top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Winning with data : transform your culture, empower your people, and shape the future / / Tomasz Tunguz and Frank Bien
Winning with data : transform your culture, empower your people, and shape the future / / Tomasz Tunguz and Frank Bien
Autore Tunguz Tomasz <1981->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, [New Jersey] : , : Wiley, , 2016
Descrizione fisica 1 online resource (143 pages)
Disciplina 658.4/038
Soggetto topico Management - Statistical methods
Database management
Electronic data processing
Data mining
Information storage and retrieval systems
Punched card systems
ISBN 1-119-25741-7
1-119-25739-5
Classificazione BUS019000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mad men to math men : the power of the data-driven culture -- Four problems with data today : breadlines, obscurity, fragmentation, and brawls -- Business intelligence : how we got here -- Achieving data enlightenment : gathering data in the morning and changing your business's operations in the afternoon -- Five steps to creating a data-driven company--from recruiting to regression, it all starts with curiosity : changing the culture -- From hacks to harmony : the typical progression of data-driven companies -- Data literacy and empowerment : the core responsibilities of the data team -- Deeper analyses : asking the right questions -- Changing the way we operate -- Putting it all together.
Record Nr. UNINA-9910830342403321
Tunguz Tomasz <1981->  
Hoboken, [New Jersey] : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless and mobile network architectures / Yi-Bing Lin, Imrich Chlamtac
Wireless and mobile network architectures / Yi-Bing Lin, Imrich Chlamtac
Autore Lin, Jason yi-Bing
Pubbl/distr/stampa New York : Wiley, 2001
Descrizione fisica XXIII,532 p. : ill. ; 25 cm
Disciplina 621.3845
Altri autori (Persone) Chlamtac, Imrich
Soggetto non controllato Sistemi di comunicazione
ISBN 0-471-39492-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990001503650403321
Lin, Jason yi-Bing  
New York : Wiley, 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless automation as an enabler for the next industrial revolution / / edited by Muhammad Ali Imran, Sajid Hussain, Qammer H. Abbasi
Wireless automation as an enabler for the next industrial revolution / / edited by Muhammad Ali Imran, Sajid Hussain, Qammer H. Abbasi
Autore MUHAMMAD A. IMRAN; SAJJAD HUSSAIN; QAMMER H. ABBAS
Pubbl/distr/stampa HOBOKEN : , : JOHN WILEY, , 2019
Descrizione fisica 1 online resource (285 pages)
Disciplina 681.2
Soggetto topico Wireless sensor networks
ISBN 1-119-55262-1
1-119-55263-X
1-119-55258-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Contributors xiii -- Preface xvii -- 1 Industrial Wireless Sensor Networks Overview 1 / Mohsin Raza and Huan X. Nguyen -- 1.1 Introduction 1 -- 1.2 Industry 4.0 3 -- 1.3 Industrial Wireless Sensor Networks (IWSNs) 6 -- 1.4 Applications of IWSNs 8 -- 1.4.1 Feedback Control Systems 8 -- 1.4.2 Motion and Robotics 9 -- 1.4.3 Safety Applications 9 -- 1.4.4 Environmental Monitoring 9 -- 1.4.5 Machine/Structural Health Monitoring 10 -- 1.5 Communication Topologies in IWSNs 10 -- 1.6 Research Developments and Communications Standards for Industry 11 -- 1.6.1 IEEE 802.15.4 12 -- 1.6.2 IEEE 802.15.4e 13 -- 1.6.3 Zigbee 13 -- 1.6.4 WirelessHART 14 -- 1.6.5 ISA100.11a 14 -- 1.6.6 6LoWPAN 14 -- Bibliography 15 -- 2 Life-span Extension for Sensor Networks in the Industry 19 / Metin Ozturk, Mona Jaber, and Muhammad A. Imran -- 2.1 Introduction 19 -- 2.2 Wireless Sensor Networks 21 -- 2.3 Industrial WSNs 24 -- 2.3.1 Requirements and Challenges 25 -- 2.3.2 Protocols and Standards 26 -- 2.3.3 IWSN Applications 27 -- 2.4 Life-span Extension for WSNs 28 -- 2.4.1 Energy Harvesting 29 -- 2.4.1.1 Solar Energy Harvesting 31 -- 2.4.1.2 Wind Energy Harvesting 31 -- 2.4.1.3 Radio Frequency Energy Harvesting 32 -- 2.4.1.4 Piezoelectric Energy Harvesting 32 -- 2.4.1.5 Thermal Energy Harvesting 33 -- 2.4.2 Energy Conservation 33 -- 2.4.2.1 Duty Cycling 34 -- 2.4.2.2 Data Driven Approaches 35 -- 2.4.2.3 Mobility Based Approaches 35 -- 2.4.2.4 Q Learning Assisted Energy Efficient Smart Connectivity 36 -- 2.5 Conclusion 40 -- Bibliography 41 -- 3 Multiple Access and Resource Sharing for Low Latency Critical Industrial Networks 47 / Mohsin Raza, Anas Amjad, and Sajjad Hussain -- 3.1 Introduction 47 -- 3.2 Research Developments 51 -- 3.2.1 CSMA/CA Based MAC Schemes 53 -- 3.2.2 TDMA Based MAC Schemes 53 -- 3.2.3 Multichannel MAC Schemes 54 -- 3.2.4 Priority Based MAC Schemes 55 -- 3.3 Priority Based Information Scheduling and Transmission 56 -- 3.4 Summary 61 -- Bibliography 61 -- 4 Narrowband Internet of Things (NB-IoT) for Industrial Automation 65 / Hassan Malik, Muhammad Mahtab Alam, Alar Kuusik, Yannick Le Moullec, and Sven P©Þrand.
4.1 Introduction 65 -- 4.2 Overview of NB-IoT 65 -- 4.3 NB-IoT Design Characteristics 68 -- 4.3.1 Low Device Complexity and Low Cost 68 -- 4.3.2 Coverage Enhancement (CE) 70 -- 4.3.3 Long Device Battery Lifetime 70 -- 4.3.4 Massive Device Support 71 -- 4.3.5 Deployment Flexibility 72 -- 4.3.6 Small Data Packet Transmission Support 74 -- 4.3.6.1 Control Plane CIoT EPS Optimization (CP) 74 -- 4.3.6.2 User Plane CIoT EPS Optimization (UP) 76 -- 4.3.7 Multicast Transmission Support 76 -- 4.3.8 Mobility Support 76 -- 4.4 NB-IoT Frame Structure 77 -- 4.4.1 Downlink Transmission Scheme 78 -- 4.4.1.1 Narrowband Reference Signal (NRS) 78 -- 4.4.1.2 Narrowband Primary and Secondary Synchronization Signals (NPSS and NSSS) 78 -- 4.4.1.3 Narrowband Physical Broadcast Channel (NPBCH) 79 -- 4.4.1.4 Narrowband Physical Downlink Control Channel (NPDCCH) 79 -- 4.4.1.5 Narrowband Physical Downlink Shared Channel (NPDSCH) 80 -- 4.4.2 Uplink Transmission Scheme 80 -- 4.4.2.1 Demodulation Reference Signal (DMRS) 80 -- 4.4.2.2 Narrowband Physical Random Access Channel (NPRACH) 81 -- 4.4.2.3 Narrowband Uplink Shared Channel (NPUSCH) 81 -- 4.4.3 NB-IoT Design Modification in Relation to LTE 81 -- 4.5 NB-IoT as an Enabler for Industry 4.0 81 -- 4.5.1 Process Automation 83 -- 4.5.2 HumańôMachine Interfaces 84 -- 4.5.3 Logistics and Warehousing 84 -- 4.5.4 Maintenance and Monitoring 85 -- 4.6 Summary 85 -- Bibliography 86 -- 5 Ultra Reliable Low Latency Communications as an Enabler For Industry Automation 89 / Jo©úo Pedro Battistella Nadas, Guodong Zhao, Richard Demo Souza, and Muhammad A. Imran -- 5.1 Introduction 89 -- 5.2 Opportunities for URLLC in Industry Automation 91 -- 5.2.1 URLLC Industrial Applications 91 -- 5.2.2 New Business Models 93 -- 5.3 Existing Solutions 94 -- 5.3.1 LTE 94 -- 5.3.2 WirelessHART and ISA100.11a 95 -- 5.4 Enabling Technologies 96 -- 5.4.1 Faster Channel Coding 96 -- 5.4.2 Latency Aware HARQ 97 -- 5.4.3 Joint Design 98 -- 5.4.3.1 Communication Model 100 -- 5.4.3.2 Proposed Solution 100.
5.4.3.3 Numerical Results and Conclusion 103 -- 5.5 Conclusion 104 -- Bibliography 104 -- 6 Anomaly Detection and Self-healing in Industrial Wireless Networks 109 / Ahmed Zoha, Qammer H. Abbasi, and Muhammad A. Imran -- 6.1 Introduction 109 -- 6.2 System Design 113 -- 6.2.1 COD Stage 113 -- 6.2.2 COC Stage 115 -- 6.3 Cell Outage Detection Framework 115 -- 6.3.1 Profiling Phase 115 -- 6.3.1.1 Local Outlier Factor Based Detector (LOFD) 119 -- 6.3.1.2 One-Class Support Vector Machine based Detector (OCSVMD) 120 -- 6.3.2 Detection and Localization Phase 122 -- 6.4 Cell Outage Compensation 122 -- 6.5 Simulation Results 124 -- 6.5.1 Simulation Setup 124 -- 6.5.1.1 Parameter Estimation and Evaluation 124 -- 6.5.2 Cell Outage Detection Results 127 -- 6.5.3 Localization 135 -- 6.5.4 Compensation 136 -- 6.6 Conclusion 138 -- Bibliography 138 -- 7 Cost Efficiency Optimization for Industrial Automation 141 / Hafiz Husnain Raza Sherazi, Luigi Alfredo Grieco, Gennaro Boggia, and Muhammad A. Imran -- 7.1 Introduction 141 -- 7.2 The Evolution of Low Energy Networking Protocols for Industrial Automation 144 -- 7.2.1 Radio Frequency Identification and Near Field Communication 144 -- 7.2.2 Bluetooth 145 -- 7.2.3 Zigbee 145 -- 7.2.4 Bluetooth Low Energy (BLE) 145 -- 7.2.5 Wi-Fi 146 -- 7.2.6 IPv6 Over Low Power Wireless Personal Area Networks (6LoWPAN) 146 -- 7.2.7 Low Power Wide Area Networks (LPWAN) 146 -- 7.2.7.1 Long Range Wide Area Networks (LoRaWAN) 148 -- 7.2.7.2 Sigfox 149 -- 7.2.7.3 Narrowband IoT (NB-IoT) 150 -- 7.3 An Overview of the Costs Involved in Industry 4.0 151 -- 7.3.1 Battery Replacement Cost 152 -- 7.3.2 Damage Penalty 152 -- 7.3.3 Cost Relationships and Trade-off Analysis 152 -- 7.4 Evaluating Costs in an Industrial Environment: A LoRaWAN Case study 153 -- 7.4.1 Battery Lifetime of Monitoring Nodes 155 -- 7.4.2 Battery Replacement Cost 156 -- 7.4.3 Damage Penalty 157 -- 7.5 Cost Analysis for Industrial Automation 158 -- 7.5.1 Statistics for Energy Consumption 158.
7.5.2 Statistics for Battery Replacement Cost 159 -- 7.5.3 Statistics for Damage Penalty in a Plain Industrial Environment 161 -- 7.5.4 The Cumulative Cost 163 -- 7.6 Cost Optimization through Energy Harvesting in Industrial Automation 164 -- 7.6.1 Extending the Battery Lifetime 165 -- 7.6.2 Tuning the Sensing Interval 165 -- 7.7 Conclusion 168 -- Bibliography 168 -- 8 A Non-Event Based Approach for Non-Intrusive Load Monitoring 173 / Ahmed Zoha, Qammer H. Abbasi, and Muhammad A. Imran -- 8.1 Introduction 173 -- 8.2 Probabilistic Modelling for Load Disaggregation 175 -- 8.2.1 Model Definition 177 -- 8.2.2 Inference 178 -- 8.3 Experimental Evaluations 180 -- 8.3.1 Experiment Design 181 -- 8.3.2 Feature Sub-Groups 182 -- 8.3.3 Performance Evaluation 183 -- 8.3.3.1 Binary and Multi-State Classification 183 -- 8.4 Live Deployment 187 -- 8.4.1 Energy Estimation 188 -- 8.5 Conclusion 190 -- Bibliography 191 -- 9 Wireless Networked Control 193 / Zhen Meng and Guodong Zhao -- 9.1 Introduction 193 -- 9.2 Industrial Automation 194 -- 9.3 WNC System Model 196 -- 9.3.1 WNC Model 196 -- 9.3.1.1 Wireless Networks 197 -- 9.3.1.2 Control System 198 -- 9.3.2 WNC System Requirements 199 -- 9.3.2.1 System Structure 199 -- 9.3.2.2 Real-Time Performance 200 -- 9.3.2.3 High Reliability 201 -- 9.3.2.4 Determinism 201 -- 9.3.2.5 Sample Data Traffic and Event Order 201 -- 9.3.3 Analysis of Influencing Factors 202 -- 9.3.3.1 Sampling Period 202 -- 9.3.3.2 Time Delay 202 -- 9.3.3.3 Packet Loss 203 -- 9.4 Network and System Control Co-design 203 -- 9.5 Conclusion 204 -- Bibliography 204 -- 10 Caching at the Edge in Low Latency Wireless Networks 209 / Ramy Amer, M. Majid Butt, and Nicola Marchetti -- 10.1 Introduction 209 -- 10.2 Living on the Edge 211 -- 10.3 Classifications of Wireless Caching Networks 214 -- 10.3.1 Wireless Caching Architecture 215 -- 10.4 Caching for Low Latency Wireless Networks 217 -- 10.5 Inter-cluster Cooperation for Wireless D2D Caching Networks 218 -- 10.5.1 Proposed Network Model 219.
10.5.2 Content Placement and Traffic Characteristics 222 -- 10.5.3 Caching Problem Formulation 224 -- 10.5.3.1 Arrival and Service Rates 224 -- 10.5.3.2 Network Average Delay 225 -- 10.5.4 Proposed Caching Schemes 226 -- 10.5.4.1 Caching Popular Files 226 -- 10.5.4.2 Greedy Caching Algorithm 227 -- 10.5.4.3 Outage Probability 228 -- 10.6 Results and Discussions 230 -- 10.7 Chapter Summary 234 -- Bibliography 235 -- 11 Application of Terahertz Sensing at Nano-Scale for Precision Agriculture 241 / Adnan Zahid, Hasan T. Abbas, Aifeng Ren, Akram Alomainy, Muhammad A. Imran, and Qammer H. Abbasi -- 11.1 Introduction 241 -- 11.1.1 Limitations of Conventional Methods 243 -- 11.1.2 Transformation from Micro- to Nanotechnology 243 -- 11.1.3 Evolution of Nanotechnology 245 -- 11.1.4 Potential Benefits of Nanotechnology in Agriculture 245 -- 11.1.5 Challenges in Nanotechnology 246 -- 11.1.5.1 Health and Environmental Impacts 246 -- 11.1.5.2 High Production Costs 246 -- 11.1.5.3 Risk Assessment 247 -- 11.1.6 Evolving Applications of Terahertz (THz) Technology 247 -- 11.1.7 Materials and Methods 249 -- 11.1.7.1 Experimental Setup 249 -- 11.1.7.2 Sample 249 -- 11.1.7.3 Thickness of Leaves 250 -- 11.1.8 Measurement Results 250 -- 11.1.8.1 Transmission Response 250 -- 11.1.8.2 Path-loss Response of Leaves 253 -- 11.1.9 Conclusion 254 -- Bibliography 255 -- Index 259.
Record Nr. UNINA-9910555172903321
MUHAMMAD A. IMRAN; SAJJAD HUSSAIN; QAMMER H. ABBAS  
HOBOKEN : , : JOHN WILEY, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless automation as an enabler for the next industrial revolution / / edited by Muhammad Ali Imran, Sajid Hussain, Qammer H. Abbasi
Wireless automation as an enabler for the next industrial revolution / / edited by Muhammad Ali Imran, Sajid Hussain, Qammer H. Abbasi
Autore MUHAMMAD A. IMRAN; SAJJAD HUSSAIN; QAMMER H. ABBAS
Pubbl/distr/stampa HOBOKEN : , : JOHN WILEY, , 2019
Descrizione fisica 1 online resource (285 pages)
Disciplina 681.2
Soggetto topico Wireless sensor networks
ISBN 1-119-55262-1
1-119-55263-X
1-119-55258-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Contributors xiii -- Preface xvii -- 1 Industrial Wireless Sensor Networks Overview 1 / Mohsin Raza and Huan X. Nguyen -- 1.1 Introduction 1 -- 1.2 Industry 4.0 3 -- 1.3 Industrial Wireless Sensor Networks (IWSNs) 6 -- 1.4 Applications of IWSNs 8 -- 1.4.1 Feedback Control Systems 8 -- 1.4.2 Motion and Robotics 9 -- 1.4.3 Safety Applications 9 -- 1.4.4 Environmental Monitoring 9 -- 1.4.5 Machine/Structural Health Monitoring 10 -- 1.5 Communication Topologies in IWSNs 10 -- 1.6 Research Developments and Communications Standards for Industry 11 -- 1.6.1 IEEE 802.15.4 12 -- 1.6.2 IEEE 802.15.4e 13 -- 1.6.3 Zigbee 13 -- 1.6.4 WirelessHART 14 -- 1.6.5 ISA100.11a 14 -- 1.6.6 6LoWPAN 14 -- Bibliography 15 -- 2 Life-span Extension for Sensor Networks in the Industry 19 / Metin Ozturk, Mona Jaber, and Muhammad A. Imran -- 2.1 Introduction 19 -- 2.2 Wireless Sensor Networks 21 -- 2.3 Industrial WSNs 24 -- 2.3.1 Requirements and Challenges 25 -- 2.3.2 Protocols and Standards 26 -- 2.3.3 IWSN Applications 27 -- 2.4 Life-span Extension for WSNs 28 -- 2.4.1 Energy Harvesting 29 -- 2.4.1.1 Solar Energy Harvesting 31 -- 2.4.1.2 Wind Energy Harvesting 31 -- 2.4.1.3 Radio Frequency Energy Harvesting 32 -- 2.4.1.4 Piezoelectric Energy Harvesting 32 -- 2.4.1.5 Thermal Energy Harvesting 33 -- 2.4.2 Energy Conservation 33 -- 2.4.2.1 Duty Cycling 34 -- 2.4.2.2 Data Driven Approaches 35 -- 2.4.2.3 Mobility Based Approaches 35 -- 2.4.2.4 Q Learning Assisted Energy Efficient Smart Connectivity 36 -- 2.5 Conclusion 40 -- Bibliography 41 -- 3 Multiple Access and Resource Sharing for Low Latency Critical Industrial Networks 47 / Mohsin Raza, Anas Amjad, and Sajjad Hussain -- 3.1 Introduction 47 -- 3.2 Research Developments 51 -- 3.2.1 CSMA/CA Based MAC Schemes 53 -- 3.2.2 TDMA Based MAC Schemes 53 -- 3.2.3 Multichannel MAC Schemes 54 -- 3.2.4 Priority Based MAC Schemes 55 -- 3.3 Priority Based Information Scheduling and Transmission 56 -- 3.4 Summary 61 -- Bibliography 61 -- 4 Narrowband Internet of Things (NB-IoT) for Industrial Automation 65 / Hassan Malik, Muhammad Mahtab Alam, Alar Kuusik, Yannick Le Moullec, and Sven P©Þrand.
4.1 Introduction 65 -- 4.2 Overview of NB-IoT 65 -- 4.3 NB-IoT Design Characteristics 68 -- 4.3.1 Low Device Complexity and Low Cost 68 -- 4.3.2 Coverage Enhancement (CE) 70 -- 4.3.3 Long Device Battery Lifetime 70 -- 4.3.4 Massive Device Support 71 -- 4.3.5 Deployment Flexibility 72 -- 4.3.6 Small Data Packet Transmission Support 74 -- 4.3.6.1 Control Plane CIoT EPS Optimization (CP) 74 -- 4.3.6.2 User Plane CIoT EPS Optimization (UP) 76 -- 4.3.7 Multicast Transmission Support 76 -- 4.3.8 Mobility Support 76 -- 4.4 NB-IoT Frame Structure 77 -- 4.4.1 Downlink Transmission Scheme 78 -- 4.4.1.1 Narrowband Reference Signal (NRS) 78 -- 4.4.1.2 Narrowband Primary and Secondary Synchronization Signals (NPSS and NSSS) 78 -- 4.4.1.3 Narrowband Physical Broadcast Channel (NPBCH) 79 -- 4.4.1.4 Narrowband Physical Downlink Control Channel (NPDCCH) 79 -- 4.4.1.5 Narrowband Physical Downlink Shared Channel (NPDSCH) 80 -- 4.4.2 Uplink Transmission Scheme 80 -- 4.4.2.1 Demodulation Reference Signal (DMRS) 80 -- 4.4.2.2 Narrowband Physical Random Access Channel (NPRACH) 81 -- 4.4.2.3 Narrowband Uplink Shared Channel (NPUSCH) 81 -- 4.4.3 NB-IoT Design Modification in Relation to LTE 81 -- 4.5 NB-IoT as an Enabler for Industry 4.0 81 -- 4.5.1 Process Automation 83 -- 4.5.2 HumańôMachine Interfaces 84 -- 4.5.3 Logistics and Warehousing 84 -- 4.5.4 Maintenance and Monitoring 85 -- 4.6 Summary 85 -- Bibliography 86 -- 5 Ultra Reliable Low Latency Communications as an Enabler For Industry Automation 89 / Jo©úo Pedro Battistella Nadas, Guodong Zhao, Richard Demo Souza, and Muhammad A. Imran -- 5.1 Introduction 89 -- 5.2 Opportunities for URLLC in Industry Automation 91 -- 5.2.1 URLLC Industrial Applications 91 -- 5.2.2 New Business Models 93 -- 5.3 Existing Solutions 94 -- 5.3.1 LTE 94 -- 5.3.2 WirelessHART and ISA100.11a 95 -- 5.4 Enabling Technologies 96 -- 5.4.1 Faster Channel Coding 96 -- 5.4.2 Latency Aware HARQ 97 -- 5.4.3 Joint Design 98 -- 5.4.3.1 Communication Model 100 -- 5.4.3.2 Proposed Solution 100.
5.4.3.3 Numerical Results and Conclusion 103 -- 5.5 Conclusion 104 -- Bibliography 104 -- 6 Anomaly Detection and Self-healing in Industrial Wireless Networks 109 / Ahmed Zoha, Qammer H. Abbasi, and Muhammad A. Imran -- 6.1 Introduction 109 -- 6.2 System Design 113 -- 6.2.1 COD Stage 113 -- 6.2.2 COC Stage 115 -- 6.3 Cell Outage Detection Framework 115 -- 6.3.1 Profiling Phase 115 -- 6.3.1.1 Local Outlier Factor Based Detector (LOFD) 119 -- 6.3.1.2 One-Class Support Vector Machine based Detector (OCSVMD) 120 -- 6.3.2 Detection and Localization Phase 122 -- 6.4 Cell Outage Compensation 122 -- 6.5 Simulation Results 124 -- 6.5.1 Simulation Setup 124 -- 6.5.1.1 Parameter Estimation and Evaluation 124 -- 6.5.2 Cell Outage Detection Results 127 -- 6.5.3 Localization 135 -- 6.5.4 Compensation 136 -- 6.6 Conclusion 138 -- Bibliography 138 -- 7 Cost Efficiency Optimization for Industrial Automation 141 / Hafiz Husnain Raza Sherazi, Luigi Alfredo Grieco, Gennaro Boggia, and Muhammad A. Imran -- 7.1 Introduction 141 -- 7.2 The Evolution of Low Energy Networking Protocols for Industrial Automation 144 -- 7.2.1 Radio Frequency Identification and Near Field Communication 144 -- 7.2.2 Bluetooth 145 -- 7.2.3 Zigbee 145 -- 7.2.4 Bluetooth Low Energy (BLE) 145 -- 7.2.5 Wi-Fi 146 -- 7.2.6 IPv6 Over Low Power Wireless Personal Area Networks (6LoWPAN) 146 -- 7.2.7 Low Power Wide Area Networks (LPWAN) 146 -- 7.2.7.1 Long Range Wide Area Networks (LoRaWAN) 148 -- 7.2.7.2 Sigfox 149 -- 7.2.7.3 Narrowband IoT (NB-IoT) 150 -- 7.3 An Overview of the Costs Involved in Industry 4.0 151 -- 7.3.1 Battery Replacement Cost 152 -- 7.3.2 Damage Penalty 152 -- 7.3.3 Cost Relationships and Trade-off Analysis 152 -- 7.4 Evaluating Costs in an Industrial Environment: A LoRaWAN Case study 153 -- 7.4.1 Battery Lifetime of Monitoring Nodes 155 -- 7.4.2 Battery Replacement Cost 156 -- 7.4.3 Damage Penalty 157 -- 7.5 Cost Analysis for Industrial Automation 158 -- 7.5.1 Statistics for Energy Consumption 158.
7.5.2 Statistics for Battery Replacement Cost 159 -- 7.5.3 Statistics for Damage Penalty in a Plain Industrial Environment 161 -- 7.5.4 The Cumulative Cost 163 -- 7.6 Cost Optimization through Energy Harvesting in Industrial Automation 164 -- 7.6.1 Extending the Battery Lifetime 165 -- 7.6.2 Tuning the Sensing Interval 165 -- 7.7 Conclusion 168 -- Bibliography 168 -- 8 A Non-Event Based Approach for Non-Intrusive Load Monitoring 173 / Ahmed Zoha, Qammer H. Abbasi, and Muhammad A. Imran -- 8.1 Introduction 173 -- 8.2 Probabilistic Modelling for Load Disaggregation 175 -- 8.2.1 Model Definition 177 -- 8.2.2 Inference 178 -- 8.3 Experimental Evaluations 180 -- 8.3.1 Experiment Design 181 -- 8.3.2 Feature Sub-Groups 182 -- 8.3.3 Performance Evaluation 183 -- 8.3.3.1 Binary and Multi-State Classification 183 -- 8.4 Live Deployment 187 -- 8.4.1 Energy Estimation 188 -- 8.5 Conclusion 190 -- Bibliography 191 -- 9 Wireless Networked Control 193 / Zhen Meng and Guodong Zhao -- 9.1 Introduction 193 -- 9.2 Industrial Automation 194 -- 9.3 WNC System Model 196 -- 9.3.1 WNC Model 196 -- 9.3.1.1 Wireless Networks 197 -- 9.3.1.2 Control System 198 -- 9.3.2 WNC System Requirements 199 -- 9.3.2.1 System Structure 199 -- 9.3.2.2 Real-Time Performance 200 -- 9.3.2.3 High Reliability 201 -- 9.3.2.4 Determinism 201 -- 9.3.2.5 Sample Data Traffic and Event Order 201 -- 9.3.3 Analysis of Influencing Factors 202 -- 9.3.3.1 Sampling Period 202 -- 9.3.3.2 Time Delay 202 -- 9.3.3.3 Packet Loss 203 -- 9.4 Network and System Control Co-design 203 -- 9.5 Conclusion 204 -- Bibliography 204 -- 10 Caching at the Edge in Low Latency Wireless Networks 209 / Ramy Amer, M. Majid Butt, and Nicola Marchetti -- 10.1 Introduction 209 -- 10.2 Living on the Edge 211 -- 10.3 Classifications of Wireless Caching Networks 214 -- 10.3.1 Wireless Caching Architecture 215 -- 10.4 Caching for Low Latency Wireless Networks 217 -- 10.5 Inter-cluster Cooperation for Wireless D2D Caching Networks 218 -- 10.5.1 Proposed Network Model 219.
10.5.2 Content Placement and Traffic Characteristics 222 -- 10.5.3 Caching Problem Formulation 224 -- 10.5.3.1 Arrival and Service Rates 224 -- 10.5.3.2 Network Average Delay 225 -- 10.5.4 Proposed Caching Schemes 226 -- 10.5.4.1 Caching Popular Files 226 -- 10.5.4.2 Greedy Caching Algorithm 227 -- 10.5.4.3 Outage Probability 228 -- 10.6 Results and Discussions 230 -- 10.7 Chapter Summary 234 -- Bibliography 235 -- 11 Application of Terahertz Sensing at Nano-Scale for Precision Agriculture 241 / Adnan Zahid, Hasan T. Abbas, Aifeng Ren, Akram Alomainy, Muhammad A. Imran, and Qammer H. Abbasi -- 11.1 Introduction 241 -- 11.1.1 Limitations of Conventional Methods 243 -- 11.1.2 Transformation from Micro- to Nanotechnology 243 -- 11.1.3 Evolution of Nanotechnology 245 -- 11.1.4 Potential Benefits of Nanotechnology in Agriculture 245 -- 11.1.5 Challenges in Nanotechnology 246 -- 11.1.5.1 Health and Environmental Impacts 246 -- 11.1.5.2 High Production Costs 246 -- 11.1.5.3 Risk Assessment 247 -- 11.1.6 Evolving Applications of Terahertz (THz) Technology 247 -- 11.1.7 Materials and Methods 249 -- 11.1.7.1 Experimental Setup 249 -- 11.1.7.2 Sample 249 -- 11.1.7.3 Thickness of Leaves 250 -- 11.1.8 Measurement Results 250 -- 11.1.8.1 Transmission Response 250 -- 11.1.8.2 Path-loss Response of Leaves 253 -- 11.1.9 Conclusion 254 -- Bibliography 255 -- Index 259.
Record Nr. UNINA-9910830687903321
MUHAMMAD A. IMRAN; SAJJAD HUSSAIN; QAMMER H. ABBAS  
HOBOKEN : , : JOHN WILEY, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless broadband : conflict and convergence / / Vern Fotheringham, Chetan Sharma
Wireless broadband : conflict and convergence / / Vern Fotheringham, Chetan Sharma
Autore Fotheringham Vern
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2008
Descrizione fisica 1 online resource (277 p.)
Disciplina 384.5
621.384
Altri autori (Persone) SharmaChetan
Collana IEEE series on mobile & digital communication
Soggetto topico Broadband communication systems
Wireless communication systems
ISBN 1-282-11268-6
9786612112683
0-470-38160-4
0-470-38159-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- Acknowledgments -- List of Figures -- INTRODUCTION -- 1 WHERE WE ARE--WIRELESS MEETS THE BROADBAND INTERNET -- 2 BROADBAND AND THE INFORMATION SOCIETY -- 3 GLOBAL WIRELESS MARKET ANALYSIS -- 4 THE VIRTUAL DISPLACES THE PHYSICAL -- 5 CONVERGENCE FINALLY ARRIVES -- 6 DRIVERS OF BROADBAND CONSUMPTION -- 7 THE EMERGING INFLUENCE OF THE COMPUTER INDUSTRY -- 8 ALWAYS BEST CONNECTED -- 9 BROADBAND IP CORE NETWORKS -- 10 WIDEBAND 3G TO BROADBAND 4G--COLLISION AND CONVERGENCE OF STANDARDS -- 11 RADIO TECHNOLOGY--MOVING THE GOAL POSTS -- 12 CONTENTION AND CONFLICT--REGULATORY, POLITICAL, FINANCIAL, AND STANDARDS BATTLES -- 13 CONCLUSION -- A WIRELESS BROADBAND GLOSSARY -- B A SCENARIO OF A BROADBAND WIRELESS CUSTOMER,CIRCA 2012 -- C SPECTRUM TABLES--WIRELESS BROADBAND -- About the Authors.
Record Nr. UNINA-9910145956103321
Fotheringham Vern  
Hoboken, New Jersey : , : Wiley, , c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless broadband : conflict and convergence / / Vern Fotheringham, Chetan Sharma
Wireless broadband : conflict and convergence / / Vern Fotheringham, Chetan Sharma
Autore Fotheringham Vern
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2008
Descrizione fisica 1 online resource (277 p.)
Disciplina 384.5
621.384
Altri autori (Persone) SharmaChetan
Collana IEEE series on mobile & digital communication
Soggetto topico Broadband communication systems
Wireless communication systems
ISBN 1-282-11268-6
9786612112683
0-470-38160-4
0-470-38159-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword -- Acknowledgments -- List of Figures -- INTRODUCTION -- 1 WHERE WE ARE--WIRELESS MEETS THE BROADBAND INTERNET -- 2 BROADBAND AND THE INFORMATION SOCIETY -- 3 GLOBAL WIRELESS MARKET ANALYSIS -- 4 THE VIRTUAL DISPLACES THE PHYSICAL -- 5 CONVERGENCE FINALLY ARRIVES -- 6 DRIVERS OF BROADBAND CONSUMPTION -- 7 THE EMERGING INFLUENCE OF THE COMPUTER INDUSTRY -- 8 ALWAYS BEST CONNECTED -- 9 BROADBAND IP CORE NETWORKS -- 10 WIDEBAND 3G TO BROADBAND 4G--COLLISION AND CONVERGENCE OF STANDARDS -- 11 RADIO TECHNOLOGY--MOVING THE GOAL POSTS -- 12 CONTENTION AND CONFLICT--REGULATORY, POLITICAL, FINANCIAL, AND STANDARDS BATTLES -- 13 CONCLUSION -- A WIRELESS BROADBAND GLOSSARY -- B A SCENARIO OF A BROADBAND WIRELESS CUSTOMER,CIRCA 2012 -- C SPECTRUM TABLES--WIRELESS BROADBAND -- About the Authors.
Record Nr. UNINA-9910830184403321
Fotheringham Vern  
Hoboken, New Jersey : , : Wiley, , c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan
Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan
Autore Arslan Hüseyin <1968->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.384
Soggetto topico Wireless communication systems
Soggetto genere / forma Electronic books.
ISBN 1-119-76443-2
1-119-76444-0
1-119-76442-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Acronyms List -- Chapter 1 Hands‐on Wireless Communication Experience -- 1.1 Importance of Laboratory‐Based Learning of Wireless Communications -- 1.2 Model for a Practical Lab Bench -- 1.3 Examples of Co‐simulation with Hardware -- 1.4 A Sample Model for a Laboratory Course -- 1.4.1 Introduction to the SDR and Testbed Platform -- 1.4.2 Basic Simulation -- 1.4.3 Measurements and Multidimensional Signal Analysis -- 1.4.4 Digital Modulation -- 1.4.5 Pulse Shaping -- 1.4.6 RF Front‐end and RF Impairments -- 1.4.7 Wireless Channel and Interference -- 1.4.8 Synchronization and Channel Estimation -- 1.4.9 OFDM Signal Analysis and Performance Evaluation -- 1.4.10 Multiple Accessing -- 1.4.11 Independent Project Development Phase -- 1.4.11.1 Software Defined Radio -- 1.4.11.2 Dynamic Spectrum Access and CR Experiment -- 1.4.11.3 Wireless Channel -- 1.4.11.4 Wireless Channel Counteractions -- 1.4.11.5 Antenna Project -- 1.4.11.6 Signal Intelligence -- 1.4.11.7 Channel, User, and Context Awareness Project -- 1.4.11.8 Combination of DSP Lab with RF and Microwave Lab -- 1.4.11.9 Multiple Access and Interference Management -- 1.4.11.10 Standards -- 1.5 Conclusions -- References -- Chapter 2 Performance Metrics and Measurements -- 2.1 Signal Quality Measurements -- 2.1.1 Measurements Before Demodulation -- 2.1.2 Measurements During and After Demodulation -- 2.1.2.1 Noise Figure -- 2.1.2.2 Channel Frequency Response Estimation -- 2.1.3 Measurements After Channel Decoding -- 2.1.3.1 Relation of SNR with BER -- 2.1.4 Error Vector Magnitude -- 2.1.4.1 Error‐Vector‐Time and Error‐Vector‐Frequency -- 2.1.4.2 Relation of EVM with Other Metrics -- 2.1.4.3 Rho -- 2.1.5 Measures After Speech or Video Decoding -- 2.2 Visual Inspections and Useful Plots -- 2.2.1 Advanced Scatter Plot.
2.3 Cognitive Radio and SDR Measurements -- 2.4 Other Measurements -- 2.5 Clarifying dB and dBm -- 2.6 Conclusions -- References -- Chapter 3 Multidimensional Signal Analysis -- 3.1 Why Multiple Dimensions in a Radio Signal? -- 3.2 Time Domain Analysis -- 3.2.1 CCDF and PAPR -- 3.2.2 Time Selectivity Measure -- 3.3 Frequency Domain Analysis -- 3.3.1 Adjacent Channel Power Ratio -- 3.3.2 Frequency Selectivity Measure -- 3.4 Joint Time‐Frequency Analysis -- 3.5 Code Domain Analysis -- 3.5.1 Code Selectivity -- 3.6 Correlation Analysis -- 3.7 Modulation Domain Analysis -- 3.8 Angular Domain Analysis -- 3.8.1 Direction Finding -- 3.8.2 Angular Spread -- 3.9 MIMO Measurements -- 3.9.1 Antenna Correlation -- 3.9.2 RF Cross‐Coupling -- 3.9.3 EVM Versus Antenna Branches -- 3.9.4 Channel Parameters -- 3.10 Conclusions -- References -- Chapter 4 Simulating a Communication System -- 4.1 Simulation: What, Why? -- 4.2 Approaching a Simulation -- 4.2.1 Strategy -- 4.2.2 General Methodology -- 4.3 Basic Modeling Concepts -- 4.3.1 System Modeling -- 4.3.2 Subsystem Modeling -- 4.3.3 Stochastic Modeling -- 4.4 What is a Link/Link‐level Simulation? -- 4.4.1 Source and Source Coding -- 4.4.2 Channel Coding -- 4.4.3 Symbol Mapping/Modulation -- 4.4.4 Upsampling -- 4.4.5 Digital Filtering -- 4.4.6 RF Front‐end -- 4.4.7 Channel -- 4.4.8 Synchronization and Equalization -- 4.4.9 Performance Evaluation and Signal Analysis -- 4.5 Communication in AWGN - A Simple Case Study -- 4.5.1 Receiver Design -- 4.6 Multi‐link vs. Network‐level Simulations -- 4.6.1 Network Layout Generation -- 4.6.1.1 Hexagonal Grid -- 4.6.1.2 PPP‐based Network Layout -- 4.7 Practical Issues -- 4.7.1 Monte Carlo Simulations -- 4.7.2 Random Number Generation -- 4.7.2.1 White Noise Generation -- 4.7.2.2 Random Binary Sequence -- 4.7.3 Values of Simulation Parameters -- 4.7.4 Confidence Interval.
4.7.5 Convergence/Stopping Criterion -- 4.8 Issues/Limitations of Simulations -- 4.8.1 Modeling Errors -- 4.8.1.1 Errors in System Model -- 4.8.1.2 Errors in Subsystem Model -- 4.8.1.3 Errors in Random Process Modeling -- 4.8.2 Processing Errors -- 4.9 Conclusions -- References -- Chapter 5 RF Impairments -- 5.1 Radio Impairment Sources -- 5.2 IQ Modulation Impairments -- 5.3 PA Nonlinearities -- 5.4 Phase Noise and Time Jitter -- 5.5 Frequency Offset -- 5.6 ADC/DAC Impairments -- 5.7 Thermal Noise -- 5.8 RF Impairments and Interference -- 5.8.1 Harmonics and Intermodulation Products -- 5.8.2 Multiple Access Interference -- 5.9 Conclusions -- References -- Chapter 6 Digital Modulation and Pulse Shaping -- 6.1 Digital Modulation Basics -- 6.2 Popularly Used Digital Modulation Schemes -- 6.2.1 PSK -- 6.2.2 FSK -- 6.2.2.1 GMSK and Approximate Representation of GSM GMSK Signal -- 6.2.3 QAM -- 6.2.4 Differential Modulation -- 6.3 Adaptive Modulation -- 6.3.1 Gray Mapping -- 6.3.2 Calculation of Error -- 6.3.3 Relation of EbNo with SNR at the Receiver -- 6.4 Pulse‐Shaping Filtering -- 6.5 Conclusions -- References -- Chapter 7 OFDM Signal Analysis and Performance Evaluation -- 7.1 Why OFDM? -- 7.2 Generic OFDM System Design and Its Evaluation -- 7.2.1 Basic CP‐OFDM Transceiver Design -- 7.2.2 Spectrum of the OFDM Signal -- 7.2.3 PAPR of the OFDM Signal -- 7.2.4 Performance in Multipath Channel -- 7.2.4.1 Time‐Dispersive Multipath Channel -- 7.2.4.2 Frequency‐Dispersive Multipath Channel -- 7.2.5 Performance with Impairments -- 7.2.5.1 Frequency Offset -- 7.2.5.2 Symbol Timing Error -- 7.2.5.3 Sampling Clock Offset -- 7.2.5.4 Phase Noise -- 7.2.5.5 PA Nonlinearities -- 7.2.5.6 I/Q Impairments -- 7.2.6 Summary of the OFDM Design Considerations -- 7.2.7 Coherent versus Differential OFDM -- 7.3 OFDM‐like Signaling -- 7.3.1 OFDM Versus SC‐FDE.
7.3.2 Multi‐user OFDM and OFDMA -- 7.3.3 SC‐FDMA and DFT‐S‐OFDM -- 7.4 Case Study: Measurement‐Based OFDM Receiver -- 7.4.1 System Model -- 7.4.1.1 Frame Format -- 7.4.1.2 OFDM Symbol Format -- 7.4.1.3 Baseband Transmitter Blocks and Transmitted Signal Model -- 7.4.1.4 Received Signal Model -- 7.4.2 Receiver Structure and Algorithms -- 7.4.2.1 Packet Detection -- 7.4.2.2 Frequency Offset Estimation and Compensation -- 7.4.2.3 Symbol Timing Estimation -- 7.4.2.4 Packet‐end Detection and Packet Extraction -- 7.4.2.5 Channel Estimation and Equalization -- 7.4.2.6 Pilot Tracking -- 7.4.2.7 Auto‐modulation Detection -- 7.4.3 FCH Decoding -- 7.4.4 Test and Measurements -- 7.5 Conclusions -- References -- Chapter 8 Analysis of Single‐Carrier Communication Systems -- 8.1 A Simple System in AWGN Channel -- 8.2 Flat Fading (Non‐Dispersive) Multipath Channel -- 8.3 Frequency‐Selective (Dispersive) Multipath Channel -- 8.3.1 Time‐Domain Equalization -- 8.3.2 Channel Estimation -- 8.3.3 Frequency‐Domain Equalization -- 8.4 Extension of Dispersive Multipath Channel to DS‐CDMA‐based Wideband Systems -- 8.5 Conclusions -- References -- Chapter 9 Multiple Accessing, Multi‐Numerology, Hybrid Waveforms -- 9.1 Preliminaries -- 9.1.1 Duplexing -- 9.1.2 Downlink Communication -- 9.1.3 Uplink Communication -- 9.1.4 Traffic Theory and Trunking Gain -- 9.2 Orthogonal Design -- 9.2.1 TDMA -- 9.2.2 FDMA -- 9.2.3 Code Division Multiple Access (CDMA) -- 9.2.4 Frequency Hopped Multiple Access (FHMA) -- 9.2.5 Space Division Multiple Access (SDMA) -- 9.2.5.1 Multiuser Multiple‐input Multiple‐output (MIMO) -- 9.3 Non‐orthogonal Design -- 9.3.1 Power‐domain Non‐orthogonal Multiple Access (PD‐NOMA) -- 9.3.2 Code‐domain Non‐orthogonal Multiple Access -- 9.4 Random Access -- 9.4.1 ALOHA -- 9.4.2 Carrier Sense Multiple Accessing (CSMA) -- 9.4.3 Multiple Access Collision Avoidance (MACA).
9.4.4 Random Access Channel (RACH) -- 9.4.5 Grant‐free Random Access -- 9.5 Multiple Accessing with Application‐Based Hybrid Waveform Design -- 9.5.1 Multi‐numerology Orthogonal Frequency Division Multiple Access (OFDMA) -- 9.5.2 Radar‐Sensing and Communication (RSC) Coexistence -- 9.5.3 Coexistence of Different Waveforms in Multidimensional Hyperspace for 6G and Beyond Networks -- 9.6 Case Study -- Appendix: Erlang B table -- References -- Chapter 10 Wireless Channel and Interference -- 10.1 Fundamental Propagation Phenomena -- 10.2 Multipath Propagation -- 10.2.1 Large‐Scale Fading -- 10.2.1.1 Path Loss -- 10.2.1.2 Shadowing -- 10.2.2 Small‐Scale Fading -- 10.2.2.1 Characterization of Time‐Varying Channels -- 10.2.2.2 Rayleigh and Rician Fading Distributions -- 10.2.3 Time, Frequency and Angular Domains Characteristics of Multipath Channel -- 10.2.3.1 Delay Spread -- 10.2.3.2 Angular Spread -- 10.2.3.3 Doppler Spread -- 10.2.4 Novel Channel Characteristics in the 5G Technology -- 10.3 Channel as a Source of Interference -- 10.3.1 Interference due to Large‐Scale Fading -- 10.3.1.1 Cellular Systems and CoChannel Interference -- 10.3.1.2 Cochannel Interference Control via Resource Assignment -- 10.3.2 Interference due to Small‐Scale Fading -- 10.4 Channel Modeling -- 10.4.1 Analytical Channel Models -- 10.4.1.1 Correlation‐based Models -- 10.4.1.2 Propagation‐Motivated Models -- 10.4.2 Physical Models -- 10.4.2.1 Deterministic Model -- 10.4.2.2 Geometry‐based Stochastic Model -- 10.4.2.3 Nongeometry‐based Stochastic Models -- 10.4.3 3GPP 5G Channel Models -- 10.4.3.1 Tapped Delay Line (TDL) Model -- 10.4.3.2 Clustered Delay Line (CDL) Model -- 10.4.3.3 Generating Channel Coefficients Using CDL Model -- 10.4.4 Role of Artificial Intelligence (AI) in Channel Modeling -- 10.5 Channel Measurement -- 10.5.1 Frequency Domain Channel Sounder.
10.5.1.1 Swept Frequency/Chirp Sounder.
Record Nr. UNINA-9910554880703321
Arslan Hüseyin <1968->  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan
Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan
Autore Arslan Hüseyin <1968->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.384
Soggetto topico Wireless communication systems
ISBN 1-119-76443-2
1-119-76444-0
1-119-76442-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Acronyms List -- Chapter 1 Hands‐on Wireless Communication Experience -- 1.1 Importance of Laboratory‐Based Learning of Wireless Communications -- 1.2 Model for a Practical Lab Bench -- 1.3 Examples of Co‐simulation with Hardware -- 1.4 A Sample Model for a Laboratory Course -- 1.4.1 Introduction to the SDR and Testbed Platform -- 1.4.2 Basic Simulation -- 1.4.3 Measurements and Multidimensional Signal Analysis -- 1.4.4 Digital Modulation -- 1.4.5 Pulse Shaping -- 1.4.6 RF Front‐end and RF Impairments -- 1.4.7 Wireless Channel and Interference -- 1.4.8 Synchronization and Channel Estimation -- 1.4.9 OFDM Signal Analysis and Performance Evaluation -- 1.4.10 Multiple Accessing -- 1.4.11 Independent Project Development Phase -- 1.4.11.1 Software Defined Radio -- 1.4.11.2 Dynamic Spectrum Access and CR Experiment -- 1.4.11.3 Wireless Channel -- 1.4.11.4 Wireless Channel Counteractions -- 1.4.11.5 Antenna Project -- 1.4.11.6 Signal Intelligence -- 1.4.11.7 Channel, User, and Context Awareness Project -- 1.4.11.8 Combination of DSP Lab with RF and Microwave Lab -- 1.4.11.9 Multiple Access and Interference Management -- 1.4.11.10 Standards -- 1.5 Conclusions -- References -- Chapter 2 Performance Metrics and Measurements -- 2.1 Signal Quality Measurements -- 2.1.1 Measurements Before Demodulation -- 2.1.2 Measurements During and After Demodulation -- 2.1.2.1 Noise Figure -- 2.1.2.2 Channel Frequency Response Estimation -- 2.1.3 Measurements After Channel Decoding -- 2.1.3.1 Relation of SNR with BER -- 2.1.4 Error Vector Magnitude -- 2.1.4.1 Error‐Vector‐Time and Error‐Vector‐Frequency -- 2.1.4.2 Relation of EVM with Other Metrics -- 2.1.4.3 Rho -- 2.1.5 Measures After Speech or Video Decoding -- 2.2 Visual Inspections and Useful Plots -- 2.2.1 Advanced Scatter Plot.
2.3 Cognitive Radio and SDR Measurements -- 2.4 Other Measurements -- 2.5 Clarifying dB and dBm -- 2.6 Conclusions -- References -- Chapter 3 Multidimensional Signal Analysis -- 3.1 Why Multiple Dimensions in a Radio Signal? -- 3.2 Time Domain Analysis -- 3.2.1 CCDF and PAPR -- 3.2.2 Time Selectivity Measure -- 3.3 Frequency Domain Analysis -- 3.3.1 Adjacent Channel Power Ratio -- 3.3.2 Frequency Selectivity Measure -- 3.4 Joint Time‐Frequency Analysis -- 3.5 Code Domain Analysis -- 3.5.1 Code Selectivity -- 3.6 Correlation Analysis -- 3.7 Modulation Domain Analysis -- 3.8 Angular Domain Analysis -- 3.8.1 Direction Finding -- 3.8.2 Angular Spread -- 3.9 MIMO Measurements -- 3.9.1 Antenna Correlation -- 3.9.2 RF Cross‐Coupling -- 3.9.3 EVM Versus Antenna Branches -- 3.9.4 Channel Parameters -- 3.10 Conclusions -- References -- Chapter 4 Simulating a Communication System -- 4.1 Simulation: What, Why? -- 4.2 Approaching a Simulation -- 4.2.1 Strategy -- 4.2.2 General Methodology -- 4.3 Basic Modeling Concepts -- 4.3.1 System Modeling -- 4.3.2 Subsystem Modeling -- 4.3.3 Stochastic Modeling -- 4.4 What is a Link/Link‐level Simulation? -- 4.4.1 Source and Source Coding -- 4.4.2 Channel Coding -- 4.4.3 Symbol Mapping/Modulation -- 4.4.4 Upsampling -- 4.4.5 Digital Filtering -- 4.4.6 RF Front‐end -- 4.4.7 Channel -- 4.4.8 Synchronization and Equalization -- 4.4.9 Performance Evaluation and Signal Analysis -- 4.5 Communication in AWGN - A Simple Case Study -- 4.5.1 Receiver Design -- 4.6 Multi‐link vs. Network‐level Simulations -- 4.6.1 Network Layout Generation -- 4.6.1.1 Hexagonal Grid -- 4.6.1.2 PPP‐based Network Layout -- 4.7 Practical Issues -- 4.7.1 Monte Carlo Simulations -- 4.7.2 Random Number Generation -- 4.7.2.1 White Noise Generation -- 4.7.2.2 Random Binary Sequence -- 4.7.3 Values of Simulation Parameters -- 4.7.4 Confidence Interval.
4.7.5 Convergence/Stopping Criterion -- 4.8 Issues/Limitations of Simulations -- 4.8.1 Modeling Errors -- 4.8.1.1 Errors in System Model -- 4.8.1.2 Errors in Subsystem Model -- 4.8.1.3 Errors in Random Process Modeling -- 4.8.2 Processing Errors -- 4.9 Conclusions -- References -- Chapter 5 RF Impairments -- 5.1 Radio Impairment Sources -- 5.2 IQ Modulation Impairments -- 5.3 PA Nonlinearities -- 5.4 Phase Noise and Time Jitter -- 5.5 Frequency Offset -- 5.6 ADC/DAC Impairments -- 5.7 Thermal Noise -- 5.8 RF Impairments and Interference -- 5.8.1 Harmonics and Intermodulation Products -- 5.8.2 Multiple Access Interference -- 5.9 Conclusions -- References -- Chapter 6 Digital Modulation and Pulse Shaping -- 6.1 Digital Modulation Basics -- 6.2 Popularly Used Digital Modulation Schemes -- 6.2.1 PSK -- 6.2.2 FSK -- 6.2.2.1 GMSK and Approximate Representation of GSM GMSK Signal -- 6.2.3 QAM -- 6.2.4 Differential Modulation -- 6.3 Adaptive Modulation -- 6.3.1 Gray Mapping -- 6.3.2 Calculation of Error -- 6.3.3 Relation of EbNo with SNR at the Receiver -- 6.4 Pulse‐Shaping Filtering -- 6.5 Conclusions -- References -- Chapter 7 OFDM Signal Analysis and Performance Evaluation -- 7.1 Why OFDM? -- 7.2 Generic OFDM System Design and Its Evaluation -- 7.2.1 Basic CP‐OFDM Transceiver Design -- 7.2.2 Spectrum of the OFDM Signal -- 7.2.3 PAPR of the OFDM Signal -- 7.2.4 Performance in Multipath Channel -- 7.2.4.1 Time‐Dispersive Multipath Channel -- 7.2.4.2 Frequency‐Dispersive Multipath Channel -- 7.2.5 Performance with Impairments -- 7.2.5.1 Frequency Offset -- 7.2.5.2 Symbol Timing Error -- 7.2.5.3 Sampling Clock Offset -- 7.2.5.4 Phase Noise -- 7.2.5.5 PA Nonlinearities -- 7.2.5.6 I/Q Impairments -- 7.2.6 Summary of the OFDM Design Considerations -- 7.2.7 Coherent versus Differential OFDM -- 7.3 OFDM‐like Signaling -- 7.3.1 OFDM Versus SC‐FDE.
7.3.2 Multi‐user OFDM and OFDMA -- 7.3.3 SC‐FDMA and DFT‐S‐OFDM -- 7.4 Case Study: Measurement‐Based OFDM Receiver -- 7.4.1 System Model -- 7.4.1.1 Frame Format -- 7.4.1.2 OFDM Symbol Format -- 7.4.1.3 Baseband Transmitter Blocks and Transmitted Signal Model -- 7.4.1.4 Received Signal Model -- 7.4.2 Receiver Structure and Algorithms -- 7.4.2.1 Packet Detection -- 7.4.2.2 Frequency Offset Estimation and Compensation -- 7.4.2.3 Symbol Timing Estimation -- 7.4.2.4 Packet‐end Detection and Packet Extraction -- 7.4.2.5 Channel Estimation and Equalization -- 7.4.2.6 Pilot Tracking -- 7.4.2.7 Auto‐modulation Detection -- 7.4.3 FCH Decoding -- 7.4.4 Test and Measurements -- 7.5 Conclusions -- References -- Chapter 8 Analysis of Single‐Carrier Communication Systems -- 8.1 A Simple System in AWGN Channel -- 8.2 Flat Fading (Non‐Dispersive) Multipath Channel -- 8.3 Frequency‐Selective (Dispersive) Multipath Channel -- 8.3.1 Time‐Domain Equalization -- 8.3.2 Channel Estimation -- 8.3.3 Frequency‐Domain Equalization -- 8.4 Extension of Dispersive Multipath Channel to DS‐CDMA‐based Wideband Systems -- 8.5 Conclusions -- References -- Chapter 9 Multiple Accessing, Multi‐Numerology, Hybrid Waveforms -- 9.1 Preliminaries -- 9.1.1 Duplexing -- 9.1.2 Downlink Communication -- 9.1.3 Uplink Communication -- 9.1.4 Traffic Theory and Trunking Gain -- 9.2 Orthogonal Design -- 9.2.1 TDMA -- 9.2.2 FDMA -- 9.2.3 Code Division Multiple Access (CDMA) -- 9.2.4 Frequency Hopped Multiple Access (FHMA) -- 9.2.5 Space Division Multiple Access (SDMA) -- 9.2.5.1 Multiuser Multiple‐input Multiple‐output (MIMO) -- 9.3 Non‐orthogonal Design -- 9.3.1 Power‐domain Non‐orthogonal Multiple Access (PD‐NOMA) -- 9.3.2 Code‐domain Non‐orthogonal Multiple Access -- 9.4 Random Access -- 9.4.1 ALOHA -- 9.4.2 Carrier Sense Multiple Accessing (CSMA) -- 9.4.3 Multiple Access Collision Avoidance (MACA).
9.4.4 Random Access Channel (RACH) -- 9.4.5 Grant‐free Random Access -- 9.5 Multiple Accessing with Application‐Based Hybrid Waveform Design -- 9.5.1 Multi‐numerology Orthogonal Frequency Division Multiple Access (OFDMA) -- 9.5.2 Radar‐Sensing and Communication (RSC) Coexistence -- 9.5.3 Coexistence of Different Waveforms in Multidimensional Hyperspace for 6G and Beyond Networks -- 9.6 Case Study -- Appendix: Erlang B table -- References -- Chapter 10 Wireless Channel and Interference -- 10.1 Fundamental Propagation Phenomena -- 10.2 Multipath Propagation -- 10.2.1 Large‐Scale Fading -- 10.2.1.1 Path Loss -- 10.2.1.2 Shadowing -- 10.2.2 Small‐Scale Fading -- 10.2.2.1 Characterization of Time‐Varying Channels -- 10.2.2.2 Rayleigh and Rician Fading Distributions -- 10.2.3 Time, Frequency and Angular Domains Characteristics of Multipath Channel -- 10.2.3.1 Delay Spread -- 10.2.3.2 Angular Spread -- 10.2.3.3 Doppler Spread -- 10.2.4 Novel Channel Characteristics in the 5G Technology -- 10.3 Channel as a Source of Interference -- 10.3.1 Interference due to Large‐Scale Fading -- 10.3.1.1 Cellular Systems and CoChannel Interference -- 10.3.1.2 Cochannel Interference Control via Resource Assignment -- 10.3.2 Interference due to Small‐Scale Fading -- 10.4 Channel Modeling -- 10.4.1 Analytical Channel Models -- 10.4.1.1 Correlation‐based Models -- 10.4.1.2 Propagation‐Motivated Models -- 10.4.2 Physical Models -- 10.4.2.1 Deterministic Model -- 10.4.2.2 Geometry‐based Stochastic Model -- 10.4.2.3 Nongeometry‐based Stochastic Models -- 10.4.3 3GPP 5G Channel Models -- 10.4.3.1 Tapped Delay Line (TDL) Model -- 10.4.3.2 Clustered Delay Line (CDL) Model -- 10.4.3.3 Generating Channel Coefficients Using CDL Model -- 10.4.4 Role of Artificial Intelligence (AI) in Channel Modeling -- 10.5 Channel Measurement -- 10.5.1 Frequency Domain Channel Sounder.
10.5.1.1 Swept Frequency/Chirp Sounder.
Record Nr. UNINA-9910830809503321
Arslan Hüseyin <1968->  
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless communications / Andreas F. Molisch
Wireless communications / Andreas F. Molisch
Autore Molisch, Andreas F.
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K. : Wiley : IEEE, 2011
Descrizione fisica lvi, 827 p. : ill. ; 26 cm
Disciplina 621.38456
Soggetto topico Wireless communication systems
ISBN 9780470741863
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003657529707536
Molisch, Andreas F.  
Chichester, West Sussex, U.K. : Wiley : IEEE, 2011
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Wireless communications : principles, theory and methodology / / Keith Q. T. Zhang
Wireless communications : principles, theory and methodology / / Keith Q. T. Zhang
Autore Zhang Keith Q. T.
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (580 p.)
Disciplina 621.384
Collana New York Academy of Sciences
Soggetto topico Wireless communication systems
ISBN 1-119-11328-8
1-119-11326-1
1-119-11327-X
Classificazione TEC061000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright; Table of Contents; Dedication; Preface; Acknowledgments; Chapter 1: Introduction; 1.1 Resources for wireless communications; 1.2 Shannon's theory; 1.3 Three challenges; 1.4 Digital modulation versus coding; 1.5 Philosophy to combat interference; 1.6 Evolution of processing strategy; 1.7 Philosophy to exploit two-dimensional random fields; 1.8 Cellular: Concept, Evolution, and 5G; 1.9 The structure of this book; 1.10 Repeatedly used abbreviations and math symbols; Problems; References; Chapter 2: Mathematical Background; 2.1 Introduction
2.2 Congruence mapping and signal spaces2.3 Estimation methods; 2.4 Commonly used distributions in wireless; 2.5 The calculus of variations; 2.6 Two inequalities for optimization; 2.7 Q-function; 2.8 The CHF method and its skilful applications; 2.9 Matrix operations and differentiation; 2.10 Additional reading; Problems; References; Chapter 3: Channel Characterization; 3.1 Introduction; 3.2 Large-scale propagation loss; 3.3 Lognormal shadowing; 3.4 Multipath characterization for local behavior; 3.5 Composite model to incorporate multipath and shadowing
3.6 Example to illustrate the use of various models3.7 Generation of correlated fading channels; 3.8 Summary; 3.9 Additional reading; Problems; References; Chapter 4: Digital Modulation; 4.1 Introduction; 4.2 Signals and signal space; 4.3 Optimal MAP and ML receivers; 4.4 Detection of two arbitrary waveforms; 4.5 MPSK; 4.6 M-ary QAM; 4.7 Noncoherent scheme-differential MPSK; 4.8 MFSK; 4.9 Noncoherent MFSK; 4.10 Bit error probability versus symbol error probability; 4.11 Spectral efficiency; 4.12 Summary of symbol error probability for various schemes; 4.13 Additional reading; Problems
ReferencesChapter 5: Minimum Shift Keying; 5.1 Introduction; 5.2 MSK; 5.3 de Buda's approach; 5.4 Properties of MSK signals; 5.5 Understanding MSK; 5.6 Signal space; 5.7 MSK power spectrum; 5.8 Alternative scheme-differential encoder; 5.9 Transceivers for MSK signals; 5.10 Gaussian-shaped MSK; 5.11 Massey's approach to MSK; 5.12 Summary; Problems; References; Chapter 6: Channel Coding; 6.1 Introduction and philosophical discussion; 6.2 Preliminary of Galois fields; 6.3 Linear block codes; 6.4 Cyclic codes; 6.5 Golay code; 6.6 BCH codes; 6.7 Convolutional codes; 6.8 Trellis-coded modulation
6.9 SummaryProblems; References; Chapter 7: Diversity Techniques; 7.1 Introduction; 7.2 Idea behind diversity; 7.3 Structures of various diversity combiners; 7.4 PDFs of output SNR; 7.5 Average SNR comparison for various schemes; 7.6 Methods for error performance analysis; 7.7 Error probability of MRC; 7.8 Error probability of EGC; 7.9 Average error performance of SC in Rayleigh fading; 7.10 Performance of diversity MDPSK systems; 7.11 Noncoherent MFSK with diversity reception; 7.12 Summary; Problems; References; Chapter 8: Processing Strategies for Wireless Systems; 8.1 Communication problem
8.2 Traditional strategy
Record Nr. UNINA-9910131385103321
Zhang Keith Q. T.  
Chichester, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...