top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The SQUID handbook / / edited by John Clarke, Alex I. Braginski
The SQUID handbook / / edited by John Clarke, Alex I. Braginski
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Descrizione fisica 1 online resource (413 p.)
Disciplina 530.12
Soggetto topico Superconducting quantum interference devices
Soggetto genere / forma Electronic books.
ISBN 1-280-51987-8
9786610519873
3-527-60364-6
3-527-60458-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 2.2.3.1 General Considerations2.2.3.2 Numerical Simulations (Langevin Equation); 2.2.3.3 Analytical Theory of the dc SQUID; 2.2.4 Effect of Asymmetry; 2.3 Theory of the rf SQUID; 2.3.1 Introduction; 2.3.2 SQUID Potential and the Equation of Motion for the Phase Difference; 2.3.3 Unitary Theory for Output Signal and Noise; 2.3.4 Noise as a Small Perturbation; 2.3.4.1 Introduction; 2.3.4.2 Adiabatic Operation; Hysteretic Phase Diagram; 2.3.4.3 Non-adiabatic Regime; 3 SQUID Fabrication Technology; 3.1 Junction Electrode Materials and Tunnel Barriers; 3.2 Low-temperature SQUID Devices
3.2.1 Refractory Junction Electrodes3.2.2 Tunnel Barrier Technology; 3.2.3 Deposition Techniques; 3.2.4 Junction Definition; 3.2.5 Dielectric Insulation; 3.2.6 Patterning Techniques; 3.2.7 Passive Components for Device Fabrication; 3.2.8 Integrated SQUID Fabrication Process; 3.3 High-temperature SQUID Devices; 3.3.1 General Requirements and Problems; 3.3.2 Thin-film Deposition; 3.3.3 Patterning Techniques; 3.3.4 Junction Fabrication; 3.3.5 Fabrication of Single-layer Devices; 3.3.6 Fabrication of Multilayer Devices; 3.3.7 Device Passivation and Encapsulation; 3.4 Future Trends
4.4.2 Basic Building Blocks of rf SQUID Readout Electronics4.4.3 Construction of the Tank Circuit; 4.4.4 Coupling of the Tank Circuit to the Transmission Line; 4.4.5 Cryogenic Preamplifiers; 4.4.6 Optimization for Maximum Sensitivity; 4.4.7 Multiplexed Readouts for Multichannel rf SQUID Systems; 4.5 Trends in SQUID Electronics; 5 Practical DC SQUIDS: Configuration and Performance; 5.1 Introduction; 5.2 Basic dc SQUID Design; 5.2.1 Uncoupled SQUIDs; 5.2.2 Coupled SQUIDs; 5.3 Magnetometers; 5.3.1 Overview; 5.3.2 Magnetometers for High Spatial Resolution
5.3.3 Magnetometers for High Field Resolution
Record Nr. UNINA-9910144731003321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The SQUID handbook / / edited by John Clarke, Alex I. Braginski
The SQUID handbook / / edited by John Clarke, Alex I. Braginski
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Descrizione fisica 1 online resource (413 p.)
Disciplina 530.12
Soggetto topico Superconducting quantum interference devices
ISBN 1-280-51987-8
9786610519873
3-527-60364-6
3-527-60458-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 2.2.3.1 General Considerations2.2.3.2 Numerical Simulations (Langevin Equation); 2.2.3.3 Analytical Theory of the dc SQUID; 2.2.4 Effect of Asymmetry; 2.3 Theory of the rf SQUID; 2.3.1 Introduction; 2.3.2 SQUID Potential and the Equation of Motion for the Phase Difference; 2.3.3 Unitary Theory for Output Signal and Noise; 2.3.4 Noise as a Small Perturbation; 2.3.4.1 Introduction; 2.3.4.2 Adiabatic Operation; Hysteretic Phase Diagram; 2.3.4.3 Non-adiabatic Regime; 3 SQUID Fabrication Technology; 3.1 Junction Electrode Materials and Tunnel Barriers; 3.2 Low-temperature SQUID Devices
3.2.1 Refractory Junction Electrodes3.2.2 Tunnel Barrier Technology; 3.2.3 Deposition Techniques; 3.2.4 Junction Definition; 3.2.5 Dielectric Insulation; 3.2.6 Patterning Techniques; 3.2.7 Passive Components for Device Fabrication; 3.2.8 Integrated SQUID Fabrication Process; 3.3 High-temperature SQUID Devices; 3.3.1 General Requirements and Problems; 3.3.2 Thin-film Deposition; 3.3.3 Patterning Techniques; 3.3.4 Junction Fabrication; 3.3.5 Fabrication of Single-layer Devices; 3.3.6 Fabrication of Multilayer Devices; 3.3.7 Device Passivation and Encapsulation; 3.4 Future Trends
4.4.2 Basic Building Blocks of rf SQUID Readout Electronics4.4.3 Construction of the Tank Circuit; 4.4.4 Coupling of the Tank Circuit to the Transmission Line; 4.4.5 Cryogenic Preamplifiers; 4.4.6 Optimization for Maximum Sensitivity; 4.4.7 Multiplexed Readouts for Multichannel rf SQUID Systems; 4.5 Trends in SQUID Electronics; 5 Practical DC SQUIDS: Configuration and Performance; 5.1 Introduction; 5.2 Basic dc SQUID Design; 5.2.1 Uncoupled SQUIDs; 5.2.2 Coupled SQUIDs; 5.3 Magnetometers; 5.3.1 Overview; 5.3.2 Magnetometers for High Spatial Resolution
5.3.3 Magnetometers for High Field Resolution
Record Nr. UNINA-9910830469503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2004]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Superconducting radiofrequency technology for accelerators : state of the art and emerging trends / / Hasan Padamsee
Superconducting radiofrequency technology for accelerators : state of the art and emerging trends / / Hasan Padamsee
Autore Padamsee Hasan
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (398 pages)
Disciplina 410
Soggetto topico Particle accelerators
ISBN 3-527-83631-4
3-527-83629-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Update of SRF Fundamentals -- Chapter 1 Introduction -- Chapter 2 SRF Fundamentals Review -- 2.1 SRF Basics -- 2.2 Fabrication and Processing on Nb‐Based SRF Structures -- 2.2.1 Cavity Fabrication -- 2.2.2 Preparation -- 2.2.3 A Decade of Progress -- 2.3 SRF Physics -- 2.3.1 Zero DC Resistance -- 2.3.2 Meissner Effect -- 2.3.3 Surface Resistance and Surface Impedance in RF Fields -- 2.3.4 Nonlocal Response of Supercurrent -- 2.3.5 BCS -- 2.3.6 Residual Resistance -- 2.3.7 Smearing of Density of States -- 2.3.8 Ginzburg-Landau (GL) Theory -- 2.3.9 Critical Fields -- 2.3.10 Comparison Between Ginzburg-Landau and BCS -- 2.3.11 Derivation of Rs and Xs -- Part II High Q Frontier: Performance Advances and Understanding -- Chapter 3 Nitrogen‐Doping -- 3.1 Introduction -- 3.2 N‐Doping Discovery -- 3.3 Surface Nitride -- 3.4 Interstitial N -- 3.5 Electron Mean Free Path Dependence -- 3.5.1 LE‐µSR Measurements of Mean Free path -- 3.6 Anti‐Q‐Slope Origins from BCS Resistance -- 3.7 N‐Doping and Residual Resistance -- 3.7.1 Trapped DC Flux Losses -- 3.7.2 Residual Resistance from Hydride Losses -- 3.7.3 Tunneling Measurements -- 3.8 RF Field Dependence of the Energy Gap -- 3.9 Frequency dependence of Anti‐Q‐Slope -- 3.10 Theories for Anti‐Q‐Slope -- 3.10.1 Xiao Theory -- 3.10.2 Gurevich Theory -- 3.10.3 Nonequilibrium Superconductivity -- 3.10.4 Two‐Fluid Model‐Based on Weak Defects -- 3.11 Quench Field of N‐Doped Cavities -- 3.12 Evolution and Comparison of N‐doping Recipes -- 3.13 High Q and Gradient R& -- D Program for LCLS‐HE -- 3.14 N‐Doping at Other Labs -- 3.15 Summary of N‐doping -- Chapter 4 High Q via 300 °C Bake (Mid‐T‐Bake) -- 4.1 A Surprise Discovery -- 4.2 Similarities to N‐Doping -- 4.3 Mid‐T Baking at Other Labs -- 4.4 The Low‐Field Q‐Slope (LFQS) and 340 °C Baking Cures.
4.5 Losses at Very Low Fields -- 4.6 Losses from Two‐Level Systems (TLS) -- 4.7 Eliminating TLS Losses -- Chapter 5 High Q\stquote s from DC Magnetic Flux Expulsion -- 5.1 Trapped Flux Losses, Sensitivity -- 5.2 Trapped Flux Sensitivity Models -- 5.3 Vortex Physics -- 5.4 Calculation of Sensitivity to Trapped Flux -- 5.5 Dependence of Sensitivity on RF Field Amplitude -- 5.6 DC Magnetic Flux Expulsion -- 5.6.1 Fast versus Slow‐Cooling Discovery -- 5.6.2 Thermoelectric Currents -- 5.7 Cooling Rates for Flux Expulsion -- 5.8 Flux Expulsion Patterns -- 5.9 Geometric Effects - Flux Hole -- 5.10 Flux Trapping With Quench -- 5.11 Material Quality Variations -- 5.12 Modeling Flux Trapping From Pinning Variations -- Part III High Gradient Frontier: Performance Advances and Understanding -- Chapter 6 High‐Field Q Slope (HFQS) - Understanding and Cures -- 6.1 HFQS Summary -- 6.2 HFQS in Low‐β Cavities -- 6.3 Deconvolution of RBCS and Rres -- 6.4 Depth of Baking Effect -- 6.4.1 From Anodization -- 6.4.2 From HF Rinsing -- 6.4.3 Depth of Magnetic Field Penetration by LE‐μSR -- 6.5 Role of the Oxide Layer and Role of N‐Infusion -- 6.6 SIMS Studies of O, H, and OH Profiles -- 6.7 Hydrogen Presence in HFQS -- 6.8 TEM Studies on Hydrides -- 6.9 Niobium-hydrogen Phase Diagram -- 6.10 H Enrichment at Surface -- 6.11 Q‐disease Review -- 6.12 Visualizing Niobium Hydrides -- 6.12.1 Cold‐stage Confocal Microscopy -- 6.12.2 Cold‐stage Atomic Force Microscopy (AFM) -- 6.13 Model for HFQS - Proximity Effect Breakdown of Nano‐hydrides -- 6.13.1 Baking Benefit and Proximity Effect Model -- 6.14 Positron Annihilation Studies of HFQS and Baking Effect -- 6.15 Point Contact Tunneling Studies of HFQS and Baking Effect -- Chapter 7 Quest for Higher Gradients: Two‐Step Baking and N‐Infusion -- 7.1 Two‐Step Baking -- 7.2 Subtle Effects of Two‐Step Baking - Bifurcation.
7.2.1 Bifurcation Reduction -- 7.3 N‐Infusion at 120 °C -- 7.4 N‐Infusion at Medium Temperatures -- 7.5 Unifying Quench Fields -- 7.6 Quench Detection by Second Sound in Superfluid Helium -- Chapter 8 Improvements in Cavity Preparation -- 8.1 Comparisons of Cold and Warm Electropolishing Methods -- 8.2 Chemical Soaking -- 8.3 Optical Inspection System and Defects Found -- 8.4 Robotics in Cavity Preparation -- 8.5 Plasma Processing to Reduce Field Emission -- Chapter 9 Pursuit of Higher Performance with Alternate Materials -- 9.1 Nb Films on Cu Substrates -- 9.1.1 Direct Current Magnetron Sputtering -- 9.1.2 DC‐bias Diode Sputtering at High Temperature (400-600 °C) -- 9.1.3 Seamless Cavity Coating -- 9.1.4 Nb-Cu Films by ECR -- 9.1.5 Nb-Cu Films via High‐Power Impulse Magnetron Sputtering (HIPIMS) -- 9.2 Alternatives to Nb -- 9.2.1 Nb3Sn -- 9.2.2 MgB2 -- 9.2.3 NbN and NbTiN -- 9.3 Multilayers -- 9.3.1 SIS\stquote Structures -- 9.3.2 Theoretical Estimates -- 9.3.3 Results -- 9.3.4 SS\stquote Structures -- 9.4 Summary -- Part IV Applications -- Chapter 10 New Cavity Developments -- 10.1 Crab Cavities for LHC High Luminosity -- 10.2 Short‐Pulse X‐Rays (SPX) System for the APS Upgrade -- 10.3 QWR Cavity for Acceleration -- 10.4 Traveling Wave Structure Development -- Chapter 11 Ongoing Applications -- 11.1 Overview -- 11.2 Low‐Beta Accelerators for Nuclear Science and Nuclear Astrophysics -- 11.2.1 ATLAS at Argonne -- 11.2.2 ISAC and ISAC‐II at TRIUMF -- 11.2.3 SPIRAL II at GANIL -- 11.2.4 HIE ISOLDE -- 11.2.5 RILAC at RIKEN -- 11.2.6 SPES Upgrade of ALPI at INFN -- 11.2.7 FRIB at MSU -- 11.2.8 RAON -- 11.2.9 Spoke Resonator Structure Developments to Avoid Multipacting -- 11.2.10 JAEA Upgrade -- 11.2.11 HELIAC -- 11.2.12 SARAF -- 11.2.13 HIAF at IMP -- 11.2.14 IFMIF -- 11.3 High‐Intensity Proton Accelerators -- 11.3.1 SNS -- 11.3.2 ESS.
11.3.3 Accelerator Driven Systems (CADS) -- 11.3.4 CiADS (China Initiative Accelerator Driven System) -- 11.3.5 Japan Atomic Energy Agency (JAEA) - ADS -- 11.3.6 High‐Intensity Proton Accelerator Development in India -- 11.3.7 PIP‐II and Beyond -- 11.4 Electrons for Light Sources - Linacs -- 11.4.1 European X‐ray Free Electron Laser (EXFEL) -- 11.4.2 Linac Coherent Light Source LCLS‐II and LCLS‐HE (LCLS‐High Energy) -- 11.4.3 Shanghai Coherent Light Facility (SCLF) SHINE -- 11.4.4 Institute of Advanced Science Facilities (IASF) -- 11.4.5 Polish Free‐Electron Laser POLFEL -- 11.5 Electrons for Storage Ring Light Sources -- 11.5.1 High‐Energy Photon Source (HEPS) -- 11.5.2 Taiwan Photon Source (TPS) -- 11.5.3 Higher Harmonic Cavities for Storage Rings Chaoen WANG, NSRRC, Taiwan -- 11.5.4 BNL -- 11.6 Electrons in Energy Recovery Linacs (ERL) for Light Sources & -- Electron-Ion Colliders -- 11.6.1 Prototyping ERL Technology at Cornell -- 11.6.2 KEK ERLs -- 11.6.3 Light‐House Project for Radiopharmaceuticals -- 11.6.4 Peking ERL -- 11.6.5 Berlin ERL -- 11.6.6 MESA ERL -- 11.6.7 SRF Photo‐injectors for ERLs -- 11.7 Electrons for Nuclear Physics, Nuclear Astrophysics, Radio‐Isotope Production -- 11.7.1 CEBAF at Jefferson Lab -- 11.7.2 ARIEL at TRIUMF -- 11.7.3 ERL for LHeC at CERN -- 11.8 Crab Cavities for LHC High Luminosity -- 11.9 Ongoing and Near‐Future Projects Summary -- Chapter 12 Future Prospects for Large‐Scale SRF Applications -- 12.1 The International Linear Collider (ILC) for High‐Energy Physics -- 12.2 Future Circular Collider FCCee -- 12.3 China Electron-Positron Collider, CEPC -- Chapter 13 Quantum Computing with SRF Cavities -- 13.1 Introduction to Quantum Computing -- 13.2 Qubits -- 13.3 Superposition and Coherence -- 13.4 Entanglement -- 13.5 2D SRF Qubits -- 13.6 Josephson Junctions.
13.7 Dilution Refrigerator for Milli‐Kelvin Temperatures -- 13.8 Quantum Computing Examples -- 13.9 3D SRF Qubits -- 13.10 Cavity QED Quantum Processors and Memories -- References -- List of Symbols -- List of Acronyms -- Index -- EULA.
Record Nr. UNINA-9910830225103321
Padamsee Hasan  
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tailored functional oxide nanomaterials : from design to multi-purpose applications / / edited by Chiara Maccato, Davide Barreca
Tailored functional oxide nanomaterials : from design to multi-purpose applications / / edited by Chiara Maccato, Davide Barreca
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (515 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials
Soggetto genere / forma Electronic books.
ISBN 3-527-82694-7
3-527-82692-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555198103321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tailored functional oxide nanomaterials : from design to multi-purpose applications / / edited by Chiara Maccato, Davide Barreca
Tailored functional oxide nanomaterials : from design to multi-purpose applications / / edited by Chiara Maccato, Davide Barreca
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (515 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials
ISBN 3-527-82694-7
3-527-82692-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910686757303321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Technologies for integrated energy systems and networks / / edited by Giorgio Graditi, Marialaura Di Somma
Technologies for integrated energy systems and networks / / edited by Giorgio Graditi, Marialaura Di Somma
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (329 pages)
Disciplina 621.042
Soggetto topico Renewable resource integration
Soggetto genere / forma Electronic books.
ISBN 3-527-83363-3
3-527-83361-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Challenges and Opportunities of the Energy Transition and the Added Value of Energy Systems Integration -- 1.1 Energy Transformation Toward Decarbonization and the Added Value of Energy Systems Integration -- 1.2 European Union as the Global Leader in Energy Transition -- 1.3 Pillars for the Transition Toward Integrated Decentralized Energy Systems -- List of Abbreviations -- References -- Chapter 2 Integrated Energy Systems: The Engine for Energy Transition -- 2.1 Introduction: the Concept of Integrated Energy System -- 2.2 Key Enablers for Integrated Energy Systems -- 2.2.1 Storage and Conversion Technologies -- 2.2.2 End User Engagement and Empowerment -- 2.2.3 Digitalization Enabler -- 2.2.4 Emergence of an Integrated Energy Market -- 2.3 Integrated Energy Systems at the Local Level -- 2.3.1 Conceptualizing Local Integrated Energy Systems -- 2.3.2 Map of Enabling Technologies -- 2.3.3 Key Stakeholders and Related Benefits from Local Integrated Energy Systems Deployment -- 2.4 Main Barriers for Implementation -- 2.4.1 Techno‐economic Barriers -- 2.4.2 Socioeconomic Barriers -- 2.4.3 Policy and Regulatory Barriers -- 2.5 Conclusions -- List of Abbreviations -- References -- Chapter 3 Power Conversion Technologies: The Advent of Power‐to‐Gas, Power‐to‐Liquid, and Power‐to‐Heat -- 3.1 Introduction -- 3.1.1 Motivation for Power‐to‐X -- 3.1.2 Defining Power‐to‐X Categories -- 3.1.3 Goal of this Chapter -- 3.2 Power‐to‐X Technologies -- 3.2.1 Power‐to‐Gas -- 3.2.1.1 Natural Gas Market Demand -- 3.2.1.2 Technology Identification and Overview -- 3.2.1.3 Unique Integration Challenges and Opportunities -- 3.2.2 Power‐to‐Chemicals‐and‐Fuels -- 3.2.2.1 Market and Demand -- 3.2.2.2 Technology Identification and Overview -- 3.2.2.3 Unique Integration Challenges and Opportunities.
3.2.2.4 Implications on Power Generation -- 3.2.3 Power‐to‐Heat -- 3.2.3.1 Market and Demand -- 3.2.3.2 Technology Identification and Overview -- 3.2.3.3 Unique Integration Challenges and Opportunities -- 3.2.3.4 Implications on Power Generation -- 3.3 Overarching Challenges, Opportunities, and Considerations -- 3.3.1 Feedstock and Energy Sourcing -- 3.3.1.1 Feedstocks (CO2, N2, H2O, and Biomass) -- 3.3.1.2 Operational Flexibility for Grid Integration and Revenue -- 3.3.2 Key Considerations from Life Cycle Analysis and Techno‐economic Analysis -- 3.3.2.1 Life Cycle Analysis -- 3.3.2.2 Techno‐Economic Analysis -- 3.3.3 Business Model and Business Innovation -- 3.4 Concluding Remarks -- Disclaimer -- List of Abbreviations -- References -- Chapter 4 Role of Hydrogen in Low‐Carbon Energy Future -- 4.1 Introduction -- 4.2 Main Drivers for Hydrogen Implementation -- 4.2.1 Increasing Penetration of Stochastic Renewable Energy -- 4.2.2 Opportunity of Hydrogen as a Sector Coupling Enabler -- 4.3 Hydrogen Economy and Policy in Europe and Worldwide -- 4.4 Main Renewable Hydrogen Production, Storage, and Transmission/Distribution Schemes -- 4.4.1 Hydrogen Production Pathways -- 4.4.2 Hydrogen Transmission and Distribution -- 4.4.2.1 Main Hydrogen Storage Technologies -- 4.4.2.2 Methods for Hydrogen Transmission and Distribution -- 4.5 Technological Applications in Integrated Energy Systems and Networks -- 4.5.1 Hydrogen as an Energy Storage System for Flexibility at Different Scales -- 4.5.2 Industrial Use as a Renewable Feedstock in Hard‐to‐Abate Sectors and for the Production of Derivates -- 4.5.3 Hydrogen Mobility: A Complementary Solution to Battery Electric Vehicles -- 4.5.4 Fuel Cells, Flexible Electrochemical Conversion Systems for High‐Efficiency Power, and/or CHP Applications -- 4.6 Conclusions -- List of Abbreviations -- References.
Chapter 5 Review on the Energy Storage Technologies with the Focus on Multi‐Energy Systems -- 5.1 Introduction -- 5.2 Energy Storage -- 5.2.1 Main Concept of Energy Storage in the Power System -- 5.2.2 Different Types of Energy Storage Systems -- 5.2.2.1 Electromechanical Energy Storage Systems -- 5.2.2.2 Electromagnetic Energy Storage Systems -- 5.2.2.3 Electrochemical Energy Storage Systems -- 5.2.2.4 Thermal Energy Storage Systems -- 5.2.3 Advantages of Storage in the Energy System -- 5.3 Energy Storage Technology Application in the Multi‐Energy Systems -- 5.4 Conclusion -- List of Abbreviations -- References -- Chapter 6 Digitalization and Smart Energy Devices -- 6.1 Introduction -- 6.2 Our Vision of the Digital Networks -- 6.3 Enabling State‐of‐the‐Art Digital Technologies -- 6.4 Key Digital Use Cases and Associated Benefits -- 6.5 Integrated Digital Platform Across Stakeholders -- 6.6 Key Digital Recommendations -- 6.7 Conclusion -- List of Abbreviations -- References -- Further Reading -- Chapter 7 Smart and Sustainable Mobility Adaptation Toward the Energy Transition -- 7.1 Smart and Sustainable Mobility Definitions and Metrics -- 7.1.1 Sustainable Mobility KPI (Key Performance Indicators) -- 7.1.2 KPI of Urban Mobility in Two European Cities -- 7.2 Smart Mobility Applied to Bicycle Sharing in Urban Context and Impacts on Sustainability -- 7.3 Ground‐Level Ozone Indicator -- 7.4 Energy Transition -- 7.5 Resilience of the Mobility System -- 7.6 Conclusions -- Acknowledgments -- List of Abbreviations -- References -- Chapter 8 Evolution of Electrical Distribution Grids Toward the Smart Grid Concept -- 8.1 Smart Grid Concept -- 8.2 Advanced Metering Infrastructure (AMI) General Description -- 8.3 Communications and Impact on Remote Management -- 8.3.1 PLC PRIME Communication -- 8.3.2 Data Concentrator Unit (DCU) Description.
8.3.3 Smart Meter Description -- 8.3.4 Future Scenario: Evolution of Communications Toward Hybrid Systems -- 8.4 Central System for Data Reception and Analysis -- 8.4.1 Real‐Time Event Management -- 8.4.2 LV Network Monitoring -- 8.4.3 Automatic Diagnostic -- 8.5 DSO Challenge: AMI for LV Network Management -- 8.6 Digital Twin of the LV Network -- 8.7 Evolution of the Functionalities for LV Network Management -- 8.8 Conclusions -- List of Abbreviations -- References -- Chapter 9 Smart Grids for the Efficient Management of Distributed Energy Resources -- 9.1 Electrical System Toward the Smart Grid Concept -- 9.1.1 Technology Areas of Smart Grids -- 9.1.2 Services and Functionalities of the Smart Grids -- 9.1.2.1 Needs to Integrate New Emerging Technologies -- 9.1.2.2 Improve the Operation of the Network -- 9.1.2.3 New Investment Planning Criteria -- 9.1.2.4 Improve the Functionality of the Market and Services to End Users -- 9.1.2.5 Active Involvement of the End User -- 9.1.2.6 Increased Energy Efficiency and Reduced Environmental Impact -- 9.2 Need of a Multi‐Domain Optimization in Smart Grids -- 9.3 Advanced Control Mechanisms for Smart Grid -- 9.3.1 Architecture and Grid Model -- 9.3.2 Congestion Issues in the TSO Domain -- 9.3.3 Congestion Issues in the DSO Domain -- 9.3.4 Frequency Instability in the TSO Domain -- 9.4 Case Studies -- 9.4.1 Case Study 1: Congestion Events at the Transmission Level -- 9.4.2 Case Study 2: Congestion Events at the Distribution Level -- 9.4.3 Case Study 3: Frequency Instability Issues -- 9.5 Conclusions -- List of Abbreviations -- References -- Chapter 10 Nearly Zero‐Energy and Positive‐Energy Buildings: Status and Trends -- 10.1 Introduction -- 10.1.1 Concept of Nearly Zero‐ and Positive‐Energy Buildings -- 10.1.1.1 Definitions, Regulations, and Standards -- 10.1.2 Overview of Design Strategies.
10.1.2.1 Energy Conservation Strategies -- 10.1.2.2 Energy Generation Strategies -- 10.1.2.3 Smart Readiness -- 10.2 Status and Research Directions on High‐Performance Buildings for the Coming Decade -- 10.2.1 Overview of Case Studies and Research Projects -- 10.2.1.1 Challenges, Drivers, and Best Practices -- 10.2.2 Transition from Individual Nearly Zero‐Energy Buildings to Positive‐Energy Districts (PEDs) -- 10.3 Conclusions -- List of Abbreviations -- References -- Chapter 11 Transition Potential of Local Energy Communities -- 11.1 Introduction -- 11.1.1 "2030 Agenda for Sustainable Development" of United Nations -- 11.1.2 Clean Energy for All European Package: Renewable and Citizen "Energy Communities" -- 11.1.3 Human Capital for Local Energy Communities -- 11.1.4 Local Energy Communities: An Organizational Bottom‐Up Model to Empower Final Users -- 11.2 Local Energy Communities Making the Green Deal Going Local -- 11.2.1 Game Changer of the Green Deal -- 11.2.2 Green Deal Going Local -- 11.2.3 Neighborhood Approach and Local Energy Communities in the Green Deal -- 11.3 Local Energy Communities as Integrated Energy Systems at Local Level -- 11.3.1 Local Energy Communities as Promoters for Sector Coupling -- 11.3.2 Optimal Medium-Long‐Term Planning for Local Energy Communities -- 11.3.3 Key Technologies in the Context of Local Energy Communities -- 11.3.4 Digitalization to Enable Flexibility and Empower Final Users -- 11.4 Local Energy Communities and Energy Transition: A Vision for the Next Future -- 11.4.1 Some Reflections -- 11.5 Conclusions -- List of Abbreviations -- References -- Index -- EULA.
Record Nr. UNINA-9910554825103321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Technologies for integrated energy systems and networks / / edited by Giorgio Graditi, Marialaura Di Somma
Technologies for integrated energy systems and networks / / edited by Giorgio Graditi, Marialaura Di Somma
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (329 pages)
Disciplina 621.042
Soggetto topico Renewable resource integration
ISBN 3-527-83363-3
3-527-83361-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Challenges and Opportunities of the Energy Transition and the Added Value of Energy Systems Integration -- 1.1 Energy Transformation Toward Decarbonization and the Added Value of Energy Systems Integration -- 1.2 European Union as the Global Leader in Energy Transition -- 1.3 Pillars for the Transition Toward Integrated Decentralized Energy Systems -- List of Abbreviations -- References -- Chapter 2 Integrated Energy Systems: The Engine for Energy Transition -- 2.1 Introduction: the Concept of Integrated Energy System -- 2.2 Key Enablers for Integrated Energy Systems -- 2.2.1 Storage and Conversion Technologies -- 2.2.2 End User Engagement and Empowerment -- 2.2.3 Digitalization Enabler -- 2.2.4 Emergence of an Integrated Energy Market -- 2.3 Integrated Energy Systems at the Local Level -- 2.3.1 Conceptualizing Local Integrated Energy Systems -- 2.3.2 Map of Enabling Technologies -- 2.3.3 Key Stakeholders and Related Benefits from Local Integrated Energy Systems Deployment -- 2.4 Main Barriers for Implementation -- 2.4.1 Techno‐economic Barriers -- 2.4.2 Socioeconomic Barriers -- 2.4.3 Policy and Regulatory Barriers -- 2.5 Conclusions -- List of Abbreviations -- References -- Chapter 3 Power Conversion Technologies: The Advent of Power‐to‐Gas, Power‐to‐Liquid, and Power‐to‐Heat -- 3.1 Introduction -- 3.1.1 Motivation for Power‐to‐X -- 3.1.2 Defining Power‐to‐X Categories -- 3.1.3 Goal of this Chapter -- 3.2 Power‐to‐X Technologies -- 3.2.1 Power‐to‐Gas -- 3.2.1.1 Natural Gas Market Demand -- 3.2.1.2 Technology Identification and Overview -- 3.2.1.3 Unique Integration Challenges and Opportunities -- 3.2.2 Power‐to‐Chemicals‐and‐Fuels -- 3.2.2.1 Market and Demand -- 3.2.2.2 Technology Identification and Overview -- 3.2.2.3 Unique Integration Challenges and Opportunities.
3.2.2.4 Implications on Power Generation -- 3.2.3 Power‐to‐Heat -- 3.2.3.1 Market and Demand -- 3.2.3.2 Technology Identification and Overview -- 3.2.3.3 Unique Integration Challenges and Opportunities -- 3.2.3.4 Implications on Power Generation -- 3.3 Overarching Challenges, Opportunities, and Considerations -- 3.3.1 Feedstock and Energy Sourcing -- 3.3.1.1 Feedstocks (CO2, N2, H2O, and Biomass) -- 3.3.1.2 Operational Flexibility for Grid Integration and Revenue -- 3.3.2 Key Considerations from Life Cycle Analysis and Techno‐economic Analysis -- 3.3.2.1 Life Cycle Analysis -- 3.3.2.2 Techno‐Economic Analysis -- 3.3.3 Business Model and Business Innovation -- 3.4 Concluding Remarks -- Disclaimer -- List of Abbreviations -- References -- Chapter 4 Role of Hydrogen in Low‐Carbon Energy Future -- 4.1 Introduction -- 4.2 Main Drivers for Hydrogen Implementation -- 4.2.1 Increasing Penetration of Stochastic Renewable Energy -- 4.2.2 Opportunity of Hydrogen as a Sector Coupling Enabler -- 4.3 Hydrogen Economy and Policy in Europe and Worldwide -- 4.4 Main Renewable Hydrogen Production, Storage, and Transmission/Distribution Schemes -- 4.4.1 Hydrogen Production Pathways -- 4.4.2 Hydrogen Transmission and Distribution -- 4.4.2.1 Main Hydrogen Storage Technologies -- 4.4.2.2 Methods for Hydrogen Transmission and Distribution -- 4.5 Technological Applications in Integrated Energy Systems and Networks -- 4.5.1 Hydrogen as an Energy Storage System for Flexibility at Different Scales -- 4.5.2 Industrial Use as a Renewable Feedstock in Hard‐to‐Abate Sectors and for the Production of Derivates -- 4.5.3 Hydrogen Mobility: A Complementary Solution to Battery Electric Vehicles -- 4.5.4 Fuel Cells, Flexible Electrochemical Conversion Systems for High‐Efficiency Power, and/or CHP Applications -- 4.6 Conclusions -- List of Abbreviations -- References.
Chapter 5 Review on the Energy Storage Technologies with the Focus on Multi‐Energy Systems -- 5.1 Introduction -- 5.2 Energy Storage -- 5.2.1 Main Concept of Energy Storage in the Power System -- 5.2.2 Different Types of Energy Storage Systems -- 5.2.2.1 Electromechanical Energy Storage Systems -- 5.2.2.2 Electromagnetic Energy Storage Systems -- 5.2.2.3 Electrochemical Energy Storage Systems -- 5.2.2.4 Thermal Energy Storage Systems -- 5.2.3 Advantages of Storage in the Energy System -- 5.3 Energy Storage Technology Application in the Multi‐Energy Systems -- 5.4 Conclusion -- List of Abbreviations -- References -- Chapter 6 Digitalization and Smart Energy Devices -- 6.1 Introduction -- 6.2 Our Vision of the Digital Networks -- 6.3 Enabling State‐of‐the‐Art Digital Technologies -- 6.4 Key Digital Use Cases and Associated Benefits -- 6.5 Integrated Digital Platform Across Stakeholders -- 6.6 Key Digital Recommendations -- 6.7 Conclusion -- List of Abbreviations -- References -- Further Reading -- Chapter 7 Smart and Sustainable Mobility Adaptation Toward the Energy Transition -- 7.1 Smart and Sustainable Mobility Definitions and Metrics -- 7.1.1 Sustainable Mobility KPI (Key Performance Indicators) -- 7.1.2 KPI of Urban Mobility in Two European Cities -- 7.2 Smart Mobility Applied to Bicycle Sharing in Urban Context and Impacts on Sustainability -- 7.3 Ground‐Level Ozone Indicator -- 7.4 Energy Transition -- 7.5 Resilience of the Mobility System -- 7.6 Conclusions -- Acknowledgments -- List of Abbreviations -- References -- Chapter 8 Evolution of Electrical Distribution Grids Toward the Smart Grid Concept -- 8.1 Smart Grid Concept -- 8.2 Advanced Metering Infrastructure (AMI) General Description -- 8.3 Communications and Impact on Remote Management -- 8.3.1 PLC PRIME Communication -- 8.3.2 Data Concentrator Unit (DCU) Description.
8.3.3 Smart Meter Description -- 8.3.4 Future Scenario: Evolution of Communications Toward Hybrid Systems -- 8.4 Central System for Data Reception and Analysis -- 8.4.1 Real‐Time Event Management -- 8.4.2 LV Network Monitoring -- 8.4.3 Automatic Diagnostic -- 8.5 DSO Challenge: AMI for LV Network Management -- 8.6 Digital Twin of the LV Network -- 8.7 Evolution of the Functionalities for LV Network Management -- 8.8 Conclusions -- List of Abbreviations -- References -- Chapter 9 Smart Grids for the Efficient Management of Distributed Energy Resources -- 9.1 Electrical System Toward the Smart Grid Concept -- 9.1.1 Technology Areas of Smart Grids -- 9.1.2 Services and Functionalities of the Smart Grids -- 9.1.2.1 Needs to Integrate New Emerging Technologies -- 9.1.2.2 Improve the Operation of the Network -- 9.1.2.3 New Investment Planning Criteria -- 9.1.2.4 Improve the Functionality of the Market and Services to End Users -- 9.1.2.5 Active Involvement of the End User -- 9.1.2.6 Increased Energy Efficiency and Reduced Environmental Impact -- 9.2 Need of a Multi‐Domain Optimization in Smart Grids -- 9.3 Advanced Control Mechanisms for Smart Grid -- 9.3.1 Architecture and Grid Model -- 9.3.2 Congestion Issues in the TSO Domain -- 9.3.3 Congestion Issues in the DSO Domain -- 9.3.4 Frequency Instability in the TSO Domain -- 9.4 Case Studies -- 9.4.1 Case Study 1: Congestion Events at the Transmission Level -- 9.4.2 Case Study 2: Congestion Events at the Distribution Level -- 9.4.3 Case Study 3: Frequency Instability Issues -- 9.5 Conclusions -- List of Abbreviations -- References -- Chapter 10 Nearly Zero‐Energy and Positive‐Energy Buildings: Status and Trends -- 10.1 Introduction -- 10.1.1 Concept of Nearly Zero‐ and Positive‐Energy Buildings -- 10.1.1.1 Definitions, Regulations, and Standards -- 10.1.2 Overview of Design Strategies.
10.1.2.1 Energy Conservation Strategies -- 10.1.2.2 Energy Generation Strategies -- 10.1.2.3 Smart Readiness -- 10.2 Status and Research Directions on High‐Performance Buildings for the Coming Decade -- 10.2.1 Overview of Case Studies and Research Projects -- 10.2.1.1 Challenges, Drivers, and Best Practices -- 10.2.2 Transition from Individual Nearly Zero‐Energy Buildings to Positive‐Energy Districts (PEDs) -- 10.3 Conclusions -- List of Abbreviations -- References -- Chapter 11 Transition Potential of Local Energy Communities -- 11.1 Introduction -- 11.1.1 "2030 Agenda for Sustainable Development" of United Nations -- 11.1.2 Clean Energy for All European Package: Renewable and Citizen "Energy Communities" -- 11.1.3 Human Capital for Local Energy Communities -- 11.1.4 Local Energy Communities: An Organizational Bottom‐Up Model to Empower Final Users -- 11.2 Local Energy Communities Making the Green Deal Going Local -- 11.2.1 Game Changer of the Green Deal -- 11.2.2 Green Deal Going Local -- 11.2.3 Neighborhood Approach and Local Energy Communities in the Green Deal -- 11.3 Local Energy Communities as Integrated Energy Systems at Local Level -- 11.3.1 Local Energy Communities as Promoters for Sector Coupling -- 11.3.2 Optimal Medium-Long‐Term Planning for Local Energy Communities -- 11.3.3 Key Technologies in the Context of Local Energy Communities -- 11.3.4 Digitalization to Enable Flexibility and Empower Final Users -- 11.4 Local Energy Communities and Energy Transition: A Vision for the Next Future -- 11.4.1 Some Reflections -- 11.5 Conclusions -- List of Abbreviations -- References -- Index -- EULA.
Record Nr. UNINA-9910686759703321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Templated fabrication of graphene-based materials for energy applications / / edited by Chunnian He, Naiqin Zhao, Junwei Sha
Templated fabrication of graphene-based materials for energy applications / / edited by Chunnian He, Naiqin Zhao, Junwei Sha
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (305 pages)
Disciplina 546.681
Soggetto topico Nanostructured materials
ISBN 3-527-82208-9
3-527-82209-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830372503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition metal oxides for electrochemical energystorage / / edited by Jagjit Nanda, Veronica Augustyn
Transition metal oxides for electrochemical energystorage / / edited by Jagjit Nanda, Veronica Augustyn
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (435 pages)
Disciplina 621.3126
Soggetto topico Transition metal oxides
Soggetto genere / forma Electronic books.
ISBN 3-527-81725-5
3-527-81722-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Chapter 1 An Overview of Transition Metal Oxides for Electrochemical Energy Storage -- 1.1 Fundamentals of Electrochemical Cells -- 1.2 Li‐Ion Batteries: Basic Principles and TMO Electrodes -- 1.3 Brief History of Lithium‐Ion Batteries -- 1.4 The Role of Advanced Characterization and Computing Resources -- 1.5 Beyond Lithium‐Ion Batteries -- Acknowledgments -- References -- Chapter 2 Metal-Ion‐Coupled Electron Transfer Kinetics in Intercalation‐Based Transition Metal Oxides* -- 2.1 Introduction -- 2.2 Thermodynamic Control -- 2.3 Diffusional Control -- 2.4 Kinetic Control -- 2.5 Effect of Surface Layers on Ion Transfer Kinetics -- 2.6 Slow Desolvation as a Limiting Intercalation Step -- 2.7 Concluding Remarks -- References -- Chapter 3 Next‐Generation Cobalt‐Free Cathodes - A Prospective Solution to the Battery Industry's Cobalt Problem* -- 3.1 Introduction -- 3.2 Potential of Cobalt‐Free Cathode Materials -- 3.3 Layered Cathodes -- 3.3.1 Conventional Layered Cathodes -- 3.3.2 Binary Layered Ni‐Rich Cathode Materials -- 3.3.3 Ternary Layered Ni‐Rich Cathode Materials -- 3.4 Spinel and Olivine Cathodes -- 3.5 Disordered Rocksalt (DRX) Cathodes -- 3.6 Challenges in Commercial Adoption of New Cobalt‐Free Chemistries -- 3.6.1 Synthesis of Cathode Precursors -- 3.6.2 Synthesis of Final Cathode Powders -- 3.6.3 Electrode Fabrication -- 3.6.4 Battery Assembly -- 3.7 Summary and Perspective -- Acknowledgments -- Conflict of Interest -- References -- Chapter 4 Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries* -- 4.1 Introduction -- 4.2 Potential Advantages and Challenges of the Conversion Mechanism -- 4.3 Transition Metal Oxides as Anode Materials -- 4.3.1 Iron Oxide (Fe3O4, Fe2O3) -- 4.3.2 Cobalt Oxide (CoO, Co3O4).
4.3.3 Manganese Oxide (MnO, Mn3O4, MnO2) -- 4.3.4 Copper Oxide (Cu2O, CuO) -- 4.3.5 Nickel Oxide (NiO) -- 4.3.6 Ruthenium Oxide (RuO2) -- 4.3.7 Other Transition Metal Oxides -- 4.4 Summary and Outlook -- References -- Chapter 5 Layered Na‐Ion Transition‐Metal Oxide Electrodes for Sodium‐Ion Batteries -- 5.1 Introduction -- 5.2 Layered Transition‐Metal Oxides -- 5.2.1 Structural Classification -- 5.2.2 Single Transition‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.3 Mixed‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.4 Anionic Redox Activity for High Capacity -- 5.3 Summary and Outlook -- References -- Chapter 6 Anionic Redox Reaction in Li‐Excess High‐Capacity Transition‐Metal Oxides -- 6.1 Stoichiometric Layered Oxides for Rechargeable Lithium Batteries -- 6.2 Li‐Excess Rocksalt Oxides as High‐Capacity Positive Electrode Materials -- 6.3 Reversible and Irreversible Anionic Redox for Li3NbO4‐ and Li2TiO3‐Based Oxides -- 6.4 Activation of Anionic Redox by Chemical Bonds with High Ionic Characters -- 6.5 Li4MoO5 as a Host Structure for Lithium‐Excess Oxides -- 6.6 Extremely Reversible Anionic Redox for Li2RuO3 System -- 6.7 Anionic Redox for Sodium‐Storage Applications -- 6.8 Future Perspectives of Anionic Redox for Energy‐Storage Applications -- References -- Chapter 7 Transition Metal Oxides in Aqueous Electrolytes -- 7.1 Introduction: Opportunities and Challenges of Aqueous Batteries -- 7.2 Electrochemistry of Aqueous Batteries -- 7.2.1 Potential Window -- 7.2.2 Diverse Charge Transfer and Storage Processes in Aqueous Batteries -- 7.2.2.1 Overview of Various Storage Mechanisms -- 7.2.2.2 Semi‐quantitative Analysis of Storage Mechanism from Sweeping Voltammetry Analysis -- 7.2.2.3 Storage Mechanisms in Electrolyte with Different pH Values -- 7.3 Transition Metal Oxides for Aqueous EES -- 7.3.1 Manganese Compounds.
7.3.1.1 Crystal Structures of Manganese Oxides for Aqueous Storage -- 7.3.1.2 Compositing Manganese Oxides with Other Additives -- 7.3.1.3 Surface Engineering Crystal Facets, Edge Sites, and Bulk/Nano Size Domain -- 7.3.1.4 Doping and Defect Chemistry -- 7.3.1.5 Pre‐intercalated Species -- 7.3.2 Ni Compounds -- 7.3.3 Vanadium Compounds -- 7.3.3.1 Li or Na Vanadates -- 7.3.4 Iron Compounds -- 7.3.4.1 Fe/Fe3O4 -- 7.3.4.2 Fe2O3/FeOOH -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter 8 Nanostructured Transition Metal Oxides for Electrochemical Energy Storage -- 8.1 Fundamental Electrochemistry of Nanostructured TMOs -- 8.1.1 Thermodynamics of Charge Storage in Nanostructured TMOs -- 8.1.2 Kinetics of Charge Storage in Nanostructured TMOs -- 8.2 Emerging Nanostructured TMOs -- 8.2.1 Nanostructured TMO Cathodes for LIBs -- 8.2.2 Nanostructured Binary TMOs for Conversion‐Type Charge Storage -- 8.2.3 Nanostructured Binary TMOs for Intercalation‐Type Charge Storage -- 8.3 Implementation of Nanostructured TMOs in Electrode Architectures -- 8.3.1 One‐Dimensional and Two‐Dimensional Architectures -- 8.3.1.1 Nanowires and Nanotubes -- 8.3.2 Three‐Dimensional Architectures -- 8.3.2.1 Assemblies -- 8.3.2.2 Foams -- 8.3.2.3 Aerogels -- 8.4 Conclusions -- References -- Chapter 9 Interfaces in Oxide‐Based Li Metal Batteries* -- 9.1 Introduction -- 9.2 Solid Oxide Electrolytes -- 9.3 Cathode: Toward True Solid -- 9.3.1 Origin of Interfacial Impedance and Current Pressing Issues at Cathode/Solid Electrolyte Interfaces -- 9.3.1.1 Interfacial Reaction During Cell Fabrication -- 9.3.1.2 Electrochemical Oxidation and Chemical Reaction During Cycle -- 9.3.1.3 Chemo‐mechanical Degradation During Cycling -- 9.3.2 Strategies and Approaches Toward Enhanced Stability and Performance -- 9.3.2.1 Cathode Coating.
9.3.2.2 Geometric Arrangement Concerns and Strategies Toward Maximizing Reaction Sites -- 9.3.2.3 Conductive Additives in Solid‐State Cathode -- 9.4 Anode: Adopting Lithium Metal in the Solid -- 9.4.1 Li/Solid-Electrolyte Interface: Chemical, Electrochemical, and Mechanical Considerations, Including Mitigation Strategies -- 9.4.2 Li Dendrite Formation and Propagation in Solid Electrolytes: Challenges and Strategies -- 9.5 Outlook and Perspective -- Acknowledgments -- Contributions -- Ethics Declarations -- References -- Chapter 10 Degradation and Life Performance of Transition Metal Oxide Cathodes used in Lithium‐Ion Batteries -- 10.1 Introduction -- 10.2 Degradation Trends -- 10.3 Transition Metal Oxide Cathodes -- 10.3.1 Spinel Cathodes -- 10.3.2 NCM System of Cathodes -- 10.3.3 NCMA Cathodes -- 10.4 Degradation Mechanism -- 10.5 Concluding Remarks -- References -- Chapter 11 Mechanical Behavior of Transition Metal Oxide‐Based Battery Materials -- 11.1 Introduction -- 11.2 Mechanical Responses to Compositional Changes -- 11.2.1 Volume Changes and Deformation in Electrode Particles -- 11.2.2 Particle Fracture -- 11.3 Impact of Strain Energy on Chemical Phenomena -- 11.3.1 Thermodynamics -- 11.3.2 Two‐Phase Equilibrium -- 11.4 Solid Electrolytes -- 11.4.1 Electrode/Electrolyte Interfaces -- 11.4.2 Electrolyte Fracture -- 11.5 Summary -- References -- Chapter 12 Solid‐State NMR and EPR Characterization of Transition‐Metal Oxides for Electrochemical Energy Storage -- 12.1 Introduction -- 12.2 Brief Introduction of NMR Basics -- 12.2.1 Nuclear Spins -- 12.2.2 NMR Spin Interactions -- 12.2.3 Paramagnetic Interactions and Experimental Approaches to Achieve High Spectral Resolution -- 12.3 Multinuclear NMR Studies of Transition‐metal‐oxide Cathodes -- 12.3.1 Li Extraction and Insertion Dynamics -- 12.3.2 O Evolution -- 12.4 EPR Studies -- 12.5 Summary.
References -- Chapter 13 In Situ and In Operando Neutron Diffraction of Transition Metal Oxides for Electrochemical Storage -- 13.1 Introduction -- 13.1.1 Neutron Diffraction and Transition Metal Oxides -- 13.1.1.1 Neutron Reflectometry -- 13.1.1.2 Small‐Angle Neutron Scattering -- 13.1.1.3 Quasielastic and Inelastic Neutron Scattering -- 13.1.2 Neutron Diffraction Instrumentation -- 13.1.3 In Situ and In Operando Neutron Diffraction -- 13.2 Device Operation -- 13.2.1 Experimental Design and Approach to the Real‐Time Analysis of Battery Materials -- 13.2.2 Advancements in Understanding Electrode Structure During Battery Operation -- 13.3 Gas and Temperature Studies -- 13.3.1 Experimental Design and Approach to the In Situ Study of Solid Oxide Fuel‐Cell (SOFC) Electrodes -- 13.3.2 Advancements in Understanding Solid Oxide Fuel‐Cell Electrode Function -- 13.4 Materials Formation and Synthesis -- 13.5 Short‐Range Structure -- 13.6 Outlook -- Acknowledgments -- References -- Chapter 14 Synchrotron X‐ray Spectroscopy and Imaging for Metal Oxide Intercalation Cathode Chemistry -- 14.1 Introduction -- 14.2 X‐ray Absorption Spectroscopy -- 14.2.1 Soft X‐ray Absorption Spectroscopy -- 14.2.2 Hard X‐ray Absorption Spectroscopy -- 14.3 Real‐Space X‐ray Spectroscopic Imaging -- 14.3.1 2D Full‐Field X‐ray Imaging -- 14.3.2 X‐ray Tomographic Imaging -- 14.4 Conclusion -- References -- Chapter 15 Atomic‐Scale Simulations of the Solid Electrolyte Li7La3Zr2O12 -- 15.1 Introduction -- 15.1.1 Motivation -- 15.1.2 Solid Electrolytes -- 15.1.3 Li7La3Zr2O12 (LLZO) -- 15.1.4 Challenges -- 15.2 Elastic Properties of Li7La3Zr2O12 -- 15.3 Potential Failure Modes Arising from LLZO Microstructure -- 15.4 Conclusions -- Acknowledgements -- References.
Chapter 16 Machine‐Learning and Data‐Intensive Methods for Accelerating the Development of Rechargeable Battery Chemistries: A Review.
Record Nr. UNINA-9910566697403321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transition metal oxides for electrochemical energystorage / / edited by Jagjit Nanda, Veronica Augustyn
Transition metal oxides for electrochemical energystorage / / edited by Jagjit Nanda, Veronica Augustyn
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (435 pages)
Disciplina 621.3126
Soggetto topico Transition metal oxides
ISBN 3-527-81725-5
3-527-81722-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Chapter 1 An Overview of Transition Metal Oxides for Electrochemical Energy Storage -- 1.1 Fundamentals of Electrochemical Cells -- 1.2 Li‐Ion Batteries: Basic Principles and TMO Electrodes -- 1.3 Brief History of Lithium‐Ion Batteries -- 1.4 The Role of Advanced Characterization and Computing Resources -- 1.5 Beyond Lithium‐Ion Batteries -- Acknowledgments -- References -- Chapter 2 Metal-Ion‐Coupled Electron Transfer Kinetics in Intercalation‐Based Transition Metal Oxides* -- 2.1 Introduction -- 2.2 Thermodynamic Control -- 2.3 Diffusional Control -- 2.4 Kinetic Control -- 2.5 Effect of Surface Layers on Ion Transfer Kinetics -- 2.6 Slow Desolvation as a Limiting Intercalation Step -- 2.7 Concluding Remarks -- References -- Chapter 3 Next‐Generation Cobalt‐Free Cathodes - A Prospective Solution to the Battery Industry's Cobalt Problem* -- 3.1 Introduction -- 3.2 Potential of Cobalt‐Free Cathode Materials -- 3.3 Layered Cathodes -- 3.3.1 Conventional Layered Cathodes -- 3.3.2 Binary Layered Ni‐Rich Cathode Materials -- 3.3.3 Ternary Layered Ni‐Rich Cathode Materials -- 3.4 Spinel and Olivine Cathodes -- 3.5 Disordered Rocksalt (DRX) Cathodes -- 3.6 Challenges in Commercial Adoption of New Cobalt‐Free Chemistries -- 3.6.1 Synthesis of Cathode Precursors -- 3.6.2 Synthesis of Final Cathode Powders -- 3.6.3 Electrode Fabrication -- 3.6.4 Battery Assembly -- 3.7 Summary and Perspective -- Acknowledgments -- Conflict of Interest -- References -- Chapter 4 Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries* -- 4.1 Introduction -- 4.2 Potential Advantages and Challenges of the Conversion Mechanism -- 4.3 Transition Metal Oxides as Anode Materials -- 4.3.1 Iron Oxide (Fe3O4, Fe2O3) -- 4.3.2 Cobalt Oxide (CoO, Co3O4).
4.3.3 Manganese Oxide (MnO, Mn3O4, MnO2) -- 4.3.4 Copper Oxide (Cu2O, CuO) -- 4.3.5 Nickel Oxide (NiO) -- 4.3.6 Ruthenium Oxide (RuO2) -- 4.3.7 Other Transition Metal Oxides -- 4.4 Summary and Outlook -- References -- Chapter 5 Layered Na‐Ion Transition‐Metal Oxide Electrodes for Sodium‐Ion Batteries -- 5.1 Introduction -- 5.2 Layered Transition‐Metal Oxides -- 5.2.1 Structural Classification -- 5.2.2 Single Transition‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.3 Mixed‐Metal‐Based Layered Transition‐Metal Oxides -- 5.2.4 Anionic Redox Activity for High Capacity -- 5.3 Summary and Outlook -- References -- Chapter 6 Anionic Redox Reaction in Li‐Excess High‐Capacity Transition‐Metal Oxides -- 6.1 Stoichiometric Layered Oxides for Rechargeable Lithium Batteries -- 6.2 Li‐Excess Rocksalt Oxides as High‐Capacity Positive Electrode Materials -- 6.3 Reversible and Irreversible Anionic Redox for Li3NbO4‐ and Li2TiO3‐Based Oxides -- 6.4 Activation of Anionic Redox by Chemical Bonds with High Ionic Characters -- 6.5 Li4MoO5 as a Host Structure for Lithium‐Excess Oxides -- 6.6 Extremely Reversible Anionic Redox for Li2RuO3 System -- 6.7 Anionic Redox for Sodium‐Storage Applications -- 6.8 Future Perspectives of Anionic Redox for Energy‐Storage Applications -- References -- Chapter 7 Transition Metal Oxides in Aqueous Electrolytes -- 7.1 Introduction: Opportunities and Challenges of Aqueous Batteries -- 7.2 Electrochemistry of Aqueous Batteries -- 7.2.1 Potential Window -- 7.2.2 Diverse Charge Transfer and Storage Processes in Aqueous Batteries -- 7.2.2.1 Overview of Various Storage Mechanisms -- 7.2.2.2 Semi‐quantitative Analysis of Storage Mechanism from Sweeping Voltammetry Analysis -- 7.2.2.3 Storage Mechanisms in Electrolyte with Different pH Values -- 7.3 Transition Metal Oxides for Aqueous EES -- 7.3.1 Manganese Compounds.
7.3.1.1 Crystal Structures of Manganese Oxides for Aqueous Storage -- 7.3.1.2 Compositing Manganese Oxides with Other Additives -- 7.3.1.3 Surface Engineering Crystal Facets, Edge Sites, and Bulk/Nano Size Domain -- 7.3.1.4 Doping and Defect Chemistry -- 7.3.1.5 Pre‐intercalated Species -- 7.3.2 Ni Compounds -- 7.3.3 Vanadium Compounds -- 7.3.3.1 Li or Na Vanadates -- 7.3.4 Iron Compounds -- 7.3.4.1 Fe/Fe3O4 -- 7.3.4.2 Fe2O3/FeOOH -- 7.4 Conclusion -- Acknowledgments -- References -- Chapter 8 Nanostructured Transition Metal Oxides for Electrochemical Energy Storage -- 8.1 Fundamental Electrochemistry of Nanostructured TMOs -- 8.1.1 Thermodynamics of Charge Storage in Nanostructured TMOs -- 8.1.2 Kinetics of Charge Storage in Nanostructured TMOs -- 8.2 Emerging Nanostructured TMOs -- 8.2.1 Nanostructured TMO Cathodes for LIBs -- 8.2.2 Nanostructured Binary TMOs for Conversion‐Type Charge Storage -- 8.2.3 Nanostructured Binary TMOs for Intercalation‐Type Charge Storage -- 8.3 Implementation of Nanostructured TMOs in Electrode Architectures -- 8.3.1 One‐Dimensional and Two‐Dimensional Architectures -- 8.3.1.1 Nanowires and Nanotubes -- 8.3.2 Three‐Dimensional Architectures -- 8.3.2.1 Assemblies -- 8.3.2.2 Foams -- 8.3.2.3 Aerogels -- 8.4 Conclusions -- References -- Chapter 9 Interfaces in Oxide‐Based Li Metal Batteries* -- 9.1 Introduction -- 9.2 Solid Oxide Electrolytes -- 9.3 Cathode: Toward True Solid -- 9.3.1 Origin of Interfacial Impedance and Current Pressing Issues at Cathode/Solid Electrolyte Interfaces -- 9.3.1.1 Interfacial Reaction During Cell Fabrication -- 9.3.1.2 Electrochemical Oxidation and Chemical Reaction During Cycle -- 9.3.1.3 Chemo‐mechanical Degradation During Cycling -- 9.3.2 Strategies and Approaches Toward Enhanced Stability and Performance -- 9.3.2.1 Cathode Coating.
9.3.2.2 Geometric Arrangement Concerns and Strategies Toward Maximizing Reaction Sites -- 9.3.2.3 Conductive Additives in Solid‐State Cathode -- 9.4 Anode: Adopting Lithium Metal in the Solid -- 9.4.1 Li/Solid-Electrolyte Interface: Chemical, Electrochemical, and Mechanical Considerations, Including Mitigation Strategies -- 9.4.2 Li Dendrite Formation and Propagation in Solid Electrolytes: Challenges and Strategies -- 9.5 Outlook and Perspective -- Acknowledgments -- Contributions -- Ethics Declarations -- References -- Chapter 10 Degradation and Life Performance of Transition Metal Oxide Cathodes used in Lithium‐Ion Batteries -- 10.1 Introduction -- 10.2 Degradation Trends -- 10.3 Transition Metal Oxide Cathodes -- 10.3.1 Spinel Cathodes -- 10.3.2 NCM System of Cathodes -- 10.3.3 NCMA Cathodes -- 10.4 Degradation Mechanism -- 10.5 Concluding Remarks -- References -- Chapter 11 Mechanical Behavior of Transition Metal Oxide‐Based Battery Materials -- 11.1 Introduction -- 11.2 Mechanical Responses to Compositional Changes -- 11.2.1 Volume Changes and Deformation in Electrode Particles -- 11.2.2 Particle Fracture -- 11.3 Impact of Strain Energy on Chemical Phenomena -- 11.3.1 Thermodynamics -- 11.3.2 Two‐Phase Equilibrium -- 11.4 Solid Electrolytes -- 11.4.1 Electrode/Electrolyte Interfaces -- 11.4.2 Electrolyte Fracture -- 11.5 Summary -- References -- Chapter 12 Solid‐State NMR and EPR Characterization of Transition‐Metal Oxides for Electrochemical Energy Storage -- 12.1 Introduction -- 12.2 Brief Introduction of NMR Basics -- 12.2.1 Nuclear Spins -- 12.2.2 NMR Spin Interactions -- 12.2.3 Paramagnetic Interactions and Experimental Approaches to Achieve High Spectral Resolution -- 12.3 Multinuclear NMR Studies of Transition‐metal‐oxide Cathodes -- 12.3.1 Li Extraction and Insertion Dynamics -- 12.3.2 O Evolution -- 12.4 EPR Studies -- 12.5 Summary.
References -- Chapter 13 In Situ and In Operando Neutron Diffraction of Transition Metal Oxides for Electrochemical Storage -- 13.1 Introduction -- 13.1.1 Neutron Diffraction and Transition Metal Oxides -- 13.1.1.1 Neutron Reflectometry -- 13.1.1.2 Small‐Angle Neutron Scattering -- 13.1.1.3 Quasielastic and Inelastic Neutron Scattering -- 13.1.2 Neutron Diffraction Instrumentation -- 13.1.3 In Situ and In Operando Neutron Diffraction -- 13.2 Device Operation -- 13.2.1 Experimental Design and Approach to the Real‐Time Analysis of Battery Materials -- 13.2.2 Advancements in Understanding Electrode Structure During Battery Operation -- 13.3 Gas and Temperature Studies -- 13.3.1 Experimental Design and Approach to the In Situ Study of Solid Oxide Fuel‐Cell (SOFC) Electrodes -- 13.3.2 Advancements in Understanding Solid Oxide Fuel‐Cell Electrode Function -- 13.4 Materials Formation and Synthesis -- 13.5 Short‐Range Structure -- 13.6 Outlook -- Acknowledgments -- References -- Chapter 14 Synchrotron X‐ray Spectroscopy and Imaging for Metal Oxide Intercalation Cathode Chemistry -- 14.1 Introduction -- 14.2 X‐ray Absorption Spectroscopy -- 14.2.1 Soft X‐ray Absorption Spectroscopy -- 14.2.2 Hard X‐ray Absorption Spectroscopy -- 14.3 Real‐Space X‐ray Spectroscopic Imaging -- 14.3.1 2D Full‐Field X‐ray Imaging -- 14.3.2 X‐ray Tomographic Imaging -- 14.4 Conclusion -- References -- Chapter 15 Atomic‐Scale Simulations of the Solid Electrolyte Li7La3Zr2O12 -- 15.1 Introduction -- 15.1.1 Motivation -- 15.1.2 Solid Electrolytes -- 15.1.3 Li7La3Zr2O12 (LLZO) -- 15.1.4 Challenges -- 15.2 Elastic Properties of Li7La3Zr2O12 -- 15.3 Potential Failure Modes Arising from LLZO Microstructure -- 15.4 Conclusions -- Acknowledgements -- References.
Chapter 16 Machine‐Learning and Data‐Intensive Methods for Accelerating the Development of Rechargeable Battery Chemistries: A Review.
Record Nr. UNINA-9910829905103321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui