top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Handbook of sensor networks [[electronic resource] ] : algorithms and architectures / / edited by Ivan Stojmenović
Handbook of sensor networks [[electronic resource] ] : algorithms and architectures / / edited by Ivan Stojmenović
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2005
Descrizione fisica 1 online resource (552 p.)
Disciplina 621.3821
681.2
681/.2
Altri autori (Persone) StojmenovićIvan
Collana Wiley Series on Parallel and Distributed Computing
Soggetto topico Sensor networks
ISBN 1-280-27760-2
9786610277605
0-470-35862-9
0-471-74413-1
0-471-74414-X
1-60119-094-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HANDBOOK OF SENSOR NETWORKS; CONTENTS; Preface; Contributors; 1. Introduction to Wireless Sensor Networking; 2. Distributed Signal Processing Algorithms for the Physical Layer of Large-Scale Sensor Networks; 3. Energy Scavenging and Nontraditional Power Sources for Wireless Sensor Networks; 4. A Virtual Infrastructure for Wireless Sensor Networks; 5. Broadcast Authentication and Key Management for Secure Sensor Networks; 6. Embedded Operating Systems for Wireless Microsensor Nodes; 7. Time Synchronization and Calibration in Wireless Sensor Networks; 8. The Wireless Sensor Network MAC
9. Localization in Sensor Networks10. Topology Construction and Maintenance in Wireless Sensor Networks; 11. Energy-Efficient Backbone Construction, Broadcasting, and Area Coverage in Sensor Networks; 12. Geographic and Energy-Aware Routing in Sensor Networks; 13. Data-Centric Protocols for Wireless Sensor Networks; 14. Path Exposure, Target Location, Classification, and Tracking in Sensor Networks; 15. Data Gathering and Fusion in Sensor Networks; Index
Record Nr. UNINA-9910841160903321
Hoboken, NJ, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of smart antennas for RFID systems / / Nemai Chandra Karmakar
Handbook of smart antennas for RFID systems / / Nemai Chandra Karmakar
Autore Karmakar Nemai Chandra <1963->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2010
Descrizione fisica 1 online resource (646 p.)
Disciplina 621.384135
681/.2
Altri autori (Persone) KarmakarNemai Chandra
Soggetto topico Radio frequency identification systems - Design and construction
Adaptive antennas - Design and construction
Phased array antennas - Design and construction
ISBN 1-282-84904-2
9786612849046
1-118-07439-4
0-470-87217-9
0-470-87216-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Forward -- Preface -- Acknowledgement -- Section I: Introduction to RFID -- Chapter 1: The Evolution of RFID (B. Jamali, The University of Adelaide) -- Chapter 2: Introduction to RFID systems (S.M. Roy and N.C. Karmakar, Monash University) -- Chapter 3: Recent Paradigm Shift in RFID and Smart Antennas (N.C. Karmakar, Monash University) -- Section II: RFID Reader Systems -- Chapter 4: Modern RFID Readers (S. Parardovic and N.C. Karmakar, Monash University) -- Chapter 5: A Development Platform for SDR based RFID Reader (B. Jamali, The University of Adelaide) -- Section III: Physical Layer Developments of Smart Antennas for RFID Systems -- Chapter 6: RFID Reader Antenna -- A Smart Design Approach (S.M. Roy and N.C. Karmakar, Monash University) -- Chapter 7: Handheld Reader Antenna at 5.8 GHz (S.M. Roy and N.C. Karmakar, Monash University) -- Chapter 8: FPGA Controlled Phased Array Antenna Development for UHF RFID Reader (N.C. Karmakar, P. Zakavi and M. Kumbukage, Monash University) -- Chapter 9: Optically Controlled Phased Array Antennas for UWB RFID Reader (A. Arokiaswami, P. Q. Thai, Nanyang Technological University and N.C. Karmakar, Monash University) -- Chapter 10: Adaptive Antenna Arrays for RFID (M. Trinkle and B. Jamali, The University of Adelaide) -- Chapter 11: Design of Portable RFID Smart Antenna System?A Practical Approach (J.S. Fu, Chang Gung University, W. Liu, Nanyang Technological University and N.C. Karmakar, Monash University) -- Section IV: DOA and Localization of RFID Tags using Smart Antennas -- Chapter 12: Direction of Arrival Estimation based on A Single Port Smart Antenna for RFID Applications (Chen Sun, National Institute of Information and Communication Technology (NICT) and N.C. Karmakar, Monash University) -- Chapter 13: DOA Geo-location in Real-Time Indoor WiFi System Utilizing Smart Antennas (C.H. Lim, B.P. Ng, M.H. Er, J.P. Lie and W. Wang, Nanyang Technological University) -- Chapter 14: Direction of Arrival (DoA) Estimation of Impulse Radio UWB RFID Tags (J.P. Lie, B.P. Ng, C.H. Lim and C.M. S. See, Nanyang Technological University).
Chapter 15: Localization techniques in single and multihop wireless networks (V. Lakafosis, Rushi Vyas and M.M. Tentzeris, Georgia Institute of Technology) -- Section V: Multi-Antenna RFID Tags -- Chapter 16: Multi-antenna Chipless RFID Tags (I. Balbin and N. C. Karmakar, Monash University) -- Chapter 17: Link Budgets for Backscatter Radio Systems (J.D. Griffin and G.D. Durgin, Georgia Institute of Technology) -- Chapter 18: Fading Statistics for Multi-Antenna RF Tags (J.D. Griffin and G.D. Durgin, Georgia Institute of Technology) -- Section VI: MIMO Antennas for RFID Systems -- Chapter 19: Optimum Power Allocation in Multiple-Input-Multiple-Output (MIMO) Systems under Independent Rayleigh Fading (J.S. Fu, Chang Gung University, W. Liu, Nanyang Technological University and N. C. Karmakar, Monash University) -- Chapter 20: Low-cost and Compact RF-MIMO Transceivers (I. Santamaria, J. Via, V. Elvira, J. Ibanez, J. Perez, University of Cantabria -- R. Eickhoff, and U. Mayer, Dresden University of Technology) -- Chapter 21: Blind Channel Estimation in MIMO using Multi-carrier CDMA (A. Rahim, Monash University, K. M. Ahmed, Asian Institute of Technology and N. C. Karmakar, Monash University) -- Section VII: Anti-Collision Algorithm and Smart Antennas for RFID Systems -- Chapter 22: Anti-collision Algorithm and Smart Antennas for RFID Systems (Q. J. Teoh and N. C. Karmakar, Monash University) -- Chapter 23: RFID Anti-Collision Algorithms with Multi-Packet Reception (J. Lee, Hewlett-Packard Laboratories, T. Kwon, Seoul National University) -- Chapter 24: Anti-Collision of RFID tags using Capturing Effect (Q. J. Teoh and N. C. Karmakar, Monash University).
Record Nr. UNINA-9910141043603321
Karmakar Nemai Chandra <1963->  
Hoboken, New Jersey : , : Wiley, , c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of smart antennas for RFID systems / / Nemai Chandra Karmakar
Handbook of smart antennas for RFID systems / / Nemai Chandra Karmakar
Autore Karmakar Nemai Chandra <1963->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2010
Descrizione fisica 1 online resource (646 p.)
Disciplina 621.384135
681/.2
Altri autori (Persone) KarmakarNemai Chandra
Soggetto topico Radio frequency identification systems - Design and construction
Adaptive antennas - Design and construction
Phased array antennas - Design and construction
ISBN 1-282-84904-2
9786612849046
1-118-07439-4
0-470-87217-9
0-470-87216-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Forward -- Preface -- Acknowledgement -- Section I: Introduction to RFID -- Chapter 1: The Evolution of RFID (B. Jamali, The University of Adelaide) -- Chapter 2: Introduction to RFID systems (S.M. Roy and N.C. Karmakar, Monash University) -- Chapter 3: Recent Paradigm Shift in RFID and Smart Antennas (N.C. Karmakar, Monash University) -- Section II: RFID Reader Systems -- Chapter 4: Modern RFID Readers (S. Parardovic and N.C. Karmakar, Monash University) -- Chapter 5: A Development Platform for SDR based RFID Reader (B. Jamali, The University of Adelaide) -- Section III: Physical Layer Developments of Smart Antennas for RFID Systems -- Chapter 6: RFID Reader Antenna -- A Smart Design Approach (S.M. Roy and N.C. Karmakar, Monash University) -- Chapter 7: Handheld Reader Antenna at 5.8 GHz (S.M. Roy and N.C. Karmakar, Monash University) -- Chapter 8: FPGA Controlled Phased Array Antenna Development for UHF RFID Reader (N.C. Karmakar, P. Zakavi and M. Kumbukage, Monash University) -- Chapter 9: Optically Controlled Phased Array Antennas for UWB RFID Reader (A. Arokiaswami, P. Q. Thai, Nanyang Technological University and N.C. Karmakar, Monash University) -- Chapter 10: Adaptive Antenna Arrays for RFID (M. Trinkle and B. Jamali, The University of Adelaide) -- Chapter 11: Design of Portable RFID Smart Antenna System?A Practical Approach (J.S. Fu, Chang Gung University, W. Liu, Nanyang Technological University and N.C. Karmakar, Monash University) -- Section IV: DOA and Localization of RFID Tags using Smart Antennas -- Chapter 12: Direction of Arrival Estimation based on A Single Port Smart Antenna for RFID Applications (Chen Sun, National Institute of Information and Communication Technology (NICT) and N.C. Karmakar, Monash University) -- Chapter 13: DOA Geo-location in Real-Time Indoor WiFi System Utilizing Smart Antennas (C.H. Lim, B.P. Ng, M.H. Er, J.P. Lie and W. Wang, Nanyang Technological University) -- Chapter 14: Direction of Arrival (DoA) Estimation of Impulse Radio UWB RFID Tags (J.P. Lie, B.P. Ng, C.H. Lim and C.M. S. See, Nanyang Technological University).
Chapter 15: Localization techniques in single and multihop wireless networks (V. Lakafosis, Rushi Vyas and M.M. Tentzeris, Georgia Institute of Technology) -- Section V: Multi-Antenna RFID Tags -- Chapter 16: Multi-antenna Chipless RFID Tags (I. Balbin and N. C. Karmakar, Monash University) -- Chapter 17: Link Budgets for Backscatter Radio Systems (J.D. Griffin and G.D. Durgin, Georgia Institute of Technology) -- Chapter 18: Fading Statistics for Multi-Antenna RF Tags (J.D. Griffin and G.D. Durgin, Georgia Institute of Technology) -- Section VI: MIMO Antennas for RFID Systems -- Chapter 19: Optimum Power Allocation in Multiple-Input-Multiple-Output (MIMO) Systems under Independent Rayleigh Fading (J.S. Fu, Chang Gung University, W. Liu, Nanyang Technological University and N. C. Karmakar, Monash University) -- Chapter 20: Low-cost and Compact RF-MIMO Transceivers (I. Santamaria, J. Via, V. Elvira, J. Ibanez, J. Perez, University of Cantabria -- R. Eickhoff, and U. Mayer, Dresden University of Technology) -- Chapter 21: Blind Channel Estimation in MIMO using Multi-carrier CDMA (A. Rahim, Monash University, K. M. Ahmed, Asian Institute of Technology and N. C. Karmakar, Monash University) -- Section VII: Anti-Collision Algorithm and Smart Antennas for RFID Systems -- Chapter 22: Anti-collision Algorithm and Smart Antennas for RFID Systems (Q. J. Teoh and N. C. Karmakar, Monash University) -- Chapter 23: RFID Anti-Collision Algorithms with Multi-Packet Reception (J. Lee, Hewlett-Packard Laboratories, T. Kwon, Seoul National University) -- Chapter 24: Anti-Collision of RFID tags using Capturing Effect (Q. J. Teoh and N. C. Karmakar, Monash University).
Record Nr. UNINA-9910830282903321
Karmakar Nemai Chandra <1963->  
Hoboken, New Jersey : , : Wiley, , c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Human activity recognition : using wearable sensors and smartphones / / Miguel A. Labrador, Oscar D. Lara Yejas
Human activity recognition : using wearable sensors and smartphones / / Miguel A. Labrador, Oscar D. Lara Yejas
Autore Labrador Miguel A.
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (206 p.)
Disciplina 681.2
681/.2
Collana Chapman & Hall/CRC computer & information science series
Soggetto topico Location-based services
Ubiquitous computing
Wearable computers
ISBN 0-429-16801-2
1-4665-8828-4
Classificazione COM037000COM051230MAT000000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Preface; Part I: Human Activity Recognition: Theory Fundamentals; Chapter 1: Introduction; Chapter 2: Human Activity Recognition; Chapter 3: State of the Art in HAR Systems; Chapter 4: Incorporating Physiological Signals to Improve Activity Recognition Accuracy; Chapter 5: Enabling Real-Time Activity Recognition; Chapter 6: New Fusion and Selection Strategies in Multiple Classifier Systems; Chapter 7: Conclusions; Part II: HAR in an Android Smartphone: A Practical Guide; Chapter 8: Introduction to Android
Chapter 9: Getting Ready to Develop Android ApplicationsChapter 10: Using the Smartphone's Sensors; Chapter 11: Bluetooth Connectivity in Android; Chapter 12: Saving and Retrieving Data in an Android Smartphone; Chapter 13: Feature Extraction; Chapter 14: Real-Time Classification in Smartphones Using WEKA; Bibliography; Back Cover
Record Nr. UNINA-9910790747003321
Labrador Miguel A.  
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Human activity recognition : using wearable sensors and smartphones / / Miguel A. Labrador, Oscar D. Lara Yejas
Human activity recognition : using wearable sensors and smartphones / / Miguel A. Labrador, Oscar D. Lara Yejas
Autore Labrador Miguel A.
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (206 p.)
Disciplina 681.2
681/.2
Collana Chapman & Hall/CRC computer & information science series
Soggetto topico Location-based services
Ubiquitous computing
Wearable computers
ISBN 0-429-16801-2
1-4665-8828-4
Classificazione COM037000COM051230MAT000000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Preface; Part I: Human Activity Recognition: Theory Fundamentals; Chapter 1: Introduction; Chapter 2: Human Activity Recognition; Chapter 3: State of the Art in HAR Systems; Chapter 4: Incorporating Physiological Signals to Improve Activity Recognition Accuracy; Chapter 5: Enabling Real-Time Activity Recognition; Chapter 6: New Fusion and Selection Strategies in Multiple Classifier Systems; Chapter 7: Conclusions; Part II: HAR in an Android Smartphone: A Practical Guide; Chapter 8: Introduction to Android
Chapter 9: Getting Ready to Develop Android ApplicationsChapter 10: Using the Smartphone's Sensors; Chapter 11: Bluetooth Connectivity in Android; Chapter 12: Saving and Retrieving Data in an Android Smartphone; Chapter 13: Feature Extraction; Chapter 14: Real-Time Classification in Smartphones Using WEKA; Bibliography; Back Cover
Record Nr. UNINA-9910823616103321
Labrador Miguel A.  
Boca Raton : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
ICIA 2004 : proceedings of 2004 International Conference on Information Acquisition : June 21-25, 2004, Hefei, China
ICIA 2004 : proceedings of 2004 International Conference on Information Acquisition : June 21-25, 2004, Hefei, China
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2004
Disciplina 681/.2
Soggetto topico Detectors
Perceptrons
Information theory
Mechanical Engineering
Engineering & Applied Sciences
Industrial & Management Engineering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996202158903316
[Place of publication not identified], : IEEE, 2004
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing : proceedings : June 5-7, 2006, Taichung, Taiwan
IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing : proceedings : June 5-7, 2006, Taichung, Taiwan
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2006
Disciplina 681/.2
Soggetto topico Sensor networks - Security measures
Ubiquitous computing
Computer networks
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 1-5090-9215-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Book 1. -- [Book 2. Workshop programs].
Record Nr. UNISA-996197577103316
[Place of publication not identified], : IEEE, 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing : proceedings : June 5-7, 2006, Taichung, Taiwan
IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing : proceedings : June 5-7, 2006, Taichung, Taiwan
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 2006
Disciplina 681/.2
Soggetto topico Sensor networks - Security measures
Ubiquitous computing
Computer networks
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 1-5090-9215-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Book 1. -- [Book 2. Workshop programs].
Record Nr. UNINA-9910145620203321
[Place of publication not identified], : IEEE, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The internet of things : key applications and protocols / / Olivier Hersent, David Boswarthick, Omar Elloumi
The internet of things : key applications and protocols / / Olivier Hersent, David Boswarthick, Omar Elloumi
Autore Hersent Olivier
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex : , : Wiley, , 2012
Descrizione fisica 1 online resource (xxv, 344 pages)
Disciplina 681/.2
Altri autori (Persone) BoswarthickDavid
ElloumiOmar
Soggetto topico Intelligent buildings
Smart power grids
Sensor networks
ISBN 1-119-95834-2
9786613409751
1-283-40975-5
1-119-95835-0
1-119-96670-1
Classificazione TEC041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Acronyms xv -- Introduction xxiii -- Part I M2M AREA NETWORK PHYSICAL LAYERS -- 1 IEEE 802.15.4 3 -- 1.1 The IEEE 802 Committee Family of Protocols 3 -- 1.2 The Physical Layer 3 -- 1.2.1 Interferences with Other Technologies 5 -- 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7 -- 1.2.3 Sending a Data Frame 8 -- 1.3 The Media-Access Control Layer 8 -- 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9 -- 1.3.2 Association 12 -- 1.3.3 802.15.4 Addresses 13 -- 1.3.4 802.15.4 Frame Format 13 -- 1.3.5 Security 14 -- 1.4 Uses of 802.15.4 16 -- 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17 -- 1.5.1 802.15.4e 17 -- 1.5.2 802.15.4g 21 -- 2 Powerline Communication for M2M Applications 23 -- 2.1 Overview of PLC Technologies 23 -- 2.2 PLC Landscape 23 -- 2.2.1 The Historical Period (1950 / 2000) 24 -- 2.2.2 After Year 2000: The Maturity of PLC 24 -- 2.3 Powerline Communication: A Constrained Media 27 -- 2.3.1 Powerline is a Difficult Channel 27 -- 2.3.2 Regulation Limitations 27 -- 2.3.3 Power Consumption 32 -- 2.3.4 Lossy Network 33 -- 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional / Feature 35 -- 2.4 The Ideal PLC System for M2M 37 -- 2.4.1 Openness and Availability 38 -- 2.4.2 Range 38 -- 2.4.3 Power Consumption 38 -- 2.4.4 Data Rate 39 -- 2.4.5 Robustness 39 -- 2.4.6 EMC Regulatory Compliance 40 -- 2.4.7 Coexistence 40 -- 2.4.8 Security 40 -- 2.4.9 Latency 40 -- 2.4.10 Interoperability with M2M Wireless Services 40 -- 2.5 Conclusion 40 -- References 41 -- Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, / BUILDING AUTOMATION AND HOME AUTOMATION -- 3 The BACnetTM Protocol 45 -- 3.1 Standardization 45 -- 3.1.1 United States 46 -- 3.1.2 Europe 46 -- 3.1.3 Interworking 46 -- 3.2 Technology 46 -- 3.2.1 Physical Layer 47 -- 3.2.2 Link Layer 47 -- 3.2.3 Network Layer 47 -- 3.2.4 Transport and Session Layers 49 -- 3.2.5 Presentation and Application Layers 49.
3.3 BACnet Security 55 -- 3.4 BACnet Over Web Services (Annex N, Annex H6) 55 -- 3.4.1 The Generic WS Model 56 -- 3.4.2 BACnet/WS Services 58 -- 3.4.3 The Web Services Profile for BACnet Objects 59 -- 3.4.4 Future Improvements 59 -- 4 The LonWorks R Control Networking Platform 61 -- 4.1 Standardization 61 -- 4.1.1 United States of America 61 -- 4.1.2 Europe 62 -- 4.1.3 China 62 -- 4.2 Technology 62 -- 4.2.1 Physical Layer 63 -- 4.2.2 Link Layer 64 -- 4.2.3 Network Layer 65 -- 4.2.4 Transport Layer 66 -- 4.2.5 Session Layer 67 -- 4.2.6 Presentation Layer 67 -- 4.2.7 Application Layer 71 -- 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72 -- 4.4 A REST Interface for LonWorks 73 -- 4.4.1 LonBridge REST Transactions 74 -- 4.4.2 Requests 74 -- 4.4.3 Responses 75 -- 4.4.4 LonBridge REST Resources 75 -- 5 ModBus 79 -- 5.1 Introduction 79 -- 5.2 ModBus Standardization 80 -- 5.3 ModBus Message Framing and Transmission Modes 80 -- 5.4 ModBus/TCP 81 -- 6 KNX 83 -- 6.1 The Konnex/KNX Association 83 -- 6.2 Standardization 83 -- 6.3 KNX Technology Overview 84 -- 6.3.1 Physical Layer 84 -- 6.3.2 Data Link and Routing Layers, Addressing 87 -- 6.3.3 Transport Layer 89 -- 6.3.4 Application Layer 89 -- 6.3.5 KNX Devices, Functional Blocks and Interworking 89 -- 6.4 Device Configuration 92 -- 7 ZigBee 93 -- 7.1 Development of the Standard 93 -- 7.2 ZigBee Architecture 94 -- 7.2.1 ZigBee and 802.15.4 94 -- 7.2.2 ZigBee Protocol Layers 94 -- 7.2.3 ZigBee Node Types 96 -- 7.3 Association 96 -- 7.3.1 Forming a Network 96 -- 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97 -- 7.3.3 Using NWK Rejoin 99 -- 7.4 The ZigBee Network Layer 99 -- 7.4.1 Short-Address Allocation 99 -- 7.4.2 Network Layer Frame Format 100 -- 7.4.3 Packet Forwarding 101 -- 7.4.4 Routing Support Primitives 101 -- 7.4.5 Routing Algorithms 102 -- 7.5 The ZigBee APS Layer 105 -- 7.5.1 Endpoints, Descriptors 106 -- 7.5.2 The APS Frame 106 -- 7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109.
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109 -- 7.6.2 ZDP Network Management Services (Mandatory) 110 -- 7.6.3 ZDP Binding Management Services (Optional) 111 -- 7.6.4 Group Management 111 -- 7.7 ZigBee Security 111 -- 7.7.1 ZigBee and 802.15.4 Security 111 -- 7.7.2 Key Types 113 -- 7.7.3 The Trust Center 114 -- 7.7.4 The ZDO Permissions Table 116 -- 7.8 The ZigBee Cluster Library (ZCL) 116 -- 7.8.1 Cluster 116 -- 7.8.2 Attributes 117 -- 7.8.3 Commands 117 -- 7.8.4 ZCL Frame 117 -- 7.9 ZigBee Application Profiles 119 -- 7.9.1 The Home Automation (HA) Application Profile 119 -- 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122 -- 7.10 The ZigBee Gateway Specification for Network Devices 129 -- 7.10.1 The ZGD 130 -- 7.10.2 GRIP Binding 131 -- 7.10.3 SOAP Binding 132 -- 7.10.4 REST Binding 132 -- 7.10.5 Example IPHA / ZGD Interaction Using the REST Binding 134 -- 8 Z-Wave 139 -- 8.1 History and Management of the Protocol 139 -- 8.2 The Z-Wave Protocol 140 -- 8.2.1 Overview 140 -- 8.2.2 Z-Wave Node Types 140 -- 8.2.3 RF and MAC Layers 142 -- 8.2.4 Transfer Layer 143 -- 8.2.5 Routing Layer 145 -- 8.2.6 Application Layer 148 -- Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING / 9 M-Bus and Wireless M-Bus 155 -- 9.1 Development of the Standard 155 -- 9.2 M-Bus Architecture 156 -- 9.2.1 Physical Layer 156 -- 9.2.2 Link Layer 156 -- 9.2.3 Network Layer 157 -- 9.2.4 Application Layer 158 -- 9.3 Wireless M-Bus 160 -- 9.3.1 Physical Layer 160 -- 9.3.2 Data-Link Layer 162 -- 9.3.3 Application Layer 162 -- 9.3.4 Security 163 -- 10 The ANSI C12 Suite 165 -- 10.1 Introduction 165 -- 10.2 C12.19: The C12 Data Model 166 -- 10.2.1 The Read and Write Minimum Services 167 -- 10.2.2 Some Remarkable C12.19 Tables 167 -- 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168 -- 10.4 C12.21: An Extension of C12.18 for Modem Communication 169 -- 10.4.1 Interactions with the Data-Link Layer 170 -- 10.4.2 Modifications and Additions to C12.19 Tables 171 -- 10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication / System 171.
10.5.1 Reference Topology and Network Elements 171 -- 10.5.2 C12.22 Node to C12.22 Network Communications 173 -- 10.5.3 C12.22 Device to C12.22 Communication Module Interface 174 -- 10.5.4 C12.19 Updates 176 -- 10.6 Other Parts of ANSI C12 Protocol Suite 176 -- 10.7 RFC 6142: C12.22 Transport Over an IP Network 176 -- 10.8 REST-Based Interfaces to C12.19 177 -- 11 DLMS/COSEM 179 -- 11.1 DLMS Standardization 179 -- 11.1.1 The DLMS UA 179 -- 11.1.2 DLMS/COSEM, the Colored Books 179 -- 11.1.3 DLMS Standardization in IEC 180 -- 11.2 The COSEM Data Model 181 -- 11.3 The Object Identification System (OBIS) 182 -- 11.4 The DLMS/COSEM Interface Classes 184 -- 11.4.1 Data-Storage ICs 185 -- 11.4.2 Association ICs 185 -- 11.4.3 Time- and Event-Bound ICs 186 -- 11.4.4 Communication Setup Channel Objects 186 -- 11.5 Accessing COSEM Interface Objects 186 -- 11.5.1 The Application Association Concept 186 -- 11.5.2 The DLMS/COSEM Communication Framework 187 -- 11.5.3 The Data Communication Services of COSEM Application Layer 189 -- 11.6 End-to-End Security in the DLMS/COSEM Approach 191 -- 11.6.1 Access Control Security 191 -- 11.6.2 Data-Transport Security 192 -- Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS -- 12 6LoWPAN and RPL 195 -- 12.1 Overview 195 -- 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195 -- 12.3 Overview of the 6LoWPAN Adaptation Layer 196 -- 12.3.1 Mesh Addressing Header 197 -- 12.3.2 Fragment Header 198 -- 12.3.3 IPv6 Compression Header 198 -- 12.4 Context-Based Compression: IPHC 200 -- 12.5 RPL 202 -- 12.5.1 RPL Control Messages 204 -- 12.5.2 Construction of the DODAG and Upward Routes 204 -- 12.6 Downward Routes, Multicast Membership 206 -- 12.7 Packet Routing 207 -- 12.7.1 RPL Security 208 -- 13 ZigBee Smart Energy 2.0 209 -- 13.1 REST Overview 209 -- 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209 -- 13.1.2 REST Verbs 210 -- 13.1.3 Other REST Constraints, and What is REST After All? 211 -- 13.2 ZigBee SEP 2.0 Overview 212.
13.2.1 ZigBee IP 213 -- 13.2.2 ZigBee SEP 2.0 Resources 214 -- 13.3 Function Sets and Device Types 217 -- 13.3.1 Base Function Set 218 -- 13.3.2 Group Enrollment 221 -- 13.3.3 Meter 223 -- 13.3.4 Pricing 223 -- 13.3.5 Demand Response and Load Control Function Set 224 -- 13.3.6 Distributed Energy Resources 227 -- 13.3.7 Plug-In Electric Vehicle 227 -- 13.3.8 Messaging 230 -- 13.3.9 Registration 231 -- 13.4 ZigBee SE 2.0 Security 232 -- 13.4.1 Certificates 232 -- 13.4.2 IP Level Security 232 -- 13.4.3 Application-Level Security 235 -- 14 The ETSI M2M Architecture 237 -- 14.1 Introduction to ETSI TC M2M 237 -- 14.2 System Architecture 238 -- 14.2.1 High-Level Architecture 238 -- 14.2.2 Reference Points 239 -- 14.2.3 Service Capabilities 240 -- 14.3 ETSI M2M SCL Resource Structure 242 -- 14.3.1 SCL Resources 244 -- 14.3.2 Application Resources 244 -- 14.3.3 Access Right Resources 248 -- 14.3.4 Container Resources 248 -- 14.3.5 Group Resources 250 -- 14.3.6 Subscription and Notification Channel Resources 251 -- 14.4 ETSI M2M Interactions Overview 252 -- 14.5 Security in the ETSI M2M Framework 252 -- 14.5.1 Key Management 252 -- 14.5.2 Access Lists 254 -- 14.6 Interworking with Machine Area Networks 255 -- 14.6.1 Mapping M2M Networks to ETSI M2M Resources 256 -- 14.6.2 Interworking with ZigBee 1.0 257 -- 14.6.3 Interworking with C.12 262 -- 14.6.4 Interworking with DLMS/COSEM 264 -- 14.7 Conclusion on ETSI M2M 266 -- Part V KEY APPLICATIONS OF THE INTERNET OF THINGS -- 15 The Smart Grid 271 -- 15.1 Introduction 271 -- 15.2 The Marginal Cost of Electricity: Base and Peak Production 272 -- 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and / Why M2M Will Become a Key Technology 273 -- 15.4 Demand Response for Transmission System Operators (TSO) 274 -- 15.4.1 Grid-Balancing Authorities: The TSOs 274 -- 15.4.2 Power Shedding: Who Pays What? 276 -- 15.4.3 Automated Demand Response 277 -- 15.5 Case Study: RTE in France 277 -- 15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277.
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281 -- 15.5.3 Who Pays for the Network-Balancing Costs? 283 -- 15.6 The Opportunity of Smart Distributed Energy Management 285 -- 15.6.1 Assessing the Potential of Residential and Small-Business Powerz Shedding (Heating/Cooling Control) 286 -- 15.6.2 Analysis of a Typical Home 287 -- 15.6.3 The Business Case 293 -- 15.7 Demand Response: The Big Picture 300 -- 15.7.1 From Network Balancing to Peak-Demand Suppression 300 -- 15.7.2 Demand Response Beyond Heating Systems 304 -- 15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305 -- 16 Electric Vehicle Charging 307 -- 16.1 Charging Standards Overview 307 -- 16.1.1 IEC Standards Related to EV Charging 310 -- 16.1.2 SAE Standards 317 -- 16.1.3 J2293 318 -- 16.1.4 CAN / Bus 319 -- 16.1.5 J2847: The New “Recommended Practice” for High-Level / Communication Leveraging the ZigBee Smart Energy Profile 2.0 320 -- 16.2 Use Cases 321 -- 16.2.1 Basic Use Cases 321 -- 16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323 -- 16.3 Conclusion 324 -- Appendix A Normal Aggregate Power Demand of a Set of Identical / Heating Systems with Hysteresis 327 -- Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329 -- Appendix C Changing Tref without Introducing Correlation 331 -- C.1 Effect of an Increase of Tref 331 -- Appendix D Lower Consumption, A Side Benefit of Power Shedding 333 -- Index 337.
Record Nr. UNINA-9910208829103321
Hersent Olivier  
Chichester, West Sussex : , : Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The internet of things : key applications and protocols / / Olivier Hersent, David Boswarthick, Omar Elloumi
The internet of things : key applications and protocols / / Olivier Hersent, David Boswarthick, Omar Elloumi
Autore Hersent Olivier
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex : , : Wiley, , 2012
Descrizione fisica 1 online resource (xxv, 344 pages)
Disciplina 681/.2
Altri autori (Persone) BoswarthickDavid
ElloumiOmar
Soggetto topico Intelligent buildings
Smart power grids
Sensor networks
ISBN 1-119-95834-2
9786613409751
1-283-40975-5
1-119-95835-0
1-119-96670-1
Classificazione TEC041000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Acronyms xv -- Introduction xxiii -- Part I M2M AREA NETWORK PHYSICAL LAYERS -- 1 IEEE 802.15.4 3 -- 1.1 The IEEE 802 Committee Family of Protocols 3 -- 1.2 The Physical Layer 3 -- 1.2.1 Interferences with Other Technologies 5 -- 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7 -- 1.2.3 Sending a Data Frame 8 -- 1.3 The Media-Access Control Layer 8 -- 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9 -- 1.3.2 Association 12 -- 1.3.3 802.15.4 Addresses 13 -- 1.3.4 802.15.4 Frame Format 13 -- 1.3.5 Security 14 -- 1.4 Uses of 802.15.4 16 -- 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17 -- 1.5.1 802.15.4e 17 -- 1.5.2 802.15.4g 21 -- 2 Powerline Communication for M2M Applications 23 -- 2.1 Overview of PLC Technologies 23 -- 2.2 PLC Landscape 23 -- 2.2.1 The Historical Period (1950 / 2000) 24 -- 2.2.2 After Year 2000: The Maturity of PLC 24 -- 2.3 Powerline Communication: A Constrained Media 27 -- 2.3.1 Powerline is a Difficult Channel 27 -- 2.3.2 Regulation Limitations 27 -- 2.3.3 Power Consumption 32 -- 2.3.4 Lossy Network 33 -- 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional / Feature 35 -- 2.4 The Ideal PLC System for M2M 37 -- 2.4.1 Openness and Availability 38 -- 2.4.2 Range 38 -- 2.4.3 Power Consumption 38 -- 2.4.4 Data Rate 39 -- 2.4.5 Robustness 39 -- 2.4.6 EMC Regulatory Compliance 40 -- 2.4.7 Coexistence 40 -- 2.4.8 Security 40 -- 2.4.9 Latency 40 -- 2.4.10 Interoperability with M2M Wireless Services 40 -- 2.5 Conclusion 40 -- References 41 -- Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, / BUILDING AUTOMATION AND HOME AUTOMATION -- 3 The BACnetTM Protocol 45 -- 3.1 Standardization 45 -- 3.1.1 United States 46 -- 3.1.2 Europe 46 -- 3.1.3 Interworking 46 -- 3.2 Technology 46 -- 3.2.1 Physical Layer 47 -- 3.2.2 Link Layer 47 -- 3.2.3 Network Layer 47 -- 3.2.4 Transport and Session Layers 49 -- 3.2.5 Presentation and Application Layers 49.
3.3 BACnet Security 55 -- 3.4 BACnet Over Web Services (Annex N, Annex H6) 55 -- 3.4.1 The Generic WS Model 56 -- 3.4.2 BACnet/WS Services 58 -- 3.4.3 The Web Services Profile for BACnet Objects 59 -- 3.4.4 Future Improvements 59 -- 4 The LonWorks R Control Networking Platform 61 -- 4.1 Standardization 61 -- 4.1.1 United States of America 61 -- 4.1.2 Europe 62 -- 4.1.3 China 62 -- 4.2 Technology 62 -- 4.2.1 Physical Layer 63 -- 4.2.2 Link Layer 64 -- 4.2.3 Network Layer 65 -- 4.2.4 Transport Layer 66 -- 4.2.5 Session Layer 67 -- 4.2.6 Presentation Layer 67 -- 4.2.7 Application Layer 71 -- 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72 -- 4.4 A REST Interface for LonWorks 73 -- 4.4.1 LonBridge REST Transactions 74 -- 4.4.2 Requests 74 -- 4.4.3 Responses 75 -- 4.4.4 LonBridge REST Resources 75 -- 5 ModBus 79 -- 5.1 Introduction 79 -- 5.2 ModBus Standardization 80 -- 5.3 ModBus Message Framing and Transmission Modes 80 -- 5.4 ModBus/TCP 81 -- 6 KNX 83 -- 6.1 The Konnex/KNX Association 83 -- 6.2 Standardization 83 -- 6.3 KNX Technology Overview 84 -- 6.3.1 Physical Layer 84 -- 6.3.2 Data Link and Routing Layers, Addressing 87 -- 6.3.3 Transport Layer 89 -- 6.3.4 Application Layer 89 -- 6.3.5 KNX Devices, Functional Blocks and Interworking 89 -- 6.4 Device Configuration 92 -- 7 ZigBee 93 -- 7.1 Development of the Standard 93 -- 7.2 ZigBee Architecture 94 -- 7.2.1 ZigBee and 802.15.4 94 -- 7.2.2 ZigBee Protocol Layers 94 -- 7.2.3 ZigBee Node Types 96 -- 7.3 Association 96 -- 7.3.1 Forming a Network 96 -- 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97 -- 7.3.3 Using NWK Rejoin 99 -- 7.4 The ZigBee Network Layer 99 -- 7.4.1 Short-Address Allocation 99 -- 7.4.2 Network Layer Frame Format 100 -- 7.4.3 Packet Forwarding 101 -- 7.4.4 Routing Support Primitives 101 -- 7.4.5 Routing Algorithms 102 -- 7.5 The ZigBee APS Layer 105 -- 7.5.1 Endpoints, Descriptors 106 -- 7.5.2 The APS Frame 106 -- 7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109.
7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109 -- 7.6.2 ZDP Network Management Services (Mandatory) 110 -- 7.6.3 ZDP Binding Management Services (Optional) 111 -- 7.6.4 Group Management 111 -- 7.7 ZigBee Security 111 -- 7.7.1 ZigBee and 802.15.4 Security 111 -- 7.7.2 Key Types 113 -- 7.7.3 The Trust Center 114 -- 7.7.4 The ZDO Permissions Table 116 -- 7.8 The ZigBee Cluster Library (ZCL) 116 -- 7.8.1 Cluster 116 -- 7.8.2 Attributes 117 -- 7.8.3 Commands 117 -- 7.8.4 ZCL Frame 117 -- 7.9 ZigBee Application Profiles 119 -- 7.9.1 The Home Automation (HA) Application Profile 119 -- 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122 -- 7.10 The ZigBee Gateway Specification for Network Devices 129 -- 7.10.1 The ZGD 130 -- 7.10.2 GRIP Binding 131 -- 7.10.3 SOAP Binding 132 -- 7.10.4 REST Binding 132 -- 7.10.5 Example IPHA / ZGD Interaction Using the REST Binding 134 -- 8 Z-Wave 139 -- 8.1 History and Management of the Protocol 139 -- 8.2 The Z-Wave Protocol 140 -- 8.2.1 Overview 140 -- 8.2.2 Z-Wave Node Types 140 -- 8.2.3 RF and MAC Layers 142 -- 8.2.4 Transfer Layer 143 -- 8.2.5 Routing Layer 145 -- 8.2.6 Application Layer 148 -- Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING / 9 M-Bus and Wireless M-Bus 155 -- 9.1 Development of the Standard 155 -- 9.2 M-Bus Architecture 156 -- 9.2.1 Physical Layer 156 -- 9.2.2 Link Layer 156 -- 9.2.3 Network Layer 157 -- 9.2.4 Application Layer 158 -- 9.3 Wireless M-Bus 160 -- 9.3.1 Physical Layer 160 -- 9.3.2 Data-Link Layer 162 -- 9.3.3 Application Layer 162 -- 9.3.4 Security 163 -- 10 The ANSI C12 Suite 165 -- 10.1 Introduction 165 -- 10.2 C12.19: The C12 Data Model 166 -- 10.2.1 The Read and Write Minimum Services 167 -- 10.2.2 Some Remarkable C12.19 Tables 167 -- 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168 -- 10.4 C12.21: An Extension of C12.18 for Modem Communication 169 -- 10.4.1 Interactions with the Data-Link Layer 170 -- 10.4.2 Modifications and Additions to C12.19 Tables 171 -- 10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication / System 171.
10.5.1 Reference Topology and Network Elements 171 -- 10.5.2 C12.22 Node to C12.22 Network Communications 173 -- 10.5.3 C12.22 Device to C12.22 Communication Module Interface 174 -- 10.5.4 C12.19 Updates 176 -- 10.6 Other Parts of ANSI C12 Protocol Suite 176 -- 10.7 RFC 6142: C12.22 Transport Over an IP Network 176 -- 10.8 REST-Based Interfaces to C12.19 177 -- 11 DLMS/COSEM 179 -- 11.1 DLMS Standardization 179 -- 11.1.1 The DLMS UA 179 -- 11.1.2 DLMS/COSEM, the Colored Books 179 -- 11.1.3 DLMS Standardization in IEC 180 -- 11.2 The COSEM Data Model 181 -- 11.3 The Object Identification System (OBIS) 182 -- 11.4 The DLMS/COSEM Interface Classes 184 -- 11.4.1 Data-Storage ICs 185 -- 11.4.2 Association ICs 185 -- 11.4.3 Time- and Event-Bound ICs 186 -- 11.4.4 Communication Setup Channel Objects 186 -- 11.5 Accessing COSEM Interface Objects 186 -- 11.5.1 The Application Association Concept 186 -- 11.5.2 The DLMS/COSEM Communication Framework 187 -- 11.5.3 The Data Communication Services of COSEM Application Layer 189 -- 11.6 End-to-End Security in the DLMS/COSEM Approach 191 -- 11.6.1 Access Control Security 191 -- 11.6.2 Data-Transport Security 192 -- Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS -- 12 6LoWPAN and RPL 195 -- 12.1 Overview 195 -- 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195 -- 12.3 Overview of the 6LoWPAN Adaptation Layer 196 -- 12.3.1 Mesh Addressing Header 197 -- 12.3.2 Fragment Header 198 -- 12.3.3 IPv6 Compression Header 198 -- 12.4 Context-Based Compression: IPHC 200 -- 12.5 RPL 202 -- 12.5.1 RPL Control Messages 204 -- 12.5.2 Construction of the DODAG and Upward Routes 204 -- 12.6 Downward Routes, Multicast Membership 206 -- 12.7 Packet Routing 207 -- 12.7.1 RPL Security 208 -- 13 ZigBee Smart Energy 2.0 209 -- 13.1 REST Overview 209 -- 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209 -- 13.1.2 REST Verbs 210 -- 13.1.3 Other REST Constraints, and What is REST After All? 211 -- 13.2 ZigBee SEP 2.0 Overview 212.
13.2.1 ZigBee IP 213 -- 13.2.2 ZigBee SEP 2.0 Resources 214 -- 13.3 Function Sets and Device Types 217 -- 13.3.1 Base Function Set 218 -- 13.3.2 Group Enrollment 221 -- 13.3.3 Meter 223 -- 13.3.4 Pricing 223 -- 13.3.5 Demand Response and Load Control Function Set 224 -- 13.3.6 Distributed Energy Resources 227 -- 13.3.7 Plug-In Electric Vehicle 227 -- 13.3.8 Messaging 230 -- 13.3.9 Registration 231 -- 13.4 ZigBee SE 2.0 Security 232 -- 13.4.1 Certificates 232 -- 13.4.2 IP Level Security 232 -- 13.4.3 Application-Level Security 235 -- 14 The ETSI M2M Architecture 237 -- 14.1 Introduction to ETSI TC M2M 237 -- 14.2 System Architecture 238 -- 14.2.1 High-Level Architecture 238 -- 14.2.2 Reference Points 239 -- 14.2.3 Service Capabilities 240 -- 14.3 ETSI M2M SCL Resource Structure 242 -- 14.3.1 SCL Resources 244 -- 14.3.2 Application Resources 244 -- 14.3.3 Access Right Resources 248 -- 14.3.4 Container Resources 248 -- 14.3.5 Group Resources 250 -- 14.3.6 Subscription and Notification Channel Resources 251 -- 14.4 ETSI M2M Interactions Overview 252 -- 14.5 Security in the ETSI M2M Framework 252 -- 14.5.1 Key Management 252 -- 14.5.2 Access Lists 254 -- 14.6 Interworking with Machine Area Networks 255 -- 14.6.1 Mapping M2M Networks to ETSI M2M Resources 256 -- 14.6.2 Interworking with ZigBee 1.0 257 -- 14.6.3 Interworking with C.12 262 -- 14.6.4 Interworking with DLMS/COSEM 264 -- 14.7 Conclusion on ETSI M2M 266 -- Part V KEY APPLICATIONS OF THE INTERNET OF THINGS -- 15 The Smart Grid 271 -- 15.1 Introduction 271 -- 15.2 The Marginal Cost of Electricity: Base and Peak Production 272 -- 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and / Why M2M Will Become a Key Technology 273 -- 15.4 Demand Response for Transmission System Operators (TSO) 274 -- 15.4.1 Grid-Balancing Authorities: The TSOs 274 -- 15.4.2 Power Shedding: Who Pays What? 276 -- 15.4.3 Automated Demand Response 277 -- 15.5 Case Study: RTE in France 277 -- 15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277.
15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281 -- 15.5.3 Who Pays for the Network-Balancing Costs? 283 -- 15.6 The Opportunity of Smart Distributed Energy Management 285 -- 15.6.1 Assessing the Potential of Residential and Small-Business Powerz Shedding (Heating/Cooling Control) 286 -- 15.6.2 Analysis of a Typical Home 287 -- 15.6.3 The Business Case 293 -- 15.7 Demand Response: The Big Picture 300 -- 15.7.1 From Network Balancing to Peak-Demand Suppression 300 -- 15.7.2 Demand Response Beyond Heating Systems 304 -- 15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305 -- 16 Electric Vehicle Charging 307 -- 16.1 Charging Standards Overview 307 -- 16.1.1 IEC Standards Related to EV Charging 310 -- 16.1.2 SAE Standards 317 -- 16.1.3 J2293 318 -- 16.1.4 CAN / Bus 319 -- 16.1.5 J2847: The New “Recommended Practice” for High-Level / Communication Leveraging the ZigBee Smart Energy Profile 2.0 320 -- 16.2 Use Cases 321 -- 16.2.1 Basic Use Cases 321 -- 16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323 -- 16.3 Conclusion 324 -- Appendix A Normal Aggregate Power Demand of a Set of Identical / Heating Systems with Hysteresis 327 -- Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329 -- Appendix C Changing Tref without Introducing Correlation 331 -- C.1 Effect of an Increase of Tref 331 -- Appendix D Lower Consumption, A Side Benefit of Power Shedding 333 -- Index 337.
Record Nr. UNINA-9910816235303321
Hersent Olivier  
Chichester, West Sussex : , : Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui