top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Diarylethene molecular photoswitches : concepts and functionalities / / Masahiro Irie
Diarylethene molecular photoswitches : concepts and functionalities / / Masahiro Irie
Autore Irie Masahiro
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (239 pages)
Disciplina 547.7
Soggetto topico Molecular machinery
ISBN 3-527-82286-0
3-527-34642-2
3-527-82285-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 General Introduction -- 1.2 Discovery of Diarylethene Molecular Photoswitches -- References -- Chapter 2 Reaction Mechanism -- 2.1 Basic Concepts -- 2.2 Theoretical Study -- 2.3 Reaction Dynamics -- 2.3.1 Cyclization Reaction -- 2.3.2 Cycloreversion Reaction -- References -- Chapter 3 Photoswitching Performance -- 3.1 Quantum Yield -- 3.1.1 Photocyclization Quantum Yield -- 3.1.2 Solvent Effect on Cyclization Quantum Yield -- 3.1.3 Photocycloreversion Quantum Yield -- 3.2 Thermal Stability -- 3.3 Fatigue Resistance -- 3.4 Fluorescence Property -- 3.4.1 Turn‐Off Mode Photoswitching -- 3.4.2 Turn‐On Mode Photoswitching -- 3.5 Chiral Property -- References -- Chapter 4 Photoswitchable Crystals -- 4.1 Dichroism -- 4.2 X‐Ray Crystallographic Analysis -- 4.3 Quantum Yield -- 4.4 Multicolored Systems and Nano‐Layered Periodic Structures -- 4.5 Fluorescent Crystals -- 4.6 Photomechanical Response -- 4.6.1 Surface Morphology Change -- 4.6.2 Reversible Shape Change -- 4.6.3 Bending Response of Mixed Crystals -- References -- Chapter 5 Memory -- 5.1 Single‐Molecule Memory -- 5.2 Near‐Field Optical Memory -- 5.3 Three‐Dimensional Optical Memory -- 5.4 Readout Using Infrared Absorption, Raman Scattering, and Refractive Index Changes -- References -- Chapter 6 Switches -- 6.1 Single‐Molecule Conductance Photoswitch -- 6.2 Optical Switch Based on Refractive Index Change -- 6.3 Magnetism -- References -- Chapter 7 Surface Properties -- 7.1 Surface Wettability -- 7.2 Selective Metal Deposition -- 7.3 Subwavelength Nanopatterning -- References -- Chapter 8 Polymers and Liquid Crystals -- 8.1 Polymers -- 8.2 Liquid Crystals -- References -- Chapter 9 Applications -- 9.1 Organic Field‐Effect Transistors (OFETs) -- 9.2 Metal Organic Frameworks (MOFs).
9.3 Super‐Resolution Fluorescence Microscopy -- 9.3.1 Control of Cycloreversion Quantum Yield -- 9.3.2 Fatigue Resistance -- 9.3.3 Photoswitching with Single‐Wavelength Visible Light -- 9.3.4 Super‐Resolution Bioimaging -- 9.4 Chemical Reactivity Control -- 9.5 Biological Activity -- 9.6 Color Dosimeters -- References -- Appendix A Synthesis Procedures of Typical Diarylethenes -- A.1 1,2‐Bis(2,4‐dimethyl‐5‐phenyl‐3‐thienyl)perfluorocyclopentene (7) [5-7] -- A.2 1,2‐Bis(2‐ethyl‐6‐phenyl‐1‐benzothiophene‐1,1‐ dioxide‐3‐yl)‐perfluorocyclopenetene (11) [8-10] -- References -- Index -- EULA.
Record Nr. UNINA-9910830965203321
Irie Masahiro  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electron spin resonance spectroscopy of organic radicals / / Fabian Gerson, Walter Huber
Electron spin resonance spectroscopy of organic radicals / / Fabian Gerson, Walter Huber
Autore Gerson Fabian
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2003]
Descrizione fisica 1 online resource (482 p.)
Disciplina 543.67
Soggetto topico Electron paramagnetic resonance spectroscopy
ISBN 1-280-52033-7
3-527-60524-X
9786610520336
3-527-60162-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electron Spin Resonance Spectroscopy of Organic Radicals; Contents; Preface; Abbreviations and Symbols; A General Part; 1 Physical Fundamentals of Electron Spin Resonance; 1.1 Spin and Magnetic Moment of Electron; 1.2 Zeeman Splitting and Resonance Condition; 1.3 Spin-lattice Relaxation; 1.4 Line-width and Line-form; 2 Paramagnetic Organic Species and Their Generation; 2.1 Spin Multiplicity; 2.2 Neutral Radicals; 2.3 Radical Ions; 2.4 Triplets: Electron-Electron Magnetic Interaction; 3 Electron-Nuclear Magnetic Interaction; 3.1 Nuclear Magnetism; 3.2 Hyperfine Splitting of ESR Signal
4 Spin Density, Spin Population, Spin Polarization, and Spin Delocalization4.1 Concepts; 4.2 π Radicals; 4.3 σ Radicals; 4.4 Triplet States; 4.5 Calculations of Spin Populations; 5 Multiresonance; 5.1 Historical Note; 5.2 ENDOR; 5.3 TRIPLE Resonance; 5.4 ELDOR; 6 Taking and Analyzing ESR Spectra; 6.1 Instrumentation; 6.2 g(e) Factor; 6.3 Optimal Conditions; 6.4 Unravelling Hyperfine Pattern; 6.5 Assignment and Sign of Coupling Constants; 6.6 Ion Pairing; 6.7 Intramolecular Dynamic Processes; B Special Part; 7 Organic Radicals Centered on One, Two, or Three Atoms
7.1 C-, N-, and O-centered Radicals7.2 Si-, P-, and S-centered Radicals; 7.3 CC-, NN-, and OO-centered Radicals; 7.4 NO- and NO(2)-centered Radicals; 7.5 PO-, PP-, SO-, SS-, and SO(2)-centered Radicals; 8 Conjugated Hydrocarbon Radicals; 8.1 Theoretical Introduction; 8.2 Odd Alternant Radicals; 8.3 Odd Nonalternant Radicals and Radical Dianions; 8.4 Even Alternant Radical Ions; 8.5 Even Nonalternant Radical Ions; 8.6 Radicals and Radical Ions with a Perturbed π Perimeter; 8.7 Radical Ions of Phanes; 8.8 Radical Ions of Radialenes; 9 Conjugated Radicals with Heteroatoms; 9.1 Neutral Radicals
9.2 Radical Anions of Electron Acceptors9.3 Radical Cations of Electron Donors; 9.4 Radical Cations with Special Structures; 9.5 Radical Ions of Multi-redox Systems; 10 Saturated Hydrocarbon Radicals; 10.1 Radical Cations of Alkanes; 10.2 Structurally Modified Radical Cations; 11 Biradicals and Triplet-state Molecules; 11.1 Biradicals; 11.2 Molecules in Photoexcited Triplet State; 11.3 Molecules in Ground or Thermally Accessible Triplet State; Appendices; A.1 Nitroxyls as Spin Labels and Spin Adducts; A.2 Hyperfine Splitting by Alkali-Metal Nuclei in Counterions of Radical Anions; References
Index
Record Nr. UNINA-9910830498103321
Gerson Fabian  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2003]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronic processes in organic semiconductors : an introduction / / Anna Köhler, Heinz Bässler
Electronic processes in organic semiconductors : an introduction / / Anna Köhler, Heinz Bässler
Autore Köhler Anna (Professor of Experimental Physics)
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (422 p.)
Disciplina 621.38152
Soggetto topico Organic electronics
Soggetto genere / forma Electronic books.
ISBN 3-527-68516-2
3-527-68517-0
3-527-68514-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; Table of Boxes; Chapter 1 The Electronic Structure of Organic Semiconductors; 1.1 Introduction; 1.1.1 What Are ""Organic Semiconductors""?; 1.1.2 Historical Context; 1.2 Different Organic Semiconductor Materials; 1.2.1 Molecular Crystals; 1.2.2 Amorphous Molecular Films; 1.2.3 Polymer Films; 1.2.4 Further Related Compounds; 1.2.5 A Comment on Synthetic Approaches; 1.3 Electronic States of a Molecule; 1.3.1 Atomic Orbitals in Carbon; 1.3.2 From Atomic Orbitals to Molecular Orbitals; 1.3.3 From Orbitals to States; 1.3.4 Singlet and Triplet States
1.4 Transitions between Molecular States1.4.1 The Potential Energy Curve; 1.4.2 Radiative Transitions: Absorption and Emission; 1.4.2.1 The Electronic Factor; 1.4.2.2 The Vibrational Factor; 1.4.2.3 The Spin Factor; 1.4.3 A Classical Picture of Light Absorption; 1.4.3.1 The Lorentz Oscillator Model and the Complex Refractive Index; 1.4.3.2 Relating Experimental and Quantum Mechanical Quantities: The Einstein Coefficients, the Strickler-Berg Expression, and the Oscillator Strength; 1.4.4 Non-Radiative Transitions: Internal Conversion and Intersystem Crossing
1.4.4.1 The Franck-Condon Factor F and the Energy Gap Law1.4.4.2 The Electronic Coupling J; 1.4.4.3 Accepting Modes, Promoting Modes, and the Isotope Rule; 1.4.4.4 Implications of the Energy Gap Law; 1.4.4.5 The Strong Coupling Limit; 1.4.5 Basic Photophysical Parameters: Lifetimes and Quantum Yields; 1.5 Spectroscopic Methods; 1.5.1 Photoluminescence Spectra, Lifetimes, and Quantum Yields; 1.5.1.1 Steady State Spectra and Quantum Yields; 1.5.1.2 Spectra and Lifetimes in the Nanosecond to Second Range; 1.5.1.3 Spectra and Lifetimes in the Picosecond to Nanosecond Range
1.5.1.4 Spectra and Time Scales below the Picosecond Range1.5.2 Excited State Absorption Spectra; 1.5.2.1 Steady State Spectra (Photoinduced Absorption); 1.5.2.2 Spectra in the Nanosecond Range (Flash Photolysis); 1.5.2.3 Spectra in the Femtosecond Range (fs Pump-Probe Measurements); 1.5.3 Fluorescence Excitation Spectroscopy; 1.6 Further Reading; References; Chapter 2 Charges and Excited States in Organic Semiconductors; 2.1 Excited Molecules from the Gas Phase to the Amorphous Film; 2.1.1 Effects due to Polarization; 2.1.2 Effects due to Statistical Averaging
2.1.3 Effects due to Environmental Dynamics2.1.4 Effects due to Electronic Coupling between Identical Molecules - Dimers and Excimers; 2.1.4.1 Electronic Interaction in the Ground State; 2.1.4.2 Electronic Interaction in the Excited State; 2.1.4.3 Oscillator Strength of Dimer and Excimer Transitions; 2.1.4.4 Singlet and Triplet Dimers/Excimers; 2.1.5 Effects due to Electronic Coupling between Dissimilar Molecules - Complexes and Exciplexes; 2.1.6 Electromers and Electroplexes; 2.2 Excited Molecules in Crystalline Phases - The Frenkel Exciton
2.2.1 The Frenkel Exciton Concept for One Molecule per Unit Cell
Record Nr. UNINA-9910131450103321
Köhler Anna (Professor of Experimental Physics)  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronic processes in organic semiconductors : an introduction / / Anna Köhler, Heinz Bässler
Electronic processes in organic semiconductors : an introduction / / Anna Köhler, Heinz Bässler
Autore Köhler Anna (Professor of Experimental Physics)
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (422 p.)
Disciplina 621.38152
Soggetto topico Organic electronics
ISBN 3-527-68516-2
3-527-68517-0
3-527-68514-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; Table of Boxes; Chapter 1 The Electronic Structure of Organic Semiconductors; 1.1 Introduction; 1.1.1 What Are ""Organic Semiconductors""?; 1.1.2 Historical Context; 1.2 Different Organic Semiconductor Materials; 1.2.1 Molecular Crystals; 1.2.2 Amorphous Molecular Films; 1.2.3 Polymer Films; 1.2.4 Further Related Compounds; 1.2.5 A Comment on Synthetic Approaches; 1.3 Electronic States of a Molecule; 1.3.1 Atomic Orbitals in Carbon; 1.3.2 From Atomic Orbitals to Molecular Orbitals; 1.3.3 From Orbitals to States; 1.3.4 Singlet and Triplet States
1.4 Transitions between Molecular States1.4.1 The Potential Energy Curve; 1.4.2 Radiative Transitions: Absorption and Emission; 1.4.2.1 The Electronic Factor; 1.4.2.2 The Vibrational Factor; 1.4.2.3 The Spin Factor; 1.4.3 A Classical Picture of Light Absorption; 1.4.3.1 The Lorentz Oscillator Model and the Complex Refractive Index; 1.4.3.2 Relating Experimental and Quantum Mechanical Quantities: The Einstein Coefficients, the Strickler-Berg Expression, and the Oscillator Strength; 1.4.4 Non-Radiative Transitions: Internal Conversion and Intersystem Crossing
1.4.4.1 The Franck-Condon Factor F and the Energy Gap Law1.4.4.2 The Electronic Coupling J; 1.4.4.3 Accepting Modes, Promoting Modes, and the Isotope Rule; 1.4.4.4 Implications of the Energy Gap Law; 1.4.4.5 The Strong Coupling Limit; 1.4.5 Basic Photophysical Parameters: Lifetimes and Quantum Yields; 1.5 Spectroscopic Methods; 1.5.1 Photoluminescence Spectra, Lifetimes, and Quantum Yields; 1.5.1.1 Steady State Spectra and Quantum Yields; 1.5.1.2 Spectra and Lifetimes in the Nanosecond to Second Range; 1.5.1.3 Spectra and Lifetimes in the Picosecond to Nanosecond Range
1.5.1.4 Spectra and Time Scales below the Picosecond Range1.5.2 Excited State Absorption Spectra; 1.5.2.1 Steady State Spectra (Photoinduced Absorption); 1.5.2.2 Spectra in the Nanosecond Range (Flash Photolysis); 1.5.2.3 Spectra in the Femtosecond Range (fs Pump-Probe Measurements); 1.5.3 Fluorescence Excitation Spectroscopy; 1.6 Further Reading; References; Chapter 2 Charges and Excited States in Organic Semiconductors; 2.1 Excited Molecules from the Gas Phase to the Amorphous Film; 2.1.1 Effects due to Polarization; 2.1.2 Effects due to Statistical Averaging
2.1.3 Effects due to Environmental Dynamics2.1.4 Effects due to Electronic Coupling between Identical Molecules - Dimers and Excimers; 2.1.4.1 Electronic Interaction in the Ground State; 2.1.4.2 Electronic Interaction in the Excited State; 2.1.4.3 Oscillator Strength of Dimer and Excimer Transitions; 2.1.4.4 Singlet and Triplet Dimers/Excimers; 2.1.5 Effects due to Electronic Coupling between Dissimilar Molecules - Complexes and Exciplexes; 2.1.6 Electromers and Electroplexes; 2.2 Excited Molecules in Crystalline Phases - The Frenkel Exciton
2.2.1 The Frenkel Exciton Concept for One Molecule per Unit Cell
Record Nr. UNINA-9910830991703321
Köhler Anna (Professor of Experimental Physics)  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Enhanced carbon-based materials and their applications / / edited by Poh Choon Ooi, Mengying Xie, Chang Fu Dee
Enhanced carbon-based materials and their applications / / edited by Poh Choon Ooi, Mengying Xie, Chang Fu Dee
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (313 pages)
Disciplina 905
Soggetto topico Carbon
ISBN 3-527-82968-7
3-527-82967-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Enhanced Carbon‐Based Materials and Their Applications -- 1.1 Overview -- 1.2 Glance of Carbon‐Based Materials -- 1.3 Applications -- 1.4 Outline of This Book -- References -- Chapter 2 Carbon‐Based Nanomaterials: Synthesis and Characterizations -- 2.1 Introduction -- 2.1.1 Carbon -- 2.1.2 Allotropes of Carbon -- 2.2 Synthesis of Carbon‐Based Nanostructures -- 2.2.1 Chemical Vapor Deposition Technique -- 2.2.1.1 Thermal Chemical Vapor Deposition -- 2.2.1.2 Plasma‐Enhanced Chemical Vapor Deposition -- 2.2.2 Ion Irradiation Technique -- 2.3 Characterization -- 2.3.1 Raman Spectroscopic Characterization of Carbon Nanostructure Materials -- 2.3.2 Electron Microscopy -- 2.3.2.1 Scanning Electron Microscopy -- 2.3.2.2 Transmission Electron Microscopy -- 2.3.2.3 In Situ Transmission Electron Microscopy -- 2.4 Summary -- References -- Chapter 3 Functional Carbon‐Based Nanomaterials and Sensor Applications -- 3.1 Introduction to Low‐Dimensional Carbon‐Based Nanomaterials -- 3.2 Modification of Low‐Dimensional Carbon‐Based Nanomaterials -- 3.3 Plasma‐Based Synthesis of Heteroatom‐Doped Graphene -- 3.3.1 In Situ Plasma‐Assisted Growth and Doping -- 3.3.2 Post‐Growth Plasma Treatment -- 3.3.3 Properties of Heteroatom‐Doped Graphene -- 3.4 Doping Modulation in Graphene for Optoelectronic Applications -- 3.5 Imperfections in Graphene for Strain-Pressure‐ Sensing Applications -- 3.6 Structural Defect in Graphene for Gas‐Sensing Applications -- References -- Chapter 4 Fabrication Techniques of Resistive Switching Carbon‐Based Memories -- 4.1 Introduction - Emerging Carbon‐Based Memory Technologies -- 4.2 Memristor‐Based Memory -- 4.3 Substrate Options -- 4.4 Effect of Electrode Materials -- 4.5 Fabrication Methods of Metal/Insulator/Metal Structure -- 4.5.1 Spin Coating -- 4.5.2 Spray Coating.
4.5.3 Dip Coating -- 4.5.4 Inkjet Printing -- 4.5.5 Plasma Polymerization (PP) Deposition -- 4.6 Conclusion -- References -- Chapter 5 Carbonous‐Based Optoelectronic Devices -- 5.1 Introduction -- 5.2 Graphene‐Based Optoelectronics -- 5.3 Carbonous Materials in Photovoltaics -- 5.4 Carbonous Materials in Dye‐Sensitized Solar Cells -- 5.5 Carbonous Materials in Perovskite Solar Cells (PSCs) -- References -- Chapter 6 Thermoelectric Energy Harvesters and Applications -- 6.1 Introduction -- 6.2 Thermoelectric Effect and Properties -- 6.2.1 Seebeck Effect -- 6.2.2 Peltier Effect -- 6.2.3 Thomson Effect -- 6.2.3.1 Figure‐of‐Merit and Power Factor -- 6.3 Thermoelectric Power and Efficiency -- 6.3.1 Simplified One‐Dimensional Decoupled Model -- 6.3.2 Three‐Dimensional Coupled Multiphysics Model -- 6.4 Thermoelectric Materials -- 6.4.1 Inorganic Thermoelectric Materials -- 6.4.2 Organic Thermoelectric Materials -- 6.4.3 Hybrid Organic-Inorganic Thermoelectric Materials -- 6.5 Application of Organic Thermoelectric Generators -- 6.6 Summary/Future Perspective -- References -- Chapter 7 Carbon‐Enhanced Piezoelectric Materials and Applications -- 7.1 Introduction -- 7.2 Carbon‐Enhanced Piezoelectric Materials -- 7.2.1 Inorganic Piezoelectric Materials -- 7.2.2 Organic Piezoelectric Materials -- 7.2.2.1 Carbon Nanotubes -- 7.2.2.2 Graphene and Graphene‐Based Materials -- 7.2.2.3 Quantum Dots -- 7.3 Fabrication Methods -- 7.4 Applications -- 7.4.1 Energy Harvesters -- 7.4.2 Biomechanical Sensor -- 7.4.3 Other Applications -- 7.5 Conclusion -- Acknowledgment -- References -- Chapter 8 Actuators Based On the Carbon‐Enhanced Materials -- 8.1 Introduction -- 8.2 Actuation on the Molecular Scale -- 8.3 Carbon Nanomaterials -- 8.3.1 Graphene and Related Materials -- 8.3.2 Carbon Nanotubes -- 8.3.3 Fullerenes -- 8.4 Carbon‐Based Actuation.
8.4.1 Carbon Nanotube‐Based Actuators -- 8.4.2 Graphene and Graphene Oxide Actuators -- 8.4.3 Fullerene‐Based Actuators -- 8.5 Challenges and Prospectives of Actuators Based on Carbon Nanostructures -- References -- Chapter 9 Display Based on Carbon‐Enhanced Materials -- 9.1 Introduction -- 9.2 Display Based on CDs -- 9.2.1 Synthesis of CDs -- 9.2.2 Optical Properties of CDs in Display -- 9.2.3 CDs in LEDs Display Applications -- 9.2.3.1 Photoluminescent LEDs -- 9.2.3.2 Electroluminescent LEDs -- 9.3 Display Based on Carbon Nanotubes -- 9.3.1 CNTs Emission Material in Display -- 9.3.2 CNTs as Alignment and Polarized Material in LCDs -- 9.3.3 CNT-TFT in LCD and OLED -- 9.3.4 Transparent Electrode and Touch Panel in the Display -- 9.4 Display Based on Graphene and Graphene Oxide -- 9.4.1 Graphene and Graphene Oxide as Liquid‐Crystal Materials -- 9.4.2 Graphene Transparent Electrode in the Display -- 9.5 Summary and Outlook -- References -- Chapter 10 Enhanced Carbon‐Based Materials and Their Applications -- References -- Index -- EULA.
Record Nr. UNINA-9910830369503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Enzyme engineering : selective catalysts for applications in biotechnology, organic chemistry, and life science / / Manfred T. Reetz, Zhoutong Sun, Ge Qu
Enzyme engineering : selective catalysts for applications in biotechnology, organic chemistry, and life science / / Manfred T. Reetz, Zhoutong Sun, Ge Qu
Autore Reetz Manfred T.
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (402 pages)
Disciplina 929.374
Soggetto topico Enzymes - Biotechnology
ISBN 3-527-83687-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Authors -- Chapter 1 Introduction to Directed Evolution and Rational Design as Protein Engineering Techniques -- 1.1 Methods and Aims of Directed Enzyme Evolution -- 1.2 History of Directed Enzyme Evolution -- 1.3 Methods and Aims of Rational Design of Enzymes -- References -- Chapter 2 Screening and Selection Techniques -- 2.1 Introductory Remarks -- 2.2 Screening Methods -- 2.3 Selection Methods -- 2.4 Conclusions and Perspectives -- References -- Chapter 3 Gene Mutagenesis Methods in Directed Evolution and Rational Enzyme Design -- 3.1 Introductory Remarks -- 3.2 Directed Evolution Approaches -- 3.2.1 Mutator Strains -- 3.2.2 Error‐Prone Polymerase Chain Reaction (epPCR) -- 3.2.3 Whole Gene Insertion/Deletion Mutagenesis -- 3.2.4 Saturation Mutagenesis as a Privileged Method: Away from Blind Directed Evolution -- 3.2.5 DNA Shuffling and Related Recombinant Gene Mutagenesis Methods -- 3.2.6 Circular Mutation and Other Domain Swapping Techniques -- 3.2.7 Solid‐Phase Combinatorial Gene Synthesis as a PCR‐Independent Mutagenesis Method for Mutant Library Creation -- 3.2.7.1 Introductory Remarks -- 3.2.7.2 The Sloning Approach to Solid‐Phase Gene Synthesis of a Mutant Library: Comparison with the Respective Molecular Biological Saturation Mutagenesis Library -- 3.2.7.3 The Twist Approach to Solid‐Phase Gene Synthesis of a Mutant Library: Comparison with Molecular Biological Saturation Mutagenesis Library -- 3.2.8 Computational Tools and the Role of Machine Learning (ML) in Directed Evolution and Rational Enzyme Design -- 3.2.8.1 Introductory Remarks -- 3.2.8.2 Designing Mutant Libraries and Estimating Library Completeness -- 3.3 Diverse Approaches to Rational Enzyme Design -- 3.3.1 Introductory Remarks.
3.4 Merging Semi‐rational Directed Evolution and Rational Enzyme Design by Focused Rational Iterative Site‐Specific Mutagenesis (FRISM) -- 3.5 Conclusions and Perspectives -- References -- Chapter 4 Guidelines for Applying Gene Mutagenesis Methods in Organic Chemistry, Pharmaceutical Applications, and Biotechnology -- 4.1 Some General Tips -- 4.1.1 Rational Design -- 4.1.2 Directed Evolution -- 4.2 Rare Cases of Comparative Directed Evolution Studies -- 4.2.1 Converting a Galactosidase into a Fucosidase -- 4.2.2 Enhancing and Inverting the Enantioselectivity of the Lipase from Pseudomonas aeruginosa (PAL) -- 4.3 Choosing the Best Strategy When Applying Saturation Mutagenesis -- 4.3.1 General Guidelines -- 4.3.2 Choosing Optimal Pathways in Iterative Saturation Mutagenesis (ISM) and Escaping from Local Minima in Fitness Landscapes -- 4.3.3 Systematization of Saturation Mutagenesis with Further Practical Tips -- 4.3.4 Single Code Saturation Mutagenesis (SCSM): Use of a Single Amino Acid as Building Block -- 4.3.5 Triple Code Saturation Mutagenesis (TCSM): A Viable Compromise When Choosing Optimal Reduced Amino Acid Alphabets in CAST/ISM -- 4.4 Techno‐economical Analysis of Saturation Mutagenesis Strategies -- 4.5 Generating Mutant Libraries by Combinatorial Solid‐Phase Gene Synthesis: The Future of Directed Evolution? -- 4.6 Fusing Directed Evolution and Rational Design: New Examples of Focused Rational Iterative Site‐Specific Mutagenesis (FRISM) -- References -- Chapter 5 Tables of Selected Examples of Directed Evolution and Rational Design of Enzymes with Emphasis on Stereo‐ and Regio‐selectivity, Substrate Scope and/or Activity -- 5.1 Introductory Explanations -- References -- Chapter 6 Protein Engineering of Enzyme Robustness Relevant to Organic and Pharmaceutical Chemistry and Applications in Biotechnology -- 6.1 Introductory Remarks.
6.2 Rational Design of Enzyme Thermostability and Resistance to Hostile Organic Solvents -- 6.3 Ancestral and Consensus Approaches and Their Structure‐Guided Extensions -- 6.4 Further Computationally Guided Methods for Protein Thermostabilization -- 6.4.1 SCHEMA Approach -- 6.4.2 FRESCO Approach -- 6.4.3 FireProt Approach -- 6.4.4 Constrained Network Analysis (CNA) Approach -- 6.4.5 Alternative Approaches -- 6.5 Directed Evolution of Enzyme Thermostability and Resistance to Hostile Organic Solvents -- 6.6 Application of epPCR and DNA Shuffling -- 6.7 Saturation Mutagenesis in the B‐FIT Approach -- 6.8 Iterative Saturation Mutagenesis (ISM) at Protein-Protein Interfacial Sites for Multimeric Enzymes -- 6.9 Conclusions and Perspectives -- References -- Chapter 7 Artificial Enzymes as Promiscuous Catalysts in Organic and Pharmaceutical Chemistry -- 7.1 Introductory Background Information -- 7.2 Applying Protein Engineering for Tuning the Catalytic Profile of Promiscuous Enzymes -- 7.3 Applying Protein Engineering to P450 Monooxygenases for Manipulating Activity and Stereoselectivity of Promiscuous Transformations -- 7.4 Conclusions and Perspectives -- References -- Chapter 8 Learning Lessons from Protein Engineering -- 8.1 Introductory Remarks -- 8.2 Additive Versus Nonadditive Mutational Effects in Fitness Landscapes Revealed by Partial or Complete Deconvolution -- 8.3 Unexplored Chiral Fleeting Intermediates and Their Role in Protein Engineering -- 8.4 Case Studies Featuring Mechanistic, Structural, and/or Computational Analyses of the Source of Evolved Stereo‐ and/or Regioselectivity -- 8.4.1 Esterase -- 8.4.2 Epoxide Hydrolase -- 8.4.3 Ene‐reductase of the Old Yellow Enzyme (OYE) -- 8.4.4 Cytochrome P450 Monooxygenase -- 8.4.5 Analysis of Baeyer-Villiger Monooxygenase with Consideration of Fleeting Chiral Intermediates.
8.5 Conclusions and Suggestions for Further Theoretical Work -- References -- Chapter 9 Perspectives for Future Work -- 9.1 Introductory Remarks -- 9.2 Extending Applications in Organic and Pharmaceutical Chemistry -- 9.3 Extending Applications in Biotechnology -- 9.4 Patent Issues -- 9.5 Final Comments -- References -- INDEX -- EULA.
Record Nr. UNINA-9910686500703321
Reetz Manfred T.  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flow batteries : from fundamentals to applications / / edited by Christina Roth, Jens Noack, and Maria Skyllas-Kazacos
Flow batteries : from fundamentals to applications / / edited by Christina Roth, Jens Noack, and Maria Skyllas-Kazacos
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (1281 pages)
Disciplina 621.312424
Soggetto topico Oxidation-reduction reaction
Storage batteries - Recycling
ISBN 3-527-83277-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- About the Editors -- Part I Fundamentals -- Chapter 1 The Need for Stationary Energy Storage -- 1.1 Power Systems -- 1.1.1 The Role of Electricity in Energy Supply -- 1.1.2 The Development of DC and AC Power Systems -- 1.1.3 The Early Use of Energy Storage on Power Systems -- 1.1.4 Centralised and Distributed Generation -- 1.1.5 Power System Infrastructure -- 1.1.6 Other Types of Electricity Generation and System Control -- 1.2 The Need for Electricity Storage -- 1.2.1 Operation of a Modern Power Network - The Requirement for Operational Stability -- 1.2.2 Requirements for Storage and the Use of Alternative Technologies, such as Demand‐Side Response, Interconnectors, and Flexible Generation -- 1.2.3 Optimisation of Power Networks for Technical Performance, Economic Efficiency, and Sustainability - The Energy Trilemma -- 1.3 Changes in Electricity Network Operation: Interconnected Systems, Microgrids, and Standalone Systems -- 1.3.1 The Growth in Renewable Energy Generation -- 1.3.2 The Overlap Between Stationary Storage and Transportable and Mobile Applications -- 1.4 The Parameters for Storage: Short Term, Small Scale to Long Term, Long Duration, and Large‐Scale Storage -- 1.4.1 Stationary Storage Applications -- 1.5 The Need for Longer‐Duration Energy Storage -- 1.5.1 Market Estimates -- 1.6 Energy Storage Types -- 1.6.1 Pumped‐Hydro Energy Storage -- 1.6.2 Alternatives to Pumped‐Hydro Storage -- 1.6.3 Compressed Air Energy Storage -- 1.6.4 The Hydrogen Cycle -- 1.7 Battery Energy Storage Technologies -- 1.7.1 Flow Batteries -- 1.7.2 Flow Battery Ancillary Systems -- 1.7.2.1 Advantages and Benefits -- 1.8 The Deployment of Flow Battery and Energy Storage -- 1.9 A Future Outlook -- References -- Chapter 2 History of Flow Batteries -- 2.1 Early Developments (1884-1963).
2.2 Fe/Cr FBs (1974 - mid‐2010s) -- 2.3 Zinc/Bromine FBs (1977-mid 2010s) -- 2.4 1977-1981 -- 2.5 Vanadium‐Based Flow Batteries (1980s-2010) -- 2.6 Regenesys Polysulphide/Bromide Flow Battery (1984-Early 2000s) -- 2.7 Other Flow‐Battery Chemistries 2000-2020 -- 2.8 Organic Flow Batteries -- 2.9 Advanced Flow‐Battery Concepts -- 2.10 Perspective -- References -- Chapter 3 General Electrochemical Fundamentals of Batteries -- 3.1 Introduction -- 3.2 Thermodynamics -- 3.3 Kinetics -- 3.4 Practical Aspects and Consequences -- Acknowledgments -- References -- Chapter 4 General Aspects and Fundamentals of Flow Batteries -- 4.1 Introduction -- 4.2 The Flow Battery -- 4.3 Main Components of a FB Energy Storage System -- 4.4 Advantages and Environmental Benefits -- 4.5 Types of FB -- 4.6 Fields of Application -- 4.7 Ideal Characteristics of a FB -- 4.8 Engineering Aspects of FBs -- 4.9 Fluid Flow Aspects of FBs -- 4.10 Typical Figures of Merit -- 4.11 Conclusions -- Acknowledgments -- References -- Chapter 5 Redox‐mediated Processes -- 5.1 Fundamental Theory on Redox‐mediated Processes -- 5.2 Redox‐mediated Processes: Various Applications for Flow Batteries -- 5.2.1 Dual‐flow Circuit Flow Battery -- 5.2.2 Solid Boosters -- 5.2.2.1 Thermodynamics of Solid Boosters: Equilibrium -- 5.2.2.2 Kinetics of Solid Boosters -- 5.2.2.3 System Design -- 5.3 Conclusion -- References -- Chapter 6 Membranes for Flow Batteries -- 6.1 Introduction -- 6.2 Membrane Characteristics -- 6.2.1 Ion‐Exchange Capacity (IEC) -- 6.2.2 Water Uptake (WU), Swelling Ratio (SR), and Water Transport -- 6.2.3 Ionic Conductivity (σ) -- 6.2.4 Permselectivity of Chemical Species -- 6.2.5 Chemical Stability -- 6.2.6 Thermal and Mechanical Stability -- 6.2.7 Cost of the IEMs -- 6.3 Classification of Membranes -- 6.3.1 Cation‐Exchange Membranes (CEMs) -- 6.3.1.1 Perfluorinated Membranes.
6.3.1.2 Non‐perfluorinated Membranes -- 6.3.2 Anion‐Exchange Membranes (AEMs) -- 6.3.3 Amphoteric Ion‐Exchange Membranes (AIEMs) -- 6.3.4 Hybrid Membranes (HMs) -- 6.3.4.1 Hybrid Inorganic-Organic IEMs -- 6.3.4.2 Organic Polymer Blends as IEMs -- 6.3.5 Porous Membranes -- 6.4 Conclusions -- References -- Chapter 7 Standards for Flow Batteries -- 7.1 Introduction -- 7.2 A Definition of Flow Batteries -- 7.3 International Standards for Flow Batteries -- 7.3.1 Standards of the International Electrotechnical Commission (IEC) -- 7.3.2 Standards of the Institute of Electrical and Electronics Engineers -- 7.4 Other National and International Standards, as well as Other Documents -- 7.5 Chinese National Standards -- 7.6 Conclusions -- References -- Chapter 8 Safety Considerations of the Vanadium Flow Battery -- 8.1 Regulatory Framework -- 8.2 Thermal Hazards -- 8.3 Chemical Hazards -- 8.4 Electrical Hazards -- 8.5 Other Considerations -- 8.6 Summary & -- Outlook -- References -- Chapter 9 A Student Workshop in Sustainable Energy Technology: The Principles and Practice of a Rechargeable Flow Battery -- 9.1 Introduction -- 9.2 Laboratory Experiment -- 9.2.1 Chemicals -- 9.2.2 Materials for Construction -- 9.3 Results and Discussion -- 9.3.1 Preparation of the Flow Battery -- 9.3.2 Electrochemical Reactions in a Soluble Lead-Acid Flow Battery -- 9.3.3 Effect of Current Density on Cell Voltage -- 9.4 Assessment of Hazards -- 9.5 Teaching Assessment and Learning Outcomes -- 9.6 Conclusions -- Acknowledgments -- Appendix: Supplementary Information for Students -- References -- Part II Characterization of Flow Batteries and Materials -- Chapter 10 Characterization Methods in Flow Batteries: A General Overview -- 10.1 General Overview -- 10.1.1 Physicochemical Methods in General -- 10.1.2 Characterization Techniques for Redox‐Flow Batteries.
10.1.2.1 Physicochemical Characterization -- 10.1.2.2 Electrochemical Characterization -- 10.1.2.3 General Observations -- 10.1.3 Further Outline of Part II -- Acknowledgments -- References -- Chapter 11 Electrochemical Methods -- 11.1 Fundamental Definitions -- 11.2 Cyclic Voltammetry -- 11.2.1 Measuring Cyclic Voltammetry -- 11.2.2 Interpreting CV and LSV at Planar Electrodes - The Randles-Ševčík Relations -- 11.2.3 Strategies for Simulating Cyclic Voltammetry -- 11.2.4 The Diffusion Domain Approximation Approach for Felt Electrodes -- 11.2.5 The Real‐Space Simulation Approach -- 11.2.6 Remarks on Cyclic Voltammetry -- 11.3 Electrochemical Impedance Spectroscopy -- 11.3.1 Principles and Advantages of Electrochemical Impedance Spectroscopy -- 11.3.2 Interpreting Electrochemical Impedance Spectroscopy -- 11.3.3 Impedance of Macrohomogeneous Porous Electrodes - The Paasch Model -- 11.3.4 The Normalization Method -- 11.3.5 The Distribution of Relaxation Times (DRT) Analysis -- 11.3.6 Characteristics of a "Good Impedance" - The Kramers-Kronig Relations -- 11.3.7 Advanced Electroanalytical Techniques -- 11.3.7.1 Hydrodynamic Voltammetry - The Rotating Ring‐Disc Electrode (RRDE) -- 11.3.7.2 Alternating Current Cyclic Voltammetry (ACCV) -- References -- Chapter 12 Radiography and Tomography -- 12.1 Working Principle -- 12.1.1 Morphology of Electrode Materials -- 12.1.2 Visualizing the Flow and Electrolyte Distribution in the Porous Electrode -- 12.1.2.1 Injection of Electrolyte Into the Carbon Electrode (No Potential Control) -- 12.1.2.2 Electrolyte Flow in the Carbon Electrode (Cell Potential Applied) -- 12.2 Outlook -- References -- Chapter 13 Characterization of Carbon Materials -- 13.1 Introduction -- 13.2 Structure of Carbon Materials -- 13.2.1 Raman Spectroscopy -- 13.3 X‐ray Powder Diffraction (XRD) -- 13.4 Surface Chemistry of Carbon Materials.
13.5 Functionalization of Carbons -- 13.5.1 Thermal Methods -- 13.5.1.1 TPD -- 13.5.1.2 TPR/TPO -- 13.5.1.3 TG/TGA -- 13.6 X‐ray Photoelectron Spectroscopy (XPS) -- 13.7 Infrared Spectroscopy -- 13.8 Imaging Techniques -- 13.9 Surface Area Determination and Porosity -- 13.10 Conclusion and Perspectives -- References -- Chapter 14 Characterization of Membranes for Flow Batteries -- 14.1 Introduction -- 14.2 Ex situ Characterization Methods for Membranes -- 14.2.1 Ion‐Exchange Capacity of Ionomer Membranes -- 14.2.2 Ion Conductivity of Ionogenic Groups in Membranes -- 14.2.3 Ion Permeability of the Ion‐Exchange Membranes -- 14.2.4 Membrane Weight Loss -- 14.2.5 Molecular Weight (Degradation) of Ionomers and Ionomer Membranes -- 14.2.6 Determination of the Thermal Stability of the Membranes -- 14.2.7 Spectroscopical Membrane Characterization -- 14.2.8 Determination of Mechanical Membrane Properties -- 14.2.9 Microscopical Membrane Characterization -- 14.2.10 Water Transfer Behavior -- 14.3 In situ Characterization Methods for Membranes -- 14.3.1 Charge/Discharge Cycles -- 14.3.1.1 Current, Voltage, and Energy Efficiency -- 14.3.1.2 Discharge Capacity and Capacity Retention -- 14.3.2 Open‐Circuit Voltage -- 14.3.3 Electrochemical Impedance Spectroscopy (EIS) -- 14.3.4 In situ Membrane Permeability Estimation -- 14.4 Summary -- References -- Part III Modeling and Simulation -- Chapter 15 Quantum Mechanical Modeling of Flow Battery Materials -- 15.1 Introduction -- 15.2 Fundamental Concepts of Molecular Quantum Mechanics -- 15.3 Density Functional Theory -- 15.4 Computational Electrochemistry at the Atomistic Scale -- 15.5 Applications to FB Materials -- References -- Chapter 16 Mesoscale Modeling and Simulation for Flow Batteries -- 16.1 Mesoscale Modeling Introduction -- 16.2 Mesoscale Modeling of Electrochemical Kinetics.
16.2.1 Electron Transfer Process.
Record Nr. UNINA-9910683400303321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functional biomaterials : design and development for biotechnology, pharmacology, and biomedicine / / edited by Karin Stana Kleinschek, Tamilselvan Mohan
Functional biomaterials : design and development for biotechnology, pharmacology, and biomedicine / / edited by Karin Stana Kleinschek, Tamilselvan Mohan
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (603 pages)
Disciplina 016.016
Soggetto topico Agriculture
ISBN 3-527-82765-X
3-527-82766-8
3-527-82764-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910686751603321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functional polymers for metal-ion batteries / / edited by Shanqing Zhang and Jun Lu
Functional polymers for metal-ion batteries / / edited by Shanqing Zhang and Jun Lu
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (219 pages)
Disciplina 170
Soggetto topico Biochemical engineering
ISBN 3-527-83861-9
3-527-83859-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- About the Contributors -- Introduction -- Chapter 1 Polymeric Electrode Materials in Modern Metal‐ion Batteries -- 1.1 Introduction -- 1.2 Classification of PEMs -- 1.2.1 Carbonyls -- 1.2.2 Organosulfur -- 1.2.3 Organic Nitrogen (N) -- 1.2.4 Conducting Polymers -- 1.2.5 Organic Radicals -- 1.2.6 Superlithiated Compounds -- 1.3 Molecular Engineering of PEMs -- 1.3.1 Specific Energy Density -- 1.3.2 Power Density -- 1.3.3 Cycle Performance -- 1.4 Morphological Engineering of PEMs -- 1.4.1 0D PEMs -- 1.4.2 1D PEMs -- 1.4.3 2D PEMs -- 1.4.4 3D PEMs -- 1.5 Applications of PEMs -- 1.5.1 LIBs -- 1.5.2 SIBs -- 1.5.3 PIBs -- 1.5.4 Multivalent MIBs -- 1.5.4.1 Conducting Polymers -- 1.5.4.2 Carbonyl Compounds -- 1.5.4.3 Imine Compounds -- 1.6 Conclusion and Perspectives -- 1.6.1 Conclusion -- 1.6.2 Perspectives -- References -- Chapter 2 Polymeric Binders in Modern Metal‐ion Batteries -- 2.1 Introduction -- 2.2 General Binding Mechanisms -- 2.3 Classification of Binders -- 2.4 Strategies of Binder Design -- 2.4.1 Strategies to Enhance Mechanical Interlocking -- 2.4.2 Strategies to Enhance Interfacial Bonding -- 2.4.3 Binders with Multiple Functionalities -- 2.5 Application of Binders for Different Energy Materials -- 2.5.1 High‐Voltage Cathodes -- 2.5.2 Li-S Batteries -- 2.5.3 Silicon Anode -- 2.5.4 Sodium‐Ion Batteries -- 2.5.5 Sodium-Sulfur and Potassium-Sulfur Batteries -- 2.6 Conclusion and Perspective -- References -- Chapter 3 Polymeric Separator in Modern Metal‐ion Batteries -- 3.1 Introduction -- 3.2 Functions of Polymeric Separators in Metal‐ion Batteries -- 3.2.1 Essential Properties of Polymeric Separators -- 3.2.1.1 Porosity -- 3.2.1.2 Wettability -- 3.2.1.3 Strength -- 3.2.1.4 Thickness -- 3.2.2 Desirable Functions of Polymeric Separators.
3.3 Classification of Polymeric Separators -- 3.3.1 Nonwoven Separators -- 3.3.2 Nanoporous Membrane Separators -- 3.3.3 Microporous Membrane Separators -- 3.3.4 Composite Membrane Separators -- 3.4 Functional Polymeric Separators for Modern Metal‐ion Batteries -- 3.4.1 Thermal‐resistant Separators -- 3.4.2 Reversible Thermally Induced Shutdown Separators -- 3.4.3 Separators for Metal Dendrite Growth Inhibition -- 3.4.4 Separators for Stopping the Shuttle Effect -- 3.4.5 Stretchable Separators for Flexible Batteries -- 3.4.6 The Separator as Li Source for Recycling Degraded Cathode -- 3.4.7 Super Wettable Separator to Boost Ionic Diffusion -- 3.5 Manufacturing Techniques of Polymeric Separators -- 3.5.1 Conventional Manufacturing Techniques of Polymeric Separators -- 3.5.2 Modern Manufacturing Techniques of Functional Polymeric Separators -- 3.6 Conclusion and Perspectives -- References -- Chapter 4 Polymeric Electrolytes in Modern Metal‐ion Batteries -- 4.1 Introduction -- 4.2 Ion Transport in Polymeric Electrolytes -- 4.2.1 Solid Polymeric Electrolytes -- 4.2.2 Gel Polymeric Electrolytes -- 4.2.3 Composite Polymeric Electrolytes -- 4.3 Property Study -- 4.3.1 Thermal Analysis -- 4.3.2 Structural Analysis -- 4.3.3 Diffraction Technique -- 4.3.4 Conductivity Measurement -- 4.3.5 Nuclear Magnetic Resonance (NMR) -- 4.3.6 Modeling and Theory -- 4.4 Classifications of Polymeric Electrolytes -- 4.4.1 Solid Polymer Electrolytes -- 4.4.1.1 Dispersed Solid Polymer Electrolytes -- 4.4.1.2 Intercalated/Exfoliated Solid Polymer Electrolytes -- 4.4.1.3 Liquid Crystal Containing Polymer Electrolytes -- 4.4.2 Gel Polymer Electrolytes -- 4.4.2.1 Ionic‐Liquid‐based Polymer Electrolytes -- 4.4.2.2 Gel Polymer Electrolytes -- 4.5 Strategies in Designing Solid‐state Electrolytes -- 4.5.1 Pure Polymeric Electrolytes.
4.5.1.1 Classification of Pure Solid Polymer Electrolytes -- 4.5.1.2 Composition of Pure Solid Polymer Electrolytes -- 4.5.1.3 Polymer Hosts -- 4.5.1.4 Conductive Salt -- 4.5.1.5 Research Strategy -- 4.5.2 Gel Polymeric Electrolyte -- 4.5.2.1 Component -- 4.5.2.2 Polymer Matrix -- 4.5.2.3 Plasticizer -- 4.5.2.4 Conductive Lithium Salt -- 4.5.3 Polymeric-Ceramic Composite Electrolyte -- 4.5.3.1 Components of Polymer-Ceramic Composite Electrolytes -- 4.5.3.2 Classification of Polymer-Ceramic Composite Electrolytes -- 4.5.3.3 Research Strategy -- 4.6 Application of Polymer Electrolytes in All‐solid‐state Batteries -- 4.6.1 Lithium Battery System -- 4.6.2 Sodium Battery System -- 4.6.3 Li‐S Battery System -- 4.7 Summary and Prospect -- References -- Index -- EULA.
Record Nr. UNINA-9910829859403321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
GIT : Labor-Fachzeitschrift
GIT : Labor-Fachzeitschrift
Pubbl/distr/stampa Weinheim : , : Wiley-VCH Verlag GmbH & Co. KGaA : , : GIT Verlag
Disciplina [E]
Soggetto topico Glass
Scientific apparatus and instruments
Soggetto genere / forma Periodicals.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione ger
Record Nr. UNINA-9910388859403321
Weinheim : , : Wiley-VCH Verlag GmbH & Co. KGaA : , : GIT Verlag
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui