top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Corporate security management : challenges, risks, and strategies / / Marko Cabric ; designer, Mark Rogers
Corporate security management : challenges, risks, and strategies / / Marko Cabric ; designer, Mark Rogers
Autore Cabric Marko
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Butterworth-Heinemann, , 2015
Descrizione fisica 1 online resource (243 p.)
Disciplina 658.47
Soggetto topico Corporations - Security measures - Management
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Front Cover""; ""Corporate Security Management""; ""Copyright""; ""Dedication""; ""Contents""; ""About the Author""; ""Introduction""; ""Section 1 - What: Define""; ""Chapter 1 - About Security""; ""SECURITY AND ITS ESSENCE""; ""BASIC PRINCIPLES OF SECURITY""; ""GLOSSARY OF CORPORATE SECURITY TERMS AND ABBREVIATIONS""; ""Chapter 2 - Corporations and the Place of Corporate Security""; ""CORPORATIONS""; ""KEY CORPORATE PARTNERS OF SECURITY""; ""ABOUT CORPORATE SECURITY: THE PROFESSION AND ITS CHALLENGES""; ""GLOSSARY OF CORPORATE TERMS AND ABBREVIATIONS""; ""Section 2 - Who: Arrange""
""Chapter 3 - The People""""CHIEF SECURITY OFFICER COMPETENCES""; ""SECURITY TEAM""; ""PRIVATE SECURITY INDUSTRY""; ""PEOPLE MANAGEMENT AND LEADERSHIP""; ""REFERENCE""; ""Section 3 - How: Organize""; ""Chapter 4 - Managing a Security Organization""; ""SECURITY MODELS ACCORDING TO INDUSTRY""; ""SECURITY MANAGEMENT STYLES""; ""KEY SUCCESS FACTORS IN MANAGING SECURITY PROCESSES""; ""CORPORATE SECURITY SETUP""; ""Chapter 5 - Incorporating Security Elements""; ""INFORMATION AND INTELLIGENCE""; ""SECURITY GOVERNANCE""; ""PEOPLE""; ""PHYSICAL ELEMENTS""; ""TECHNOLOGY (ELECTRONIC SYSTEMS)""
""COMMUNICATION""""CONTROL""; ""Section 4 - Why: Understand""; ""Chapter 6 - Internal Risks""; ""OVERVIEW OF INTERNAL RISKS""; ""REPUTATIONAL RISKS""; ""EMBEZZLEMENT, THEFT, AND FRAUD""; ""ACTS OF PROTEST""; ""SEXUAL HARASSMENT AND MOBBING""; ""SUBSTANCE ABUSE AND GAMBLING""; ""INADEQUATE SECURITY RESILIENCE""; ""REFERENCES""; ""Chapter 7 - External Risks""; ""OVERVIEW OF EXTERNAL RISKS""; ""GLOBAL ISSUES VERSUS CORPORATE SECURITY""; ""CRIME""; ""CYBERCRIME AND HIGH-TECH CRIMES""; ""EXTERNAL FRAUDS""; ""CORPORATE EXPOSURE TO TERRORISM""; ""NATURAL FACTORS""; ""SPECIFIC RISKS TO PEOPLE""
""DATA LEAKAGE""""EMERGENCY SITUATIONS""; ""REFERENCES""; ""Section 5 - Where: Allocate""; ""Chapter 8 - Physical Security""; ""FACILITY SECURITY""; ""SECURITY OF EVENTS""; ""Chapter 9 - Product""; ""SUPPLY CHAIN""; ""RETAIL LOSS PREVENTION""; ""REFERENCES""; ""Chapter 10 - Human Capital""; ""HUMAN RESOURCES""; ""SECURITY OF CORPORATE TRAVELERS AND EXPATRIATES""; ""REFERENCES""; ""Chapter 11 - Confidentiality, Integrity, and Availability""; ""CONFIDENTIALITY: BASIC INFORMATION SECURITY PRINCIPLES""; ""INTEGRITY: COMBATING FRAUD""; ""INTERNAL INVESTIGATIONS""
""AVAILABILITY: BCM AND DISASTER RECOVERY""""Section 6 - When: Measure""; ""Chapter 12 - Analysis, Assessments, Planning, Control, and Administration""; ""THREAT ANALYSIS""; ""VULNERABILITY ASSESSMENT""; ""SECURITY PLANNING""; ""SECURITY METRICS/KPI""; ""TRAININGS AND EXERCISES""; ""Index""
Record Nr. UNINA-9910810014403321
Cabric Marko  
Amsterdam, [Netherlands] : , : Butterworth-Heinemann, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Corrosion / edited by L.L. Shreir, R.A. Jarman, G. T. Burstein
Corrosion / edited by L.L. Shreir, R.A. Jarman, G. T. Burstein
Autore Shreir, L. L.
Pubbl/distr/stampa Oxford ; Boston : Butterworth-Heinemann, , 1994
Descrizione fisica 2 v. : ill. ; 24 cm
Disciplina 620
Altri autori (Persone) Burstein, G. T
Jarman, R. A.
Soggetto non controllato Corrosione
ISBN 0750610778
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990010056430403321
Shreir, L. L.  
Oxford ; Boston : Butterworth-Heinemann, , 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Corrosion [e-book] / edited by L.L. Shreir, R.A. Jarman, G.T. Burstein
Corrosion [e-book] / edited by L.L. Shreir, R.A. Jarman, G.T. Burstein
Edizione [3rd ed.]
Pubbl/distr/stampa Oxford ; Boston : Butterworth-Heinemann, 1994
Descrizione fisica 2 v. : ill. ; 24 cm
Disciplina 620.11223
Altri autori (Persone) Shreir, L. L.
Burstein, G. T.
Jarman, R. A.
Altri autori (Enti) Elsevier Science Publishers
Soggetto topico Corrosion and anti-corrosives
Soggetto genere / forma Electronic books.
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto v. 1. Metal/environment reactions -- v. 2. Corrosion control
Record Nr. UNISALENTO-991003228229707536
Oxford ; Boston : Butterworth-Heinemann, 1994
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Corrosion / edited by L.L. Shreir
Corrosion / edited by L.L. Shreir
Pubbl/distr/stampa Oxford ; Boston : Butterworth-Heinemann, 1976-
Descrizione fisica volumi ; 25 cm
Disciplina 620.11223
Soggetto topico Corrosione
ISBN 0-750610778
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Vol. 1: Metal/environment reactions. - 1 volume (paginazione varia)
Record Nr. UNISA-990005815840203316
Oxford ; Boston : Butterworth-Heinemann, 1976-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Cost effective maintenance : design and implementation / William T. File
Cost effective maintenance : design and implementation / William T. File
Autore File, William T.
Pubbl/distr/stampa London : Butterworth-Heinemann, 1991
Descrizione fisica 142 p. : ill. ; 25 cm
Disciplina 658.2'02
Soggetto non controllato Manutenzione degli impianti
ISBN 0-7506-1006-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990000466290403321
File, William T.  
London : Butterworth-Heinemann, 1991
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coulson & Richardson's chemical engineering . Vol. 3a Chemical and biochemical reactors and reaction engineering / / edited by R. Ravi, R. Vinu, S. N. Gummadi
Coulson & Richardson's chemical engineering . Vol. 3a Chemical and biochemical reactors and reaction engineering / / edited by R. Ravi, R. Vinu, S. N. Gummadi
Edizione [4th edition.]
Pubbl/distr/stampa Oxford : , : Butterworth-Heinemann, , 2017
Descrizione fisica 1 online resource (598 pages) : illustrations
Disciplina 660
Altri autori (Persone) CoulsonJ. M (John Metcalfe)
Soggetto topico Chemical engineering
Bioreactors
ISBN 0-08-101223-3
0-08-101096-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Coulson and Richardson's Chemical Engineering -- Coulson & Richardson's Chemical Engineering -- Coulson and Richardson's Chemical Engineering: Volume 3A: Chemical and Biochemical Reactors and Reaction Engineering -- Copyright -- Contents -- List of Contributors -- About Prof. Coulson -- About Prof. Richardson -- Preface -- Introduction -- 1 - Reactor Design-General Principles -- 1.1 Basic Objectives in Design of a Reactor -- 1.1.1 By-products and Their Economic Importance -- 1.1.2 Preliminary Appraisal of a Reactor Project -- 1.2 Classification of Reactors and Choice of Reactor Type -- 1.2.1 Homogeneous and Heterogeneous Reactors -- 1.2.2 Batch Reactors and Continuous Reactors -- 1.2.3 Variations in Contacting Pattern-Semibatch Operation -- 1.2.4 Influence of Heat of Reaction on Reactor Type -- 1.2.4.1 Adiabatic Reactors -- 1.2.4.2 Reactors With Heat Transfer -- 1.2.4.3 Autothermal Reactor Operation -- 1.3 Choice of Process Conditions -- 1.3.1 Chemical Equilibria and Chemical Kinetics -- 1.3.2 Calculation of Equilibrium Conversion -- 1.3.3 Ultimate Choice of Reactor Conditions -- 1.4 Material and Energy Balances -- 1.4.1 Material Balance and the Concept of Rate of Generation of a Species -- 1.4.2 Energy Balance -- 1.5 Chemical Kinetics and Rate Equations -- 1.5.1 Definition of Order of Reaction and Rate Constant -- 1.5.2 Influence of Temperature: Activation Energy -- 1.5.3 Rate Equations and Reaction Mechanism -- 1.5.4 Reversible Reactions -- 1.5.5 Experimental Determination of Kinetic Constants -- 1.6 Batch Reactors -- 1.6.1 Calculation of Reaction Time: Basic Design Equation -- 1.6.2 Reaction Time-Isothermal Operation -- 1.6.3 Maximum Production Rate -- 1.6.4 Reaction Time-Nonisothermal Operation -- 1.6.5 Adiabatic Operation -- 1.6.6 Kinetics From Batch Reactor Data -- 1.6.6.1 Differential Method -- 1.6.6.2 Integral Method.
1.6.6.3 Differential Versus Integral Method: Comparison -- 1.6.6.4 Fractional Life Method -- 1.6.6.5 Kinetics of Gas-Phase Reactions From Pressure Measurements -- 1.7 Tubular Flow Reactors -- 1.7.1 Basic Design Equations for a Tubular Reactor -- 1.7.2 Tubular Reactors-Nonisothermal Operation -- 1.7.3 Pressure Drop in Tubular Reactors -- 1.7.4 Kinetic Data From Tubular Reactors -- 1.8 Continuous Stirred Tank Reactors -- 1.8.1 Assumption of Ideal Mixing: Residence Time -- 1.8.2 Design Equations for Continuous Stirred Tank Reactors -- 1.8.3 Graphical Methods -- 1.8.4 Autothermal Operation -- 1.8.5 Kinetic Data From Continuous Stirred Tank Reactors -- 1.9 Comparison of Batch, Tubular, and Stirred Tank Reactors for a Single Reaction: Reactor Output -- 1.9.1 Batch Reactor and Tubular Plug Flow Reactor -- 1.9.2 Continuous Stirred Tank Reactor -- 1.9.2.1 One Tank -- 1.9.2.2 Two Tanks -- 1.9.3 Comparison of Reactors -- 1.10 Comparison of Batch, Tubular, and Stirred Tank Reactors for Multiple Reactions: Reactor Yield -- 1.10.1 Types of Multiple Reactions -- 1.10.2 Yield and Selectivity -- 1.10.3 Reactor Type and Backmixing -- 1.10.4 Reactions in Parallel -- 1.10.4.1 Requirements for High Yield -- 1.10.4.1.1 Reactant Concentration and Reactor Type -- 1.10.4.1.2 Pressure in Gas-Phase Reactions -- 1.10.4.1.3 Temperature of Operation -- 1.10.4.1.4 Choice of Catalyst -- 1.10.4.2 Yield and Reactor Output -- 1.10.5 Reactions in Parallel-Two Reactants -- 1.10.6 Reactions in Series -- 1.10.6.1 Batch Reactor or Tubular Plug Flow Reactor -- 1.10.6.2 Continuous Stirred Tank Reactor-One Tank -- 1.10.6.3 Reactor Comparison and Conclusions -- 1.10.6.3.1 Reactor Type -- 1.10.6.3.2 Conversion in Reactor -- 1.10.6.3.3 Temperature -- 1.10.6.3.4 General Conclusions -- 1.10.7 Reactions in Series-Two Reactants -- 1.11 Appendix: Simplified Energy Balance Equations for Flow Reactors.
Nomenclature -- References -- Further Reading -- 2 - Flow Characteristics of Reactors-Flow Modeling -- 2.1 Nonideal Flow and Residence Time Distribution -- 2.1.1 Types of Nonideal Flow Patterns -- 2.1.2 Residence Time Distribution: Basic Concepts and Definitions -- 2.1.3 Experimental Determination of E(t) and F(t) -- 2.1.3.1 The Convolution Formula -- 2.1.3.2 Step and Impulse Responses -- 2.1.4 E and F Functions for Ideal Reactors -- 2.1.4.1 Continuous Stirred Tank Reactor -- 2.1.4.2 Plug Flow Reactor -- 2.1.5 Statistics of Residence Time Distribution -- 2.1.6 Application of Tracer Information to Reactors -- 2.2 Zero-Parameter Models-Complete Segregation and Maximum Mixedness Models -- 2.2.1 Special Case of First-Order Reactions: Equivalence of the Segregated and Maximum Mixedness Models -- 2.2.2 PFR and Zero-Parameter Models -- 2.2.3 Residence Time Distribution of the CSTR and the Zero-Parameter Models -- 2.2.4 Bounds on Conversion: Some General Rules -- 2.2.4.1 Zero-Order Kinetics -- 2.2.4.2 First-Order Kinetics -- 2.2.4.3 Second-Order Kinetics -- 2.3 Tanks-in-Series Model -- 2.3.1 Predicting Reactor Conversion From Tanks-in-Series Model -- 2.4 Dispersed Plug Flow Model -- 2.4.1 Axial Dispersion and Model Development -- 2.4.2 Basic Differential Equation -- 2.4.3 Response to an Ideal Pulse Input of Tracer -- 2.4.4 Experimental Determination of Dispersion Coefficient From a Pulse Input -- 2.4.4.1 Many Equally Spaced Points -- 2.4.4.2 Relatively Few Data Points but Each Concentration Ci Measured Instantaneously at Time ti () -- 2.4.4.3 Data Collected by a "Mixing Cup" -- 2.4.5 Further Development of Tracer Injection Theory -- 2.4.5.1 Significance of the Boundary Conditions -- 2.4.5.2 Dispersion Coefficients From Nonideal Pulse Data -- 2.4.5.3 Pulse of Tracer Moving Through a Series of Vessels.
2.4.6 Values of Dispersion Coefficients From Theory and Experiment -- 2.4.7 Dispersed Plug Flow Model With First-Order Chemical Reaction -- 2.4.7.1 Case of Small DL/uL -- 2.4.7.2 Comparison With a Simple Plug Flow Reactor -- 2.4.8 Applications and Limitations of the Dispersed Plug Flow Model -- 2.5 Models Involving Combinations of the Basic Flow Elements -- Nomenclature -- References -- 3 - Gas-Solid Reactions and Reactors -- 3.1 Introduction -- 3.2 Mass Transfer Within Porous Solids -- 3.2.1 The Effective Diffusivity -- 3.2.1.1 The Molecular Flow Region -- 3.2.1.2 The Knudsen Flow Region -- 3.2.1.3 The Transition Region -- 3.2.1.4 Forced Flow in Pores -- 3.3 Chemical Reaction in Porous Catalyst Pellets -- 3.3.1 Isothermal Reactions in Porous Catalyst Pellets -- 3.3.2 Effect of Intraparticle Diffusion on Experimental Parameters -- 3.3.3 Nonisothermal Reactions in Porous Catalyst Pellets -- 3.3.4 Criteria for Diffusion Control -- 3.3.5 Selectivity in Catalytic Reactions Influenced by Mass and Heat Transfer Effects -- 3.3.5.1 Isothermal Conditions -- 3.3.5.2 Nonisothermal Conditions -- 3.3.5.3 Selectivity of Bifunctional Catalysts -- 3.3.6 Catalyst Deactivation and Poisoning -- 3.4 Mass Transfer From a Fluid Stream to a Solid Surface -- 3.5 Chemical Kinetics of Heterogeneous Catalytic Reactions -- 3.5.1 Adsorption of a Reactant as the Rate-Determining Step -- 3.5.2 Surface Reaction as the Rate-Determining Step -- 3.5.3 Desorption of a Product as the Rate-Determining Step -- 3.5.4 Rate-Determining Steps for Other Mechanisms -- 3.5.5 Examples of Rate Equations for Industrially Important Reactions -- 3.5.6 Mechanism of Catalyst Poisoning -- 3.6 Design Calculations -- 3.6.1 Packed Tubular Reactors -- 3.6.1.1 Behavior of Reactors in the Absence of Dispersion -- 3.6.1.1.1 Isothermal Conditions -- 3.6.1.1.2 Adiabatic Conditions.
3.6.1.1.3 Nonisothermal and Nonadiabatic Conditions -- 3.6.1.2 Dispersion in Packed Bed Reactors -- 3.6.1.2.1 The Nature of Dispersion -- 3.6.1.2.2 Axial Dispersion -- 3.6.1.2.3 Axial and Radial dispersion-Nonisothermal Conditions -- 3.6.2 Thermal Characteristics of Packed Reactors -- 3.6.2.1 Sensitivity of Countercurrent Cooled Reactors -- 3.6.2.2 The Autothermal Region -- 3.6.2.3 Stability of Packed Bed Tubular Reactors -- 3.6.3 Fluidized Bed Reactors -- 3.7 Gas-Solid Noncatalytic Reactors -- 3.7.1 Modeling and Design of Gas-Solid Reactors -- 3.7.2 Single Particle Unreacted Core Models -- 3.7.2.1 Unreacted Core Model-Chemical Reaction Control -- 3.7.2.2 Unreacted Core Model-Gas Film Control -- 3.7.2.3 Unreacted Core Model-Solid Product Layer Control -- 3.7.2.4 Limitations of Simple Models-Solids Structure -- 3.7.2.5 Shrinking Particles and Film Growth -- 3.7.3 Types of Equipment and Contacting Patterns -- 3.7.3.1 Fluidized Bed Reactor -- Nomenclature -- References -- Further Reading -- 4 - Gas-Liquid and Gas-Liquid-Solid Reactors -- 4.1 Gas-Liquid Reactors -- 4.1.1 Gas-Liquid Reactions -- 4.1.2 Types of Reactors -- 4.1.3 Rate Equations for Mass Transfer With Chemical Reaction -- 4.1.3.1 Rate of Transformation of A per Unit Volume of Reactor -- 4.1.3.1.1 Region I: β 2 -- 4.1.3.1.2 Region II: 0.02<β<2 -- 4.1.3.1.3 Region III: β<0.02 -- 4.1.4 Choice of a Suitable Reactor -- 4.1.5 Information Required for Gas-Liquid Reactor Design -- 4.1.5.1 Kinetic Constants of the Reaction -- 4.1.5.2 Physical Properties of the Gas and Liquid -- 4.1.5.3 Equipment Characteristics -- 4.1.6 Examples of Gas-Liquid Reactors -- 4.1.6.1 Packed Column Reactors -- 4.1.6.1.1 Height of Packing -- 4.1.6.1.2 Confirmation of Pseudo-First-Order Behavior -- 4.1.6.1.3 Further Comments -- 4.1.6.2 Agitated Tank Reactors: Flow Patterns of Gas and Liquid -- 4.1.6.2.1 Further Comments.
4.1.6.3 Well-Mixed Bubble Column Reactors: Gas-Liquid Flow Patterns and Mass Transfer.
Record Nr. UNINA-9910583035203321
Oxford : , : Butterworth-Heinemann, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coulson & Richardson's chemical engineering . Vol. 2 Particle technology and separation processes / / J.F. Richardson and J.H. Harker with J.R. Backhurst
Coulson & Richardson's chemical engineering . Vol. 2 Particle technology and separation processes / / J.F. Richardson and J.H. Harker with J.R. Backhurst
Autore Richardson J. F (John Francis)
Edizione [5th ed.]
Pubbl/distr/stampa Oxford, : Butterworth-Heinemann, 2002
Descrizione fisica 1 online resource (1183 pages.)
Disciplina 660
660.2
Altri autori (Persone) HarkerJ. H <1937-> (John Hadlett)
BackhurstJ. R
CoulsonJ. M (John Metcalfe)
Collana Coulson & Richardson's chemical engineering
Soggetto topico Chemical engineering
Particles
ISBN 1-280-94356-4
9786610943562
0-08-049064-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; Acknowledgements; Introduction; Chapter 1. Particulate Solids; 1.1 Introduction; 1.2 Particle characterisation; 1.3 Particulate solids in bulk; 1.4 Blending of solid particles; 1.5 Classification of solid particles; 1.6 Separation of suspended solid particles from fluids; 1.7 Further reading; 1.8 References; 1.9 Nomenclature; Chapter 2. Particle size reduction and enlargement; 2.1 Introduction; 2.2 Size reduction of solids; 2.3 Types of crushing equipment; 2.4 Size enlargement of particles; 2.5 Further reading; 2.6 References; 2.7 Nomenclature
Chapter 3. Motion of particles in a fluid3.1 Introduction; 3.2 Flow past a cylinder and a sphere; 3.3 The drag force on a spherical particle; 3.4 Non-spherical particles; 3.5 Motion of bubbles and drops; 3.6 Drag forces and settling velocities for particles in non-Newtonian Fluids; 3.7 Accelerating motion of a particle in the gravitational Field; 3.8 Motion of particles in a centrifugal Field; 3.9 Further reading; 3.10 References; 3.11 Nomenclature; Chapter 4. Flow of fluids through granular beds and packed columns; 4.1 Introduction; 4.2 Flow of a single fluid through a granular bed
4.3 Dispersion4.4 Heat transfer in packed beds; 4.5 Packed columns; 4.6 Further reading; 4.7 References; 4.8 Nomenclature; Chapter 5. Sedimentation; 5.1 Introduction; 5.2 Sedimentation of Fine particles; 5.3 Sedimentation of coarse particles; 5.4 Further reading; 5.5 References; 5.6 Nomenclature; Chapter 6. Fluidisation; 6.1 Characteristics of fluidised systems; 6.2 Liquid-solids systems; 6.3 Gas-solids systems; 6.4 Gas-liquid-solids fluidised beds; 6.5 Heat transfer to a boundary surface; 6.6 Mass and heat transfer between fluid and particles; 6.7 Summary of the properties of fluidised beds
6.8 Applications of the fluidised solids technique6.9 Further reading; 6.10 References; 6.11 Nomenclature; Chapter 7. Liquid filtration; 7.1 Introduction; 7.2 Filtration theory; 7.3 Filtration practice; 7.4 Filtration equipment; 7.5 Further reading; 7.6 References; 7.7 Nomenclature; Chapter 8. Membrane separation processes; 8.1 Introduction; 8.2 Classification of membrane processes; 8.3 The nature of synthetic membranes; 8.4 General membrane equation; 8.5 Cross-flow microfitration; 8.6 Ultrafiltration; 8.7 Reverse osmosis; 8.8 Membrane modules and plant configuration; 8.9 Membrane fouling
8.10 Electrodialysis8.11 Reverse osmosis water treatment plant; 8.12 Pervaporation; 8.13 Liquid membranes; 8.14 Gas separations; 8.15 Further reading; 8.16 References; 8.17 Nomenclature; Chapter 9. Centrifugal separations; 9.1 Introduction; 9.2 Shape of the free surface of the liquid; 9.3 Centrifugal pressure; 9.4 Separation of immiscible liquids of different densities; 9.5 Sedimentation in a centrifugal field; 9.6 Filtration in a centrifuge; 9.7 Mechanical design; 9.8 Centrifugal equipment; 9.9 Further reading; 9.10 References; 9.11 Nomenclature; Chapter 10. Leaching; 10.1 Introduction
10.2 Mass transfer in leaching operations
Altri titoli varianti Particle technology and separation processes
Chemical engineering
Record Nr. UNINA-9910780209503321
Richardson J. F (John Francis)  
Oxford, : Butterworth-Heinemann, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coulson & Richardson's chemical engineering . Vol. 2 Particle technology and separation processes / / J.F. Richardson and J.H. Harker with J.R. Backhurst
Coulson & Richardson's chemical engineering . Vol. 2 Particle technology and separation processes / / J.F. Richardson and J.H. Harker with J.R. Backhurst
Autore Richardson J. F (John Francis)
Edizione [5th ed.]
Pubbl/distr/stampa Oxford, : Butterworth-Heinemann, 2002
Descrizione fisica 1 online resource (1183 pages.)
Disciplina 660
660.2
Altri autori (Persone) HarkerJ. H <1937-> (John Hadlett)
BackhurstJ. R
CoulsonJ. M (John Metcalfe)
Collana Coulson & Richardson's chemical engineering
Soggetto topico Chemical engineering
Particles
ISBN 1-280-94356-4
9786610943562
0-08-049064-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; Acknowledgements; Introduction; Chapter 1. Particulate Solids; 1.1 Introduction; 1.2 Particle characterisation; 1.3 Particulate solids in bulk; 1.4 Blending of solid particles; 1.5 Classification of solid particles; 1.6 Separation of suspended solid particles from fluids; 1.7 Further reading; 1.8 References; 1.9 Nomenclature; Chapter 2. Particle size reduction and enlargement; 2.1 Introduction; 2.2 Size reduction of solids; 2.3 Types of crushing equipment; 2.4 Size enlargement of particles; 2.5 Further reading; 2.6 References; 2.7 Nomenclature
Chapter 3. Motion of particles in a fluid3.1 Introduction; 3.2 Flow past a cylinder and a sphere; 3.3 The drag force on a spherical particle; 3.4 Non-spherical particles; 3.5 Motion of bubbles and drops; 3.6 Drag forces and settling velocities for particles in non-Newtonian Fluids; 3.7 Accelerating motion of a particle in the gravitational Field; 3.8 Motion of particles in a centrifugal Field; 3.9 Further reading; 3.10 References; 3.11 Nomenclature; Chapter 4. Flow of fluids through granular beds and packed columns; 4.1 Introduction; 4.2 Flow of a single fluid through a granular bed
4.3 Dispersion4.4 Heat transfer in packed beds; 4.5 Packed columns; 4.6 Further reading; 4.7 References; 4.8 Nomenclature; Chapter 5. Sedimentation; 5.1 Introduction; 5.2 Sedimentation of Fine particles; 5.3 Sedimentation of coarse particles; 5.4 Further reading; 5.5 References; 5.6 Nomenclature; Chapter 6. Fluidisation; 6.1 Characteristics of fluidised systems; 6.2 Liquid-solids systems; 6.3 Gas-solids systems; 6.4 Gas-liquid-solids fluidised beds; 6.5 Heat transfer to a boundary surface; 6.6 Mass and heat transfer between fluid and particles; 6.7 Summary of the properties of fluidised beds
6.8 Applications of the fluidised solids technique6.9 Further reading; 6.10 References; 6.11 Nomenclature; Chapter 7. Liquid filtration; 7.1 Introduction; 7.2 Filtration theory; 7.3 Filtration practice; 7.4 Filtration equipment; 7.5 Further reading; 7.6 References; 7.7 Nomenclature; Chapter 8. Membrane separation processes; 8.1 Introduction; 8.2 Classification of membrane processes; 8.3 The nature of synthetic membranes; 8.4 General membrane equation; 8.5 Cross-flow microfitration; 8.6 Ultrafiltration; 8.7 Reverse osmosis; 8.8 Membrane modules and plant configuration; 8.9 Membrane fouling
8.10 Electrodialysis8.11 Reverse osmosis water treatment plant; 8.12 Pervaporation; 8.13 Liquid membranes; 8.14 Gas separations; 8.15 Further reading; 8.16 References; 8.17 Nomenclature; Chapter 9. Centrifugal separations; 9.1 Introduction; 9.2 Shape of the free surface of the liquid; 9.3 Centrifugal pressure; 9.4 Separation of immiscible liquids of different densities; 9.5 Sedimentation in a centrifugal field; 9.6 Filtration in a centrifuge; 9.7 Mechanical design; 9.8 Centrifugal equipment; 9.9 Further reading; 9.10 References; 9.11 Nomenclature; Chapter 10. Leaching; 10.1 Introduction
10.2 Mass transfer in leaching operations
Altri titoli varianti Particle technology and separation processes
Chemical engineering
Record Nr. UNINA-9910820617403321
Richardson J. F (John Francis)  
Oxford, : Butterworth-Heinemann, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coulson & Richardson's chemical engineering . Volume 3B Process control / / Sohrab Rohani
Coulson & Richardson's chemical engineering . Volume 3B Process control / / Sohrab Rohani
Autore Rohani Sohrab
Edizione [4th edition.]
Pubbl/distr/stampa Oxford : , : Butterworth-Heinemann, , 2017
Descrizione fisica 1 online resource (630 pages) : illustrations
Disciplina 660
Soggetto topico Chemical engineering
Chemical process control
ISBN 0-08-101224-1
0-08-101095-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Coulson and Richardson's Chemical Engineering: Volume 3B: Process Control -- Copyright -- Contents -- Contributors -- About Prof. Coulson -- About Prof. Richardson -- Preface -- Introduction -- Chapter 1: Introduction -- 1.1. Definition of a Chemical/Biochemical Process -- 1.1.1. A Single Continuous Process -- 1.1.1.1. A continuous chemical plant -- 1.1.1.2. A continuous biochemical process -- 1.1.1.3. A continuous green process -- 1.1.2. A Batch and a Semibatch or a Fed-Batch Process -- 1.2. Process Dynamics -- 1.2.1. Classification of Process Variables -- 1.2.2. Dynamic Modeling -- 1.3. Process Control -- 1.3.1. Types of Control Strategies -- 1.3.1.1. Feedback control -- 1.3.1.2. Feedforward control -- 1.4. Incentives for Process Control -- 1.5. Pictorial Representation of the Control Systems -- 1.6. Problems -- References -- Chapter 2: Hardware Requirements for the Implementation of Process Control Systems -- 2.1. Sensor/Transmitter -- 2.1.1. Temperature Transducers -- 2.1.2. Pressure Transducers -- 2.1.3. Liquid or Gas Flow Rate Transducers -- 2.1.4. Liquid Level Transducers -- 2.1.5. Chemical Composition Transducers -- 2.1.6. Instrument or Transducer Accuracy -- 2.1.7. Sources of Instrument Errors -- 2.1.8. Static and Dynamic Characteristics of Transducers -- 2.2. Signal Converters -- 2.3. Transmission Lines -- 2.4. The Final Control Element -- 2.4.1. Control Valves -- 2.4.1.1. Selection and design of a control valve -- 2.4.1.2. Valve characteristic -- 2.4.1.3. The transfer function of a control valve -- 2.5. Feedback Controllers -- 2.5.1. The PID (Proportional-Integral-Derivative) Controllers -- 2.5.2. The PID Controller Law -- 2.5.3. The Discrete Version of a PID Controller -- 2.5.4. Features of the PID Controllers -- 2.5.4.1. The reset or integral windup -- 2.5.4.2. The derivative and proportional kicks.
2.5.4.3. Caution in using the derivative action -- 2.5.4.4. Auto and manual modes of the controller -- 2.5.4.5. The reverse or direct controller action -- 2.6. A Demonstration Unit to Implement A Single-Input, Single-Output PID Controller Using the National InstrumentR Data A ... -- 2.7. Implementation of the Control Laws on the Distributed Control Systems -- 2.8. Problems -- References -- Chapter 3: Theoretical Process Dynamic Modeling -- 3.1. Detailed Theoretical Dynamic Modeling -- 3.2. Solving an ODE or a Set of ODEs -- 3.2.1. Solving a Linear or a Nonlinear Differential Equation in MATLAB -- 3.2.2. Solving a Linear or a Nonlinear Differential Equation on Simulink -- 3.3. Examples of Lumped Parameter Systems -- 3.3.1. A Surge Tank With Level Control -- 3.3.2. A Stirred Tank Heater With Level and Temperature Control -- 3.3.3. A Nonisothermal Continuous Stirred Tank Reactor -- 3.3.4. A CSTR With Liquid Phase Endothermic Chemical Reactions -- 3.4. Examples of Stage-Wise Systems -- 3.4.1. A Binary Tray Distillation Column -- 3.5. Examples of Distributed Parameter Systems -- 3.5.1. A Plug Flow Reactor -- 3.6. Problems -- References -- Chapter 4: Development of Linear State-Space Models and Transfer Functions for Chemical Processes -- Part A-Theoretical Development of Linear Models -- 4.1. Tools to Develop Continuous Linear State-Space and Transfer Function Dynamic Models -- 4.1.1. Linearization of Nonlinear Differential Equations -- 4.1.1.1. Linearization of nonlinear terms involving more than one independent variable -- 4.1.2. The Linear State-Space Models -- 4.1.3. Developing Transfer Function Models (T.F.) -- 4.1.3.1. Review of Laplace transform (L.T.) -- 4.1.3.2. Laplace transform of simple functions -- 4.1.3.3. Inverse Laplace transform -- Case I: Roots of P(s) are all real and distinct -- Case II: Roots of P(s) are complex conjugates.
Case III: P(s) has multiple roots -- 4.1.3.4. Use of Laplace transform to solve differential equations -- 4.1.3.5. Summary of Laplace transform and inverse Laplace transform -- 4.1.3.6. MATLAB commands for the calculation of Laplace transform and the inverse Laplace transform -- 4.2. The Basic Procedure to Develop the Transfer Function of SISO and MIMO Systems -- 4.3. Steps to Derive the Transfer Function (T.F.) Models -- 4.4. Transfer Function of Linear Systems -- 4.4.1. Simple Functional Forms of the Input Signals -- 4.4.2. First-Order Transfer Function Models -- 4.4.2.1. The step response of a first-order system -- 4.4.2.2. Impulse response of a first-order process -- 4.4.2.3. MATLAB and Simulink commands -- 4.4.2.4. Examples of real processes with first-order transfer functions -- 4.4.3. A Pure Capacitive or An Integrating Process -- 4.4.4. Processes With Second-Order Dynamics -- 4.4.4.1. Case I: An overdamped system, ξ>1, two distinct real roots -- 4.4.4.2. Case II: A critically damped system, ξ=1, multiple real roots -- 4.4.4.3. Case III: An underdamped system, ξ<1, two distinct complex conjugate roots with negative real parts -- 4.4.4.4. Examples of real systems that have second-order dynamics (second-order transfer functions) -- 4.4.5. Significance of the Transfer Function Poles and Zeros -- 4.4.5.1. Summary of the significance of poles and zeros of a transfer function -- 4.4.6. Transfer Functions of More Complicated Processes-An Inverse Response (A Nonminimum Phase Process), A Higher Order ... -- 4.4.6.1. Physical processes with inverse response -- 4.4.7. Processes With Nth-Order Dynamics -- 4.4.8. Transfer Function of Distributed Parameter Systems -- 4.4.9. Processes With Significant Time Delays -- 4.4.9.1. Effect of time delay in more detail -- 4.4.9.2. Approximation of higher order transfer functions by a first order plus time delay.
Part B-The Empirical Approach to Develop Approximate Transfer Functions for Existing Processes -- 4.5. The Graphical Methods for Process Identification -- 4.5.1. Approximation of the Unknown Process Dynamics by a First-Order Transfer Function With or Without a Time Delay -- 4.5.1.1. The Sundaresan and Krishnaswamy method1 -- 4.5.2. Approximation by a Second-Order Transfer Function With a Time Delay -- 4.5.2.1. The Smith's method2 -- 4.5.2.2. Fitting to an underdamped second-order model -- 4.6. Process Identification Using Numerical Methods -- 4.6.1. The Least Squares Method -- 4.6.2. Using the "Solver" Function of Excel for the Estimation of the Parameter Vector in System Identification -- 4.6.3. A MATLAB Program for Parameter Estimation -- 4.6.4. Using System Identification Toolbox of MATLAB -- 4.7. Problems -- References -- Chapter 5: Dynamic Behavior and Stability of Closed-Loop Control Systems-Controller Design in the Laplace Domain -- 5.1. The Closed-Loop Transfer Function of a Single-Input, Single-Output (SISO) Feedback Control System -- 5.2. Analysis of a Feedback Control System -- 5.2.1. A Proportional Controller -- 5.2.2. A Proportional-Integral (PI) Controller -- 5.3. The Block Diagram Algebra -- 5.4. The Stability of the Closed-Loop Control Systems -- 5.5. Stability Tests -- 5.5.1. Routh Test -- 5.5.2. Direct Substitution Method -- 5.5.3. The Root Locus Diagram -- 5.5.3.1. The numerical method -- 5.5.3.2. The graphical method -- Graphical rules for the construction of the approximate root locus diagram -- 5.5.3.3. Application of the root locus diagram to unstable processes -- 5.6. Design and Tuning of the PID Controllers -- 5.6.1. Controller Design Objectives -- 5.6.2. Choosing the Appropriate Control Law -- 5.6.3. Controller Tuning -- 5.6.4. The Use of Model-Based Controllers to Tune a PID Controller (Theoretical Method).
5.6.4.1. The direct synthesis method -- 5.6.4.2. The internal model control (IMC) -- 5.6.5. Empirical Approaches to Tune a PID Controller -- 5.6.5.1. The open-loop controller tuning or the process reaction curve approach -- 5.6.5.2. Closed-loop controller tuning (field tuning), the continuous cycling, or the Ziegler-Nichols (Z-N) method -- 5.7. Enhanced Feedback and Feedforward Controllers -- 5.7.1. Cascade Control -- 5.7.1.1. The closed-loop transfer function of a cascade control algorithm -- 5.7.2. Override Control -- 5.7.3. Selective Control -- 5.7.4. Control of Processes With Large Time Delays -- 5.7.5. Control of Nonlinear Processes -- 5.8. The Feedforward Controller (FFC) -- 5.8.1. The Implementation of a Feedforward Controller -- 5.8.2. The Ratio Control -- 5.9. Control of Multiinput, Multioutput (MIMO) Processes -- 5.9.1. The Bristol Relative Gain Array (RGA) Matrix -- 5.9.2. Control of MIMO Processes in the Presence of Interaction Using Decouplers -- 5.9.2.1. Design of decouplers -- 5.10. Problems -- References -- Chapter 6: Digital Sampling, Filtering, and Digital Control -- 6.1. Implementation of Digital Control Systems -- 6.2. Mathematical Representation of a Sampled Signal -- 6.3. z-Transform of a Few Simple Functions -- 6.3.1. A Discrete Unit Step Function (Fig. 6.3) -- 6.3.2. A Unit Impulse Function -- 6.3.3. A Discrete Exponential Function (Fig. 6.4) -- 6.3.4. A Discrete Delayed Function Where θ Is the Delay Time -- 6.4. Some Useful Properties of the z-Transform -- 6.5. Inverse z-Transform -- 6.6. Conversion of an Equation From the z-Domain to a Discrete Equation in the Time Domain -- 6.7. Derivation of the Closed-Loop Transfer Function (CLTF) of a Digital Control System -- 6.8. The Closed-Loop Pulse Transfer Function of a Digital Control System -- 6.9. Selection of the Sampling Interval -- 6.10. Filtering.
6.11. Mapping Between the s-Plane and the z-Plane.
Record Nr. UNINA-9910583046703321
Rohani Sohrab  
Oxford : , : Butterworth-Heinemann, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coulson & Richardson's chemical engineering . Vol. 1B Heat and mass transfer : fundamentals and applications / / Raj Chhabra, V. Shankar
Coulson & Richardson's chemical engineering . Vol. 1B Heat and mass transfer : fundamentals and applications / / Raj Chhabra, V. Shankar
Edizione [7th edition.]
Pubbl/distr/stampa Oxford : , : Butterworth-Heinemann, , 2018
Descrizione fisica 1 online resource (631 pages) : illustrations
Disciplina 660
Altri autori (Persone) CoulsonJ. M (John Metcalfe)
Collana Coulson & Richardson’s chemical engineering series
Soggetto topico Chemical engineering
Heat - Transmission
Mass transfer
ISBN 0-08-102551-3
0-08-102550-5
9780081025505
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1: Heat Transfer -- Chapter 1 - Heat Transfer -- Part 2: Mass Transfer -- Chapter 2 - Mass Transfer -- Part 3: Momentum, Heat and Mass Transfer -- Chapter 3 - The Boundary Layer -- Chapter 4 - Quantitative Relations Between Transfer Processes -- Chapter 5 - Applications in Humidification and Water Cooling -- Chapter 6 - Transport Processes in Microfluidic Applications -- Appendix -- Problems -- Index.
Record Nr. UNINA-9910583330803321
Oxford : , : Butterworth-Heinemann, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui