Nanotubes
Carbon
Nanotechnology
ISBN 3-527-83482-6
3-527-83484-2
3-527-83483-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- List of Abbreviations -- About the Author -- Chapter 1 In‐Situ TEM -- 1.1 Introduction -- 1.2 General Scope of the Book -- 1.3 Why In‐Situ TEM -- 1.4 TEM: Overview -- 1.4.1 Historical Perspective -- 1.4.2 Electron-Sample Interactions -- 1.4.3 Overview of Modern TEM -- 1.4.3.1 Electron Source or Electron Gun -- 1.4.3.2 Lenses -- 1.4.3.3 Lens Aberrations -- 1.4.3.4 Aberration Correctors -- 1.4.4 Data Acquisition Systems -- 1.4.4.1 Types of Detectors -- 1.5 TEM/STEM‐Based Characterization Techniques -- 1.5.1 Diffraction -- 1.5.2 TEM Imaging Modes -- 1.5.3 STEM -- 1.5.4 Analytical TEM -- 1.5.4.1 Chemical Analysis -- 1.5.4.2 EFTEM -- 1.5.4.3 Spectrum Imaging (SI) -- 1.6 Other Techniques -- 1.6.1 Lorentz Microscopy -- 1.6.2 Holography -- 1.6.2.1 In‐Line Holography -- 1.6.2.2 Off‐Axis Holography -- 1.6.3 UEM and DTEM -- 1.7 Introduction to Different Stimuli Used for In‐Situ TEM -- 1.7.1 Heating (Chapter 3) -- 1.7.2 Cooling (Cryo TEM - Chapter 4) -- 1.7.3 Interactions with Liquid/Electrochemistry (Chapter 6) -- 1.7.4 Interaction with Gas Environment/Catalysis (Chapter 7) -- 1.7.5 Other Stimuli Not Included in this Book -- 1.7.5.1 Mechanical Testing -- 1.7.5.2 Ion Radiation/Implantation -- 1.7.5.3 Biasing -- 1.7.5.4 Magnetization -- 1.8 Potential Limitations and Cautions -- 1.9 Take‐Home Messages -- References -- Chapter 2 Experiment Design Philosophy -- 2.1 General -- 2.2 Choice of Technique and the Microscope -- 2.2.1 Stimulus and Technique Selection -- 2.2.2 Microscope Selection -- 2.2.2.1 Operating Voltage -- 2.2.2.2 TEM/STEM and Pole‐Piece Gap -- 2.2.2.3 Image Acquisition System and Detectors -- 2.2.3 Development or Modification of New Tool -- 2.3 TEM Holder Design and Selection -- 2.4 Specimen Design and Preparation -- 2.4.1 Direct Dispersion on a TEM Grid.
2.4.2 Sintering Pallets -- 2.4.3 Ultramicrotomy -- 2.4.4 Electropolishing -- 2.4.5 Mechanical and Ion Milling -- 2.4.6 Focused Ion Beam (FIB) -- 2.4.7 Tripod Polishing -- 2.4.8 Cryo Sample Preparation -- 2.5 Guidelines for Experimental Setup -- 2.5.1 Electron Beam Effects -- 2.5.2 Choice of TEM Grid and Support Material -- 2.5.2.1 Reactivity of Sample with Grid and/or Support Material -- 2.5.2.2 Reactivity of TEM Grids Upon Heating -- 2.5.2.3 Reactivity of TEM Grids in Gaseous Environment -- 2.5.2.4 Reactivity of Liquids with the Windows -- 2.5.2.5 Reactivity of Gases/Liquids with the TEM Holder Parts -- 2.5.3 Purity of Gases -- 2.5.4 Liquid Cell Experiments -- 2.5.5 Experiments Using Other Stimuli -- 2.6 Practical Example of Designing In‐Situ TEM Experiment -- 2.6.1 Growth of GaN Nanowires Using ETEM -- 2.6.2 Applications of Quantitative Data -- 2.6.2.1 Physical and Materials Science -- 2.6.2.2 Catalysis -- 2.7 Review -- References -- Chapter 3 In‐Situ Heating -- 3.1 History -- 3.2 Currently Available Heating Holders -- 3.2.1 Direct Heating Holder -- 3.2.2 Indirect Heating Holders -- 3.2.2.1 Furnace Heating Holders -- 3.2.2.2 MEMS‐Based Heating Holders -- 3.3 Experimental Considerations -- 3.3.1 General -- 3.3.2 Electron Beam -- 3.3.3 Sample Temperature at Nanoscale -- 3.3.4 Specimen Design and Selection -- 3.3.5 Thermal Drift -- 3.4 Select Applications -- 3.4.1 Dislocation Motion -- 3.4.2 Nucleation, Precipitation, and Crystallization -- 3.4.3 Sintering -- 3.4.4 Thermal Stability of Materials -- 3.4.4.1 Alloys -- 3.4.4.2 Core-Shell Structures -- 3.4.4.3 2‐D Materials -- 3.4.5 Phase Transformation -- 3.4.6 Materials Synthesis -- 3.5 Limitations and Possibilities -- 3.6 Chapter Summary -- References -- Chapter 4 In‐Situ Cryo‐TEM -- 4.1 Historical Perspective -- 4.2 Specimen Holder Design and Function -- 4.3 Specimen Design and Preparation.
4.4 Practical Aspects of Performing Cryogenic Cooling -- 4.5 Some Noteworthy Applications -- 4.5.1 Mitigating Radiation Damage -- 4.5.1.1 Structure of Polymers -- 4.5.1.2 Structure of MOF and Zeolites -- 4.5.1.3 Cryo‐TEM for Energy Materials -- 4.5.1.4 Reactions in Liquids -- 4.5.1.5 Quantum and 2‐D Materials -- 4.5.2 Phase Transformations Below RT -- 4.5.3 Correlative In‐Situ Experiments at Low Temperature -- 4.5.3.1 Mechanical Testing -- 4.5.3.2 Magnetic Field -- 4.6 Benefits and Limitations -- 4.7 Chapter Summary -- References -- Chapter 5 Designing Liquid and Gas Cell Holders -- 5.1 Historical Perspective -- 5.2 Design Philosophy -- 5.3 Windows -- 5.3.1 Image Resolution: Thickness and Material Properties of the Windows -- 5.3.2 Strength and Flexibility -- 5.3.3 Tolerance for the Pressure Difference -- 5.3.4 Inert or Corrosion Resistant -- 5.4 Microfabricated Window Cell (Microchips) -- 5.4.1 Static Cells -- 5.4.2 Flow Cells -- 5.4.3 Incorporation of Other Stimuli -- 5.4.4 Monolithic Microchips -- 5.5 Examples of Modified Window Holders -- 5.5.1 Redesigning the Microchips for Commercial Holder -- 5.5.2 Modified Window Microchips and TEM Holder Combination -- 5.5.3 Non‐window Cell Holder to Incorporate Other Stimuli -- 5.6 Take Home Message -- References -- Chapter 6 In‐Situ Solid-Liquid Interactions -- 6.1 Historical Perspective -- 6.2 Holder Design and Selection -- 6.2.1 Closed Cells -- 6.2.1.1 Graphene Cells -- 6.2.1.2 Microfabricated Window Cell -- 6.2.2 Limitations of Closed Cells and Need for External Stimuli -- 6.2.3 Flow Reactors: Microfluidic Design -- 6.2.4 Electrochemical Cell: Biasing -- 6.2.5 Heating in Liquids -- 6.3 Specimen Design and Preparation -- 6.4 Data Acquisition -- 6.5 Practical Challenges -- 6.5.1 Sample Loading -- 6.5.2 Electron Beam Effects -- 6.5.3 Windows Bulging -- 6.5.4 Interaction of Sample with Windows.
6.6 Select Examples of Applications -- 6.6.1 Nucleation and Growth of Nanoparticles -- 6.6.2 Corrosion/Oxidation -- 6.6.3 Galvanic Replacement Reactions -- 6.6.4 Growth of Core-Shell Nanoparticles -- 6.6.5 Soft Nanomaterials Analyzed by In‐Situ Liquid TEM -- 6.6.6 Quantitative Electrochemical Measurements -- 6.6.7 Battery Research -- 6.6.7.1 Open Cell -- 6.6.7.2 Closed Liquid Cell -- 6.7 Limitations -- 6.8 Take‐Home Messages -- References -- Chapter 7 In‐Situ Gas-Solid Interactions -- 7.1 Historical Perspective -- 7.2 Current Strategies -- 7.2.1 Window Holders -- 7.2.1.1 Incorporation of Other Stimuli -- 7.2.1.2 Specimen Design and Preparation -- 7.2.1.3 Practical Challenges for Gas‐Cell Holders -- 7.2.1.4 Review of Benefits and Limitations of Gas‐Cell Holders -- 7.2.2 Environmental Microscopes (Open Cell) -- 7.2.2.1 ETEM Combined with Gas Injection Sample Holder -- 7.2.2.2 Differentially Pumped TEM -- 7.3 Gas Manifold Design and Construction -- 7.4 Practical Aspects of Performing Experiments in Gas Environment -- 7.4.1 Electron Beam Effects -- 7.4.2 Gas Pressure and Resolution -- 7.4.3 Sample Temperature and Cell Pressure -- 7.4.4 Anticontamination Device -- 7.5 Select Examples of Applications -- 7.5.1 Effect of Gas Environment on Catalyst Nanoparticles -- 7.5.2 Carbon Nanotube (CNT) Growth -- 7.5.3 Nanowire Growth -- 7.5.4 Electron‐Beam‐Induced Deposition -- 7.5.5 REDOX Reactions -- 7.5.6 Gas Adsorption Sites -- 7.6 Review of Benefits and Limitations -- 7.7 Take‐Home Messages -- References -- Chapter 8 Multimodal and Correlative Microscopy -- 8.1 Multimodal TEM -- 8.1.1 Parallel Ion Electron Spectrometry (PIES) -- 8.1.2 Hybrid Microscope -- 8.1.3 Alternatives to Free Space Approach -- 8.1.4 Introducing Light for Other Applications -- 8.1.4.1 Through Sample Chamber Port -- 8.1.4.2 Through Sample Holder -- 8.1.5 Laser Alignment.
8.2 Correlative Approaches -- 8.2.1 TEM and SEM -- 8.2.2 Electron and X‐ray Microscopies and Spectroscopies -- 8.2.2.1 Portable Reactor for Various Platforms -- 8.2.2.2 Independent Correlative Measurements -- 8.3 Take Home Messages -- References -- Chapter 9 Data Processing and Machine Learning -- 9.1 History of Image Simulation and Processing -- 9.1.1 Image Simulations -- 9.1.2 Image Processing -- 9.2 Current Status -- 9.2.1 Progress for Image Simulations -- 9.2.2 Progress in Data (Image) Processing -- 9.3 Data Management -- 9.4 Data Processing and Machine Learning (ML) -- 9.4.1 What Is Machine Learning? -- 9.4.1.1 Unsupervised ML -- 9.4.1.2 Supervised ML -- 9.4.2 Motivation -- 9.4.3 Current Status -- 9.5 Select Applications -- 9.5.1 Noise Reduction -- 9.5.2 Structure Determination -- 9.5.2.1 Diffraction Pattern Analysis -- 9.5.2.2 Image Analysis -- 9.5.2.3 Atomic Column Heights (3‐D Structure) -- 9.5.2.4 Other Applications -- 9.6 Future Needs -- 9.7 Limitations -- 9.8 Take Home Messages -- References -- Chapter 10 Future Vision -- 10.1 Historical Aspect -- 10.2 Current Status -- 10.2.1 ETEM -- 10.2.2 UEM and DTEM -- 10.2.3 Stroboscopic TEM -- 10.2.4 PIES -- 10.3 Technical Challenges -- 10.3.1 List of Major Workshops -- 10.3.2 Open Challenges and Technical Roadmaps -- 10.3.2.1 Specific for Battery Research -- 10.3.2.2 Specific for Liquid‐Cell TEM -- 10.3.2.3 Specific for Catalysis -- 10.3.2.4 Specific for Quantum Materials -- 10.4 Developing Relevant Strategies -- 10.4.1 Modifying Base TEM/STEM Unit -- 10.4.2 TEM Holders with Multiple Stimuli -- 10.4.3 Automation and Autonomous Operation -- 10.4.3.1 Automation -- 10.4.3.2 Autonomous Experiments -- 10.5 Take Home Messages -- References -- Index -- EULA.
Record Nr. UNINA-9910830832203321
Sharma Renu <1961->  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui