top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Progress in the science of functional dyes / / Yousuke Ooyama, Shigeyuki Yagi, editors
Progress in the science of functional dyes / / Yousuke Ooyama, Shigeyuki Yagi, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (597 pages)
Disciplina 667.2
Soggetto topico Dyes and dyeing - Chemistry
ISBN 981-334-392-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Important Structures for Functional Dyes -- 1 Polymethine Dyes -- 1.1 Introduction -- 1.2 Bases of Polymethine Dyes -- 1.2.1 Classification of Polymethine Dyes -- 1.2.2 Synthesis -- 1.2.3 Basic Properties of Polymethine Dyes -- 1.3 Topics in Polymethine Dyes -- 1.3.1 Data Recording Materials -- 1.3.2 Sensitizers for DSSCs -- 1.3.3 Liquid Polymethine Dyes -- 1.3.4 Fluorescence of Polymethine Dyes -- References -- 2 Squaraine Dyes -- 2.1 General Remarks -- 2.2 Electronic Absorption and Fluorescence Properties -- 2.3 Synthesis of Squaraine Dyes by Condensation Reaction -- 2.4 Squaraine Dyes Synthesized by Pd-Catalyzed Cross-Coupling -- 2.5 Functionalization of Squaraine Dyes -- 2.6 Squaraine-Based Polymers and Oligomers -- 2.7 Miscellaneous Containing Squaraine Chromophores -- 2.8 Supramolecular Assembly of Squaraine Dyes -- 2.9 Conclusions -- References -- 3 Porphyrins: Syntheses and Properties -- 3.1 Introduction -- 3.2 meso-Tetra-substituted Porphyrins -- 3.2.1 Condensation of Pyrrole and Aldehyde -- 3.2.2 Lindsey Synthesis Using Dipyrrylmethanes -- 3.2.3 Porphyrins with Mixed meso-Substituents -- 3.2.4 meso-Substituted Porphyrins as Photosensitizers -- 3.3 Porphyrins Substituted at Pyrrole β-Positions -- 3.3.1 Barton-Zard Pyrrole Synthesis -- 3.3.2 Benzoporphyrins -- 3.3.3 Reactions of Porphyrins at Pyrrole β-Positions -- 3.4 π-Extended Porphyrins -- 3.4.1 Electrophilic Substitution with meso-Aryl Groups -- 3.4.2 Oxidative Coupling of β-Aminoporphyrins -- 3.4.3 Oxidative Fusion of Porphyrin Periphery -- References -- 4 Phthalocyanine and Related Analogues -- 4.1 Introduction -- 4.2 Synthesis of Phthalocyanine and Subphthalocyanine -- 4.2.1 Synthesis of Symmetric H2Pcs -- 4.2.2 Synthesis of Low-Symmetry Pcs -- 4.2.3 Synthesis of SubPc -- 4.3 UV/vis Absorption Properties of Pc and SubPc.
4.3.1 Gouterman's Four-Orbital Model and Theoretical Description of Absorption Properties of Pc and SubPc -- 4.3.2 MCD Spectroscopy in Pc Chemistry -- 4.3.3 UV/vis Absorption and MCD Spectra of Perturbed Pc and SubPc -- 4.4 Recent Examples of Pc Analogues with Unique Optical Properties -- 4.4.1 Phosphorous(v) Pc as an NIR Chromophore -- 4.4.2 Contracted and Expanded Pc Analogues with Unique Properties -- 4.5 Summary and Outlook -- References -- 5 BODIPY Dyes and Their Analogues -- 5.1 Three-Coordinate Organoboron Compounds -- 5.2 Four-Coordinate Organoboron Complexes -- 5.2.1 Boron Complexation -- 5.2.2 Representation Method for Four-Coordinate Organoboron Complexes -- 5.2.3 N^N Type Organoboron Complexes -- 5.2.4 BODIPY Analogue -- 5.2.5 O^O Type Organoboron Complex -- 5.2.6 N^O Type Organoboron Complex -- 5.2.7 N^C Monoboron Complex -- 5.3 Tridentate Boron Complex -- 5.4 Multinuclear Boron Complex -- References -- Part II Properties of Functional Dyes -- 6 Molecular and Crystal Structures of Polymorphic Organic Dyes and Coloured Organic Compounds -- 6.1 Introduction -- 6.2 Examples of Organic Dyes -- 6.2.1 CuPc (CUPOCY) and Oxotitanyl Pc (BITSAY) -- 6.2.2 QA (QNACRD) and Its N,N'-Dibutylated Derivative (WAMFAS) -- 6.2.3 2,5-Diamino-3,6-Dicyano Pyrazine Dyes (KELFOX and KELGEO) -- 6.3 Examples of Coloured Organic Compounds -- 6.3.1 ROY (QAXMEH) -- 6.3.2 1,8-Dihydroxyanthraquinone (DHANQU) -- 6.3.3 Two Azomethine Compounds -- 6.4 Summary -- References -- 7 Photochromism -- 7.1 Introduction -- 7.2 Azobenzene -- 7.3 Hexaarylbiimidazole -- 7.4 Spiropyran, Spirooxazine, Naphthopyran -- 7.5 Fulgide -- 7.6 Diarylethene -- References -- 8 Red and Near-IR Fluorescent Two-Photon Absorption Dyes -- 8.1 Introduction -- 8.2 Fluorescent Two-Photon Absorption Dyes -- 8.2.1 History and Demands -- 8.2.2 Red- and Near-IR-Light-Emitting Two-Photon Absorption Dyes.
8.2.3 Biological Application of Red- and Near-IR-Light-Emitting Two-Photon Absorption Dyes -- 8.3 Two-Photon Absorption Dyes Bearing Aggregation-Induced Emission Nature -- 8.4 Conclusions -- References -- 9 Molecular Designs for Solid-State Luminescent Properties and Recent Progresses on the Development of Functional Luminescent Solid Materials -- 9.1 Introduction -- 9.2 Mixture Materials -- 9.3 Steric Effect -- 9.4 Aggregation-Induced Emission -- 9.4.1 o-Carborane Materials -- 9.4.2 Boron Complex -- 9.5 Rational Design for AIE-Active Molecules -- 9.6 Conclusion -- References -- 10 Circularly Polarized Luminescence (CPL) Based on Planar Chiral [2.2]Paracyclophane -- 10.1 Introduction: Circularly Polarized Luminescence (CPL) -- 10.2 Introduction: [2.2]Paracyclophane and Its Planar Chirality -- 10.3 Synthesis of Enantiopure Disubstituted [2.2]Paracyclophane and Optically Active π-Stacked Molecules -- 10.4 Synthesis of Enantiopure 4,7,12,15-Tetrasubstituted [2.2]Paracyclophane and Optically Active π-Stacked Molecules -- 10.5 Synthesis of Enantiopure Bis-(Para)-Pseudo-Ortho-Tetrasubstituted [2.2]Paracyclophane and Syntheses of Optically Active π-Stacked Molecules -- 10.6 Synthesis of Enantiopure Bis-(Para)-Pseudo-Meta-Tetrasubstituted [2.2]Paracyclophane -- 10.7 Conclusion -- References -- Part III Applications of Functional Dyes -- 11 Fluorescent Chemosensors -- 11.1 Definition of "Fluorescent Chemosensors" -- 11.2 Molecular Structure of Fluorescent Chemosensors -- 11.2.1 Components -- 11.2.2 Representative Structures -- 11.3 Dye Selection in Fluorescent Chemosensors -- 11.3.1 Absorption/Fluorescence Wavelengths -- 11.3.2 Brightness -- 11.3.3 Photostability -- 11.3.4 Two-Photon Absorption Cross Section -- 11.3.5 Sensitivity to Environmental Condition -- 11.3.6 Other Considerations -- 11.4 Operation Principles of Fluorescent Chemosensors.
11.4.1 "Primordial" Fluorescent Chemosensors Based on Host-Guest Chemistry -- 11.4.2 Photo-Induced Electron Transfer -- 11.4.3 Heavy Atom Effect -- 11.4.4 Förster Resonance Energy Transfer -- 11.4.5 Formation of Emissive π-System via Chemical Reaction -- 11.4.6 Excimer Emission -- 11.4.7 Assembly- or Disassembly-Induced Emission -- 11.4.8 Intramolecular Charge Transfer -- 11.4.9 Intramolecular Proton Transfer -- 11.5 Outlook: Fluorescent Nanoparticles as Next-Generation Fluorophores -- References -- 12 White-Light Emissive Materials Based on Supramolecular Approach -- 12.1 Introduction -- 12.2 Hydrogen Bonding -- 12.3 Metallo-coordination -- 12.4 Host-Guest Interaction -- 12.5 Self-assembly -- 12.6 Supramolecular Gels -- 12.7 Dynamic Covalent Bond -- 12.8 Summary -- References -- 13 Photodynamic Therapy -- 13.1 Introduction -- 13.2 Methods for Evaluation of Singlet Oxygen 1O2 Generation -- 13.3 Porphyrin-Based Photosensitizing Dyes -- 13.4 Phthalocyanine-Based Photosensitizing Dyes -- 13.5 BODIPY-Based Photosensitizing Dyes -- 13.6 Xanthene and Phenothiazinium Photosensitizing Dyes -- 13.7 Heteropolycyclic Photosensitizing Dyes -- 13.8 Pyrylium, Azinium, and Squalene Photosensitizing Dyes -- 13.9 Photosensitizing Dyes Based on Transition Metal (Ru, Ir, Pt) Complex -- 13.10 Conclusions and Perspectives -- References -- 14 Photoenergy Conversion (Dye-Sensitized Solar Cells) -- 14.1 Introduction -- 14.2 Dye Sensitizers for N-TiO2-Based Type-I DSSCs -- 14.2.1 Ruthenium(II) Polypyridyl Complex Dyes -- 14.2.2 Polyene Dyes -- 14.2.3 Coumarin Dyes -- 14.2.4 Thiophene-Based Dyes -- 14.2.5 Hemicyanine Dyes -- 14.2.6 Indoline Dyes -- 14.2.7 Heteropolycyclic Dyes -- 14.2.8 Xanthene Dyes -- 14.2.9 Perylene Dyes -- 14.2.10 Porphyrin Dyes -- 14.2.11 Merocyanine Dyes -- 14.2.12 Squaraine Dyes -- 14.2.13 Cyanine Dyes -- 14.2.14 Phthalocyanine Dyes.
14.2.15 Boron Dipyrromethene (BODIPY) Dyes -- 14.2.16 Phenothiazine and Phenoxazine Dyes -- 14.2.17 Cyclopentadithiophene and Dithienosilole (DTS) Dyes -- 14.2.18 Polymeric Dyes -- 14.2.19 D-π-a Dyes with Pyridine, Pyrazine, and Triazine as Anchoring Group -- 14.2.20 Double-Branched Double-Anchoring Dyes -- 14.2.21 Co-Sensitized DSSC Employing Two Dyes -- 14.3 N-ZnO-Based DSSCs -- 14.3.1 Xanthene Dyes -- 14.3.2 Indoline Dyes -- 14.3.3 Perylene Dyes -- 14.3.4 Heptamethine-Cyanine Dyes -- 14.3.5 Squaraine Dyes -- 14.4 Catechol Dyes for N-TiO2-Based Type-II DSSCs -- 14.5 P-NiO-Based DSSCs -- 14.5.1 Triphenylamine Dyes -- 14.5.2 Fluorene Dyes -- 14.5.3 Diketopyrrolopyrrole Dyes -- 14.5.4 Squaraine Dyes -- 14.5.5 Perylene Monoimide Dyes -- 14.6 Summary -- References -- 15 π-Conjugated Polymers Incorporating Naphthalene-Based Nitrogen-Containing Heteroaromatics for Organic Photovoltaics -- 15.1 Introduction -- 15.2 Synthesis of Naphthalene-Based Nitrogen-Containing Heteroaromatic Rings -- 15.3 π-Conjugated Polymers Incorporating Naphthalene-Based Nitrogen-Containing Heteroaromatic Rings -- 15.3.1 NTz-Based Polymers -- 15.3.2 NOz-Based Polymers -- 15.3.3 TZNT-Based Polymers -- 15.3.4 NPz-Based Polymers -- 15.3.5 NOT-Based Polymer -- 15.4 Summary -- References -- 16 Luminescent Materials for Organic Light-Emitting Diodes -- 16.1 Introduction -- 16.2 Fluorescent Materials: First-Generation Emitters -- 16.2.1 Fluorescent Emitters Based on Low-Mass Molecular Systems -- 16.2.2 Fluorescent Conjugated Polymers and Dendrimers -- 16.3 Phosphorescent Materials: Second-Generation Emitters -- 16.3.1 Phosphorescent Emitters Based on Organoiridium(III) Complexes -- 16.3.2 Phosphorescent Emitters Based on Organoplatinum(II) Complexes -- 16.4 TADF Materials: Third Generation Emitters -- 16.4.1 Advantage of TADF Emitters in OLED Applications.
16.4.2 TADF Emitters Based on Donor-Acceptor Structures.
Record Nr. UNINA-9910484513903321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Trends and contemporary technologies for photocatalytic degradation of dyes / / edited by Sushma Dave and Jayashankar Das
Trends and contemporary technologies for photocatalytic degradation of dyes / / edited by Sushma Dave and Jayashankar Das
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (287 pages)
Disciplina 667.2
Collana Environmental Science and Engineering
Soggetto topico Dyes and dyeing - Chemistry
Photocatalysis
ISBN 3-031-08991-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Dyes and Pigments: Interventions and How Safe and Sustainable Are Colors of Life!!! -- 1.1 Introduction -- 1.1.1 Ancient History of Uses of Dyes -- 1.2 Classification of Dyes -- 1.2.1 Natural Dyes -- 1.2.2 Synthetic Dye -- 1.2.3 Pigments -- 1.3 Application of Dyes -- 1.3.1 In Textile Sector -- 1.3.2 In Food Industry or Food Supply Chain -- 1.3.3 In Packaging and allied Sectors -- 1.3.4 In Cosmetic Sector -- 1.4 Toxic Implications Production and Discharge to Effluents -- 1.5 Guidelines -- 1.5.1 Market Scenario and Growth of Dyes and Pigments -- 1.5.2 New Designing of Dyes Using Computed Programming for Functional Applications -- 1.5.3 Bacterial Pigments with Reduced or Minimal Toxicity Implications -- 1.6 Future Prospects -- 1.7 Conclusion -- References -- 2 Recent Advances in Photocatalytic Degradation of Dyes Using Heterogeneous Catalysts -- 2.1 Introduction -- 2.2 Classification of Dyes -- 2.3 Impact of Textile Dyes on the Environment -- 2.4 Principle of Photocatalysis and Mechanistic Pathways -- 2.4.1 Photocatalysts -- 2.4.2 Basic Principle of Photocatalysis -- 2.5 Effect of Key Operational Parameters -- 2.5.1 Effect of pH -- 2.5.2 Effect of the Dose of Semiconductor -- 2.5.3 Effect of the Initial Concentration of Dye -- 2.5.4 Effect of Additives -- 2.5.5 Effect of Temperature -- 2.5.6 Effect of Light Intensity and Wavelength -- 2.5.7 Effect of Irradiation Time -- 2.6 Degradation Studies of Dyes -- 2.6.1 General Considerations -- 2.6.2 Photocatalytic Degradation Scheme for an Azo Dye -- 2.6.3 Effect of Substituents -- 2.6.4 Comparison of Cationic and Anionic Dye -- 2.6.5 Correlation of Dye Degradation with Its Type -- 2.6.6 Effect of Doping and Mixed Semiconductors -- 2.7 Types of Heterogeneous Photocatalysts -- 2.7.1 TiO2 Catalyst -- 2.7.2 ZnO Catalyst -- 2.7.3 Other Photocatalysts.
2.8 Application of Heterogeneous Photocatalysis -- 2.8.1 Self-Cleaning -- 2.8.2 Air Cleaning -- 2.8.3 Application for Water and Wastewater Treatment -- 2.8.4 Removal of Trace Metals -- 2.8.5 Removal of Inorganic Compounds -- 2.8.6 Applications in Photodynamic Therapy -- 2.9 Conclusion and Outlook -- References -- 3 Recent Developments in Photocatalytic Techniques of Dye Degradation in Effluents -- 3.1 Introduction -- 3.2 Literature -- 3.3 Photocatalytic Dye Degradation Chemical Phenomena in Core-Shell -- 3.4 Optimization of Variables in Photocatalysis of Dye Degradation -- 3.4.1 pH Variable Effect on the Dye's Degradation Chemical Phenomena -- 3.4.2 Issues Still to Be Handled with New Trends -- 3.5 Summary -- References -- 4 Role of Doped Semiconductors in the Catalytic Activity -- 4.1 Introduction -- 4.2 Photocatalytic Mechanism and Influencing Factor -- 4.2.1 Reaction Mechanism -- 4.3 Metal-Doped Semiconductor -- 4.3.1 Silver and Gold Doped Semiconductor -- 4.3.2 Silver Doped Semiconductor -- 4.3.3 Palladium Doped Semiconductor -- 4.3.4 Ag-Doped TiO2 -- 4.3.5 Au-TiO2 -- 4.4 Conclusion -- References -- 5 Hybrid Treatment Technologies for Dye Degradation in Wastewater -- 5.1 Introduction -- 5.2 Advanced Treatment Technologies -- 5.2.1 Fenton-Type Processes -- 5.2.2 Irradiation Based Processes -- 5.2.3 Ozone Based Processes -- 5.2.4 Other AOPs -- 5.3 Limitations of AOPs -- 5.4 Emerging Hybrid Treatment Technologies -- 5.4.1 Photochemical Processes Coupled with Electrochemical Processes -- 5.4.2 Photochemical Processes Coupled with Sonolytic Processes -- 5.5 Conclusions and Future Prospects -- References -- 6 Aerogel Nanomaterials for Dye Degradation -- 6.1 Introduction -- 6.1.1 Aerogel-Overview -- 6.2 Classification, Properties and Applications -- 6.2.1 Synthesis of Aerogel Materials -- 6.2.2 Dye Degradation using Aerogel Materials -- 6.3 Conclusion.
References -- 7 Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stained Wastewater -- 7.1 Introduction -- 7.2 Classification of Dyes -- 7.3 Photocatalysis -- 7.3.1 The Process of Photocatalysis -- 7.3.2 Direct Mechanism for Dye Degradation -- 7.3.3 The Mechanism of Indirect Degradation of Dye -- 7.4 Factors Affecting Photocatalytic Performances -- 7.4.1 pH -- 7.4.2 Light Intensity -- 7.4.3 Feed Flow Rate -- 7.5 Concentration of Reactants -- 7.5.1 Number of Catalysts Loading Layers on Substrate -- 7.6 Temperature During Catalyst Immobilisation -- 7.6.1 Ions Species -- 7.7 Photocatalysis of Wastewater -- 7.8 Dye Removal From Wastewater May Be Accomplished Using a Variety of Methods -- 7.8.1 Adsorption Technique -- 7.8.2 Advanced Oxidation Process (AOP) -- 7.8.3 Bioremediation and Biodegradation -- 7.8.4 Electrochemical Method -- 7.8.5 Ion-Exchange Method -- 7.8.6 Membrane Filtration Technique -- 7.9 Modulation of Photocatalysis of Wastewater by Dyes -- 7.9.1 Methyl Orange -- 7.9.2 Indigo Carmine -- 7.9.3 Malachite Green -- 7.9.4 Rhodamine B -- 7.9.5 Methylene Blue -- 7.10 Conclusion -- References -- 8 Optimizing Nanocatalyst's and Technological Factors Influencing on Photocatalytic Degradation of Organic and Inorganic Pollutants -- 8.1 Introduction -- 8.2 Significance of Photocatalysis in Water Treatment -- 8.3 Mechanism of Nanoparticles (Photocatalyst) Involved in Photocatalysis of Wastewater Pollutants -- 8.4 Factors Influencing on the Photocatalysis Mechanism -- 8.5 Conclusion -- References -- 9 Biological Synthesis of Metallic Nanoparticles and Their Application in Photocatalysis -- 9.1 Introduction -- 9.2 Preparation of Metallic Nanoparticles -- 9.2.1 Physical Methods -- 9.2.2 Chemical Methods -- 9.2.3 Biological Methods -- 9.3 Biological Synthesis -- 9.3.1 Plant Components in Metallic Nanoparticles Synthesis.
9.3.2 Microbial Components in Metal Oxide Nanoparticle Synthesis -- 9.3.3 Animal Components in Metal Oxide Nanoparticle Synthesis -- 9.4 Mechanism of Biological Synthesis of Metallic Nanoparticles Using Plant Extract -- 9.5 Advantages and Disadvantages of Biological Synthesis of Metallic Nanoparticles -- 9.6 Photocatalysis -- 9.6.1 Mechanism of Photocatalysis -- 9.6.2 Factors Affecting Photocatalysis Process -- 9.6.3 Role of Photocatalytic Process Against Different Wastewater Pollutants -- 9.7 Photocatalysts -- 9.7.1 Selection of Nanomaterials as Photocatalysts -- 9.7.2 Metal Oxide Nanoparticles Photocatalysts -- 9.7.3 Nanocomposites and Other Photocatalysts -- 9.8 Future Scope and Conclusion -- References -- 10 Mechanistic Aspect of the Dye Degradation Using Photocatalysts -- 10.1 Introduction -- 10.2 Classification of Dyes -- 10.3 Dye-Related Toxicity -- 10.4 Techniques for Investigating Dye Degradation -- 10.5 Strategies for Dealing with Dye -- 10.5.1 Physical Mechanistic Procedures -- 10.5.2 Chemical Approaches -- 10.5.3 Biological Remediation -- 10.6 The Fundamentals of Photocatalysis -- 10.6.1 Photocatalytic Routes and Their Mechanism -- 10.6.2 Photocatalyst -- 10.6.3 Parameters Affecting Photocatalytic Degradation -- 10.6.4 Intermediary Product Detection -- 10.7 Conclusion -- References.
Record Nr. UNINA-9910616397903321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui