top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
MEMBRANE separation processes / edited by Patrick Meares.
MEMBRANE separation processes / edited by Patrick Meares.
Pubbl/distr/stampa Amsterdam : Elsevier scientific publishing, 1976
Descrizione fisica VI, 600 p. : ill. ; 25 cm
Disciplina 660.281
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNINA-990000035380403321
Amsterdam : Elsevier scientific publishing, 1976
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro instrumentation [[electronic resource] ] : for high throughput experimentation and process intensification - a tool for PAT / / edited by Melvin V. Koch, Kurt M. Vandenbussche, and Ray W. Chrisman
Micro instrumentation [[electronic resource] ] : for high throughput experimentation and process intensification - a tool for PAT / / edited by Melvin V. Koch, Kurt M. Vandenbussche, and Ray W. Chrisman
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (523 p.)
Disciplina 660.281
Altri autori (Persone) KochMelvin V
VandenbusscheKurt M
ChrismanRay W
Soggetto topico Chemical engineering - Equipment and supplies
Chemical processes
Soggetto genere / forma Electronic books.
ISBN 1-280-92157-9
9786610921577
3-527-61062-6
3-527-61061-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Micro Instrumentation; Contents; Preface; List of Contributors; Part I Introducing the Concepts; 1 Introduction; 1.1 Background; 1.2 Analytical Tools for use in PAT; 1.3 The Center for Process Analytical Chemistry (CPAC) and the Summer Institute; 1.4 Topics covered by Previous CPAC Summer Institutes; 1.5 Recent Emphasis of CPAC Summer Institutes: High Throughput Experimentation and Process Intensification; 1.6 Conclusion; References; 2 Macro to Micro ... The Evolution of Process Analytical Systems; 2.1 Introduction; 2.1.2 Early Developments; 2.1.3 Developments since 1980; 2.1.4 Sampling Systems
2.1.4.1 Filtration2.1.4.2 The Fast Loop-Analytical Loop Strategy; 2.1.4.3 NeSSI; 2.1.5 General Reviews; 2.2 Chromatography; 2.2.1 Gas Chromatography; 2.2.2 Liquid Chromatography; 2.2.3 On-line Spectroscopy; 2.2.4 On-line Mass Spectrometry; 2.2.5 Microflow Techniques; References; 3 Process Intensification; 3.1 Introduction, Scope and Definitions; 3.2 Process Intensification in the Field of Reaction Engineering; 3.3 Process Intensification through Micro-structured Unit Operations; 3.3.1 Gas Phase Mass Transfer; 3.3.2 Liquid-Liquid Mass Transfer: Mixing and Emulsions
3.3.3 Gas-Liquid Mass Transfer3.3.4 Mass Transfer in Gas-Solid Systems; 3.3.5 Heat Transfer; 3.4 Case Studies; 3.4.1 Distributed Production of Methanol; 3.4.2 Distributed Production of Hydrogen; 3.5 Conclusions; References; 4 High Throughput Research; 4.1 Introduction; 4.2 Description of Terms; 4.3 Concept of a Research Process; 4.4 High Throughput Analytical; 4.5 Extracting Information from the Process; 4.6 Process Development becomes the Next Bottleneck; 4.7 Use of High Throughput Concepts for Process Development; 4.8 Microreactors for Process Development
4.9 Current Barriers and Limitations to Microscale Reaction Characterization4.10 Conclusion; References; Part II Technology Developments and Case Studies; 5 Introduction; 6 Microreactor Concepts and Processing; 6.1 Introduction; 6.2 Microreactor Technology - Interfacing and Discipline Cross-boundary Research; 6.3 Microstructured Mixer-reactors for Pilot and Production Range and Scale-out Issues; 6.3.1 Caterpillar Microstructured Mixer-reactors; 6.3.2 StarLam Microstructured Mixer-reactors; 6.3.3 Microstructured Heat Exchanger-reactors; 6.4 Fine-chemical Microreactor Plants
6.4.1 Laboratory-range Plants6.4.2 Pilot-range Plants; 6.5 Industrial Microreactor Process Development for Fine and Functional Chemistry; 6.5.1 Phenyl Boronic Acid Synthesis (Scheme 6.1) (Clariant/Frankfurt + IMM); 6.5.1.1 Process Development Issue; 6.5.1.2 Microreactor Plant and Processing Solution; 6.5.2 Azo Pigment Yellow 12 Manufacture (Scheme 6.2) (Trust Chem/Hangzhou + IMM); 6.5.2.1 Process Development Issue; 6.5.2.2 Microreactor Plant and Processing Solution; 6.5.3 Hydrogen Peroxide Synthesis (UOP/Chicago + IMM); 6.5.3.1 Process Development Issues
6.5.3.2 Microreactor Plant and Processing Solution
Record Nr. UNINA-9910144003303321
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro instrumentation [[electronic resource] ] : for high throughput experimentation and process intensification - a tool for PAT / / edited by Melvin V. Koch, Kurt M. Vandenbussche, and Ray W. Chrisman
Micro instrumentation [[electronic resource] ] : for high throughput experimentation and process intensification - a tool for PAT / / edited by Melvin V. Koch, Kurt M. Vandenbussche, and Ray W. Chrisman
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (523 p.)
Disciplina 660.281
Altri autori (Persone) KochMelvin V
VandenbusscheKurt M
ChrismanRay W
Soggetto topico Chemical engineering - Equipment and supplies
Chemical processes
ISBN 1-280-92157-9
9786610921577
3-527-61062-6
3-527-61061-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Micro Instrumentation; Contents; Preface; List of Contributors; Part I Introducing the Concepts; 1 Introduction; 1.1 Background; 1.2 Analytical Tools for use in PAT; 1.3 The Center for Process Analytical Chemistry (CPAC) and the Summer Institute; 1.4 Topics covered by Previous CPAC Summer Institutes; 1.5 Recent Emphasis of CPAC Summer Institutes: High Throughput Experimentation and Process Intensification; 1.6 Conclusion; References; 2 Macro to Micro ... The Evolution of Process Analytical Systems; 2.1 Introduction; 2.1.2 Early Developments; 2.1.3 Developments since 1980; 2.1.4 Sampling Systems
2.1.4.1 Filtration2.1.4.2 The Fast Loop-Analytical Loop Strategy; 2.1.4.3 NeSSI; 2.1.5 General Reviews; 2.2 Chromatography; 2.2.1 Gas Chromatography; 2.2.2 Liquid Chromatography; 2.2.3 On-line Spectroscopy; 2.2.4 On-line Mass Spectrometry; 2.2.5 Microflow Techniques; References; 3 Process Intensification; 3.1 Introduction, Scope and Definitions; 3.2 Process Intensification in the Field of Reaction Engineering; 3.3 Process Intensification through Micro-structured Unit Operations; 3.3.1 Gas Phase Mass Transfer; 3.3.2 Liquid-Liquid Mass Transfer: Mixing and Emulsions
3.3.3 Gas-Liquid Mass Transfer3.3.4 Mass Transfer in Gas-Solid Systems; 3.3.5 Heat Transfer; 3.4 Case Studies; 3.4.1 Distributed Production of Methanol; 3.4.2 Distributed Production of Hydrogen; 3.5 Conclusions; References; 4 High Throughput Research; 4.1 Introduction; 4.2 Description of Terms; 4.3 Concept of a Research Process; 4.4 High Throughput Analytical; 4.5 Extracting Information from the Process; 4.6 Process Development becomes the Next Bottleneck; 4.7 Use of High Throughput Concepts for Process Development; 4.8 Microreactors for Process Development
4.9 Current Barriers and Limitations to Microscale Reaction Characterization4.10 Conclusion; References; Part II Technology Developments and Case Studies; 5 Introduction; 6 Microreactor Concepts and Processing; 6.1 Introduction; 6.2 Microreactor Technology - Interfacing and Discipline Cross-boundary Research; 6.3 Microstructured Mixer-reactors for Pilot and Production Range and Scale-out Issues; 6.3.1 Caterpillar Microstructured Mixer-reactors; 6.3.2 StarLam Microstructured Mixer-reactors; 6.3.3 Microstructured Heat Exchanger-reactors; 6.4 Fine-chemical Microreactor Plants
6.4.1 Laboratory-range Plants6.4.2 Pilot-range Plants; 6.5 Industrial Microreactor Process Development for Fine and Functional Chemistry; 6.5.1 Phenyl Boronic Acid Synthesis (Scheme 6.1) (Clariant/Frankfurt + IMM); 6.5.1.1 Process Development Issue; 6.5.1.2 Microreactor Plant and Processing Solution; 6.5.2 Azo Pigment Yellow 12 Manufacture (Scheme 6.2) (Trust Chem/Hangzhou + IMM); 6.5.2.1 Process Development Issue; 6.5.2.2 Microreactor Plant and Processing Solution; 6.5.3 Hydrogen Peroxide Synthesis (UOP/Chicago + IMM); 6.5.3.1 Process Development Issues
6.5.3.2 Microreactor Plant and Processing Solution
Record Nr. UNINA-9910830529303321
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro instrumentation [[electronic resource] ] : for high throughput experimentation and process intensification - a tool for PAT / / edited by Melvin V. Koch, Kurt M. Vandenbussche, and Ray W. Chrisman
Micro instrumentation [[electronic resource] ] : for high throughput experimentation and process intensification - a tool for PAT / / edited by Melvin V. Koch, Kurt M. Vandenbussche, and Ray W. Chrisman
Pubbl/distr/stampa Weinheim, : Wiley-VCH
Descrizione fisica 1 online resource (523 p.)
Disciplina 660.281
Altri autori (Persone) KochMelvin V
VandenbusscheKurt M
ChrismanRay W
Soggetto topico Chemical engineering - Equipment and supplies
Chemical processes
ISBN 1-280-92157-9
9786610921577
3-527-61062-6
3-527-61061-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Micro Instrumentation; Contents; Preface; List of Contributors; Part I Introducing the Concepts; 1 Introduction; 1.1 Background; 1.2 Analytical Tools for use in PAT; 1.3 The Center for Process Analytical Chemistry (CPAC) and the Summer Institute; 1.4 Topics covered by Previous CPAC Summer Institutes; 1.5 Recent Emphasis of CPAC Summer Institutes: High Throughput Experimentation and Process Intensification; 1.6 Conclusion; References; 2 Macro to Micro ... The Evolution of Process Analytical Systems; 2.1 Introduction; 2.1.2 Early Developments; 2.1.3 Developments since 1980; 2.1.4 Sampling Systems
2.1.4.1 Filtration2.1.4.2 The Fast Loop-Analytical Loop Strategy; 2.1.4.3 NeSSI; 2.1.5 General Reviews; 2.2 Chromatography; 2.2.1 Gas Chromatography; 2.2.2 Liquid Chromatography; 2.2.3 On-line Spectroscopy; 2.2.4 On-line Mass Spectrometry; 2.2.5 Microflow Techniques; References; 3 Process Intensification; 3.1 Introduction, Scope and Definitions; 3.2 Process Intensification in the Field of Reaction Engineering; 3.3 Process Intensification through Micro-structured Unit Operations; 3.3.1 Gas Phase Mass Transfer; 3.3.2 Liquid-Liquid Mass Transfer: Mixing and Emulsions
3.3.3 Gas-Liquid Mass Transfer3.3.4 Mass Transfer in Gas-Solid Systems; 3.3.5 Heat Transfer; 3.4 Case Studies; 3.4.1 Distributed Production of Methanol; 3.4.2 Distributed Production of Hydrogen; 3.5 Conclusions; References; 4 High Throughput Research; 4.1 Introduction; 4.2 Description of Terms; 4.3 Concept of a Research Process; 4.4 High Throughput Analytical; 4.5 Extracting Information from the Process; 4.6 Process Development becomes the Next Bottleneck; 4.7 Use of High Throughput Concepts for Process Development; 4.8 Microreactors for Process Development
4.9 Current Barriers and Limitations to Microscale Reaction Characterization4.10 Conclusion; References; Part II Technology Developments and Case Studies; 5 Introduction; 6 Microreactor Concepts and Processing; 6.1 Introduction; 6.2 Microreactor Technology - Interfacing and Discipline Cross-boundary Research; 6.3 Microstructured Mixer-reactors for Pilot and Production Range and Scale-out Issues; 6.3.1 Caterpillar Microstructured Mixer-reactors; 6.3.2 StarLam Microstructured Mixer-reactors; 6.3.3 Microstructured Heat Exchanger-reactors; 6.4 Fine-chemical Microreactor Plants
6.4.1 Laboratory-range Plants6.4.2 Pilot-range Plants; 6.5 Industrial Microreactor Process Development for Fine and Functional Chemistry; 6.5.1 Phenyl Boronic Acid Synthesis (Scheme 6.1) (Clariant/Frankfurt + IMM); 6.5.1.1 Process Development Issue; 6.5.1.2 Microreactor Plant and Processing Solution; 6.5.2 Azo Pigment Yellow 12 Manufacture (Scheme 6.2) (Trust Chem/Hangzhou + IMM); 6.5.2.1 Process Development Issue; 6.5.2.2 Microreactor Plant and Processing Solution; 6.5.3 Hydrogen Peroxide Synthesis (UOP/Chicago + IMM); 6.5.3.1 Process Development Issues
6.5.3.2 Microreactor Plant and Processing Solution
Record Nr. UNINA-9910840839703321
Weinheim, : Wiley-VCH
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mini- and microcomputer control in industrial processes : handbook of systems and application strategies / M. Robert Skrokov
Mini- and microcomputer control in industrial processes : handbook of systems and application strategies / M. Robert Skrokov
Autore Skrokov, M. Robert
Pubbl/distr/stampa New York : Van Nostrand, c1980
Descrizione fisica 291 p. : ill. ; 25 cm
Disciplina 660.281
Soggetto non controllato Controllo dei processi - Elaborazione dei dati
Microcomputer
ISBN 0-442-27643-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990000450110403321
Skrokov, M. Robert
New York : Van Nostrand, c1980
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical-based detectors / edited by Avraham Rasooly and Keith E. Herold
Optical-based detectors / edited by Avraham Rasooly and Keith E. Herold
Pubbl/distr/stampa New York [etc.] : Humana Press, 2009
Descrizione fisica XVIII, 452 p. : ill. ; 27 cm
Disciplina 660.281
Collana Methods in molecular biology
Springer Protocols
Soggetto topico Rivelatori - Biotecnologie
ISBN 978-1-60327-566-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990003379020203316
New York [etc.] : Humana Press, 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pinch analysis and process integration [[electronic resource] ] : a user guide on process integration for the efficient use of energy / / by Ian Kemp
Pinch analysis and process integration [[electronic resource] ] : a user guide on process integration for the efficient use of energy / / by Ian Kemp
Autore Kemp Ian C
Edizione [2nd ed.]
Pubbl/distr/stampa Oxford, : Butterworth-Heinemann, 2007
Descrizione fisica 1 online resource (415 p.)
Disciplina 660.281
Soggetto topico Chemical plants - Energy conservation
Chemical processes
Chemical process control
Soggetto genere / forma Electronic books.
ISBN 1-280-74752-8
9786610747528
0-08-046826-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Pinch Analysis and Process Integration; Copyright page; Contents; Foreword; Foreword to the first edition; Preface; Acknowledgements; Figure acknowledgements; Chapter 1: Introduction; 1.1 What is pinch analysis?; 1.2 History and industrial experience; 1.3 Why does pinch analysis work?; 1.4 The concept of process synthesis; 1.5 The role of thermodynamics in process design; 1.5.1 How can we apply thermodynamics practically?; 1.5.2 Capital and energy costs; 1.6 Learning and applying the techniques; Chapter 2: Key concepts of pinch analysis; 2.1 Heat recovery and heat exchange
2.1.1 Basic concepts of heat exchange 2.1.2 The temperature-enthalpy diagram; 2.1.3 Composite curves; 2.1.4 A targeting procedure: the ""Problem Table""; 2.1.5 The grand composite curve and shifted composite curves; 2.2 The pinch and its significance; 2.3 Heat exchanger network design; 2.3.1 Network grid representation; 2.3.2 A ""commonsense"" network design; 2.3.3 Design for maximum energy recovery; 2.3.4 A word about design strategy; 2.4 Choosing ΔT[sub(min)]: supertargeting; 2.4.1 Further implications of the choice of ΔT[sub(min)]; 2.5 Methodology of pinch analysis
2.5.1 The range of pinch analysis techniques 2.5.2 How to do a pinch study; Exercise; Chapter 3: Data extraction and energy targeting; 3.1 Data extraction; 3.1.1 Heat and mass balance; 3.1.2 Stream data extraction; 3.1.3 Calculating heat loads and heat capacities; 3.1.4 Choosing streams; 3.1.5 Mixing; 3.1.6 Heat losses; 3.1.7 Summary guidelines; 3.2 Case study: organics distillation plant; 3.2.1 Process description; 3.2.2 Heat and mass balance; 3.2.3 Stream data extraction; 3.2.4 Cost data; 3.3 Energy targeting; 3.3.1 ΔT[sub(min)] contributions for individual streams; 3.3.2 Threshold problems
3.4 Multiple utilities 3.4.1 Types of utility; 3.4.2 The Appropriate Placement principle; 3.4.3 Constant-temperature utilities; 3.4.4 Utility pinches; 3.4.5 Variable-temperature utilities; 3.4.6 Balanced composite and grand composite curves; 3.4.7 Choice of multiple utility levels; 3.5 More advanced energy targeting; 3.5.1 Zonal targeting; 3.5.2 Pressure drop targeting; 3.6 Targeting heat exchange units, area and shells; 3.6.1 Targeting for number of units; 3.6.2 Targeting for the minimum number of units; 3.6.3 Area targeting; 3.6.4 Deviations from pure countercurrent flow
3.6.5 Number of shells targeting 3.6.6 Performance of existing systems; 3.6.7 Topology traps; 3.7 Supertargeting: cost targeting for optimal ΔT[sub(min)]; 3.7.1 Trade-offs in choosing ΔT[sub(min)]; 3.7.2 Illustration for two-stream example; 3.7.3 Factors affecting the optimal ΔT[sub(min)]; 3.7.4 Approximate estimation of ideal ΔT[sub(min)]; 3.8 Targeting for organics distillation plant case study; 3.8.1 Energy targeting; 3.8.2 Area targeting; 3.8.3 Cost targeting; 3.8.4 Zonal targeting; 3.8.5 Targeting with utility streams included
3.9 Appendix: Algorithms for Problem Table and composite curves
Record Nr. UNINA-9910457691603321
Kemp Ian C  
Oxford, : Butterworth-Heinemann, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pinch analysis and process integration [[electronic resource] ] : a user guide on process integration for the efficient use of energy / / by Ian Kemp
Pinch analysis and process integration [[electronic resource] ] : a user guide on process integration for the efficient use of energy / / by Ian Kemp
Autore Kemp Ian C
Edizione [2nd ed.]
Pubbl/distr/stampa Oxford, : Butterworth-Heinemann, 2007
Descrizione fisica 1 online resource (415 p.)
Disciplina 660.281
Soggetto topico Chemical plants - Energy conservation
Chemical processes
Chemical process control
ISBN 1-280-74752-8
9786610747528
0-08-046826-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Pinch Analysis and Process Integration; Copyright page; Contents; Foreword; Foreword to the first edition; Preface; Acknowledgements; Figure acknowledgements; Chapter 1: Introduction; 1.1 What is pinch analysis?; 1.2 History and industrial experience; 1.3 Why does pinch analysis work?; 1.4 The concept of process synthesis; 1.5 The role of thermodynamics in process design; 1.5.1 How can we apply thermodynamics practically?; 1.5.2 Capital and energy costs; 1.6 Learning and applying the techniques; Chapter 2: Key concepts of pinch analysis; 2.1 Heat recovery and heat exchange
2.1.1 Basic concepts of heat exchange 2.1.2 The temperature-enthalpy diagram; 2.1.3 Composite curves; 2.1.4 A targeting procedure: the ""Problem Table""; 2.1.5 The grand composite curve and shifted composite curves; 2.2 The pinch and its significance; 2.3 Heat exchanger network design; 2.3.1 Network grid representation; 2.3.2 A ""commonsense"" network design; 2.3.3 Design for maximum energy recovery; 2.3.4 A word about design strategy; 2.4 Choosing ΔT[sub(min)]: supertargeting; 2.4.1 Further implications of the choice of ΔT[sub(min)]; 2.5 Methodology of pinch analysis
2.5.1 The range of pinch analysis techniques 2.5.2 How to do a pinch study; Exercise; Chapter 3: Data extraction and energy targeting; 3.1 Data extraction; 3.1.1 Heat and mass balance; 3.1.2 Stream data extraction; 3.1.3 Calculating heat loads and heat capacities; 3.1.4 Choosing streams; 3.1.5 Mixing; 3.1.6 Heat losses; 3.1.7 Summary guidelines; 3.2 Case study: organics distillation plant; 3.2.1 Process description; 3.2.2 Heat and mass balance; 3.2.3 Stream data extraction; 3.2.4 Cost data; 3.3 Energy targeting; 3.3.1 ΔT[sub(min)] contributions for individual streams; 3.3.2 Threshold problems
3.4 Multiple utilities 3.4.1 Types of utility; 3.4.2 The Appropriate Placement principle; 3.4.3 Constant-temperature utilities; 3.4.4 Utility pinches; 3.4.5 Variable-temperature utilities; 3.4.6 Balanced composite and grand composite curves; 3.4.7 Choice of multiple utility levels; 3.5 More advanced energy targeting; 3.5.1 Zonal targeting; 3.5.2 Pressure drop targeting; 3.6 Targeting heat exchange units, area and shells; 3.6.1 Targeting for number of units; 3.6.2 Targeting for the minimum number of units; 3.6.3 Area targeting; 3.6.4 Deviations from pure countercurrent flow
3.6.5 Number of shells targeting 3.6.6 Performance of existing systems; 3.6.7 Topology traps; 3.7 Supertargeting: cost targeting for optimal ΔT[sub(min)]; 3.7.1 Trade-offs in choosing ΔT[sub(min)]; 3.7.2 Illustration for two-stream example; 3.7.3 Factors affecting the optimal ΔT[sub(min)]; 3.7.4 Approximate estimation of ideal ΔT[sub(min)]; 3.8 Targeting for organics distillation plant case study; 3.8.1 Energy targeting; 3.8.2 Area targeting; 3.8.3 Cost targeting; 3.8.4 Zonal targeting; 3.8.5 Targeting with utility streams included
3.9 Appendix: Algorithms for Problem Table and composite curves
Record Nr. UNINA-9910784349003321
Kemp Ian C  
Oxford, : Butterworth-Heinemann, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pinch analysis and process integration [[electronic resource] ] : a user guide on process integration for the efficient use of energy / / by Ian Kemp
Pinch analysis and process integration [[electronic resource] ] : a user guide on process integration for the efficient use of energy / / by Ian Kemp
Autore Kemp Ian C
Edizione [2nd ed.]
Pubbl/distr/stampa Oxford, : Butterworth-Heinemann, 2007
Descrizione fisica 1 online resource (415 p.)
Disciplina 660.281
Soggetto topico Chemical plants - Energy conservation
Chemical processes
Chemical process control
ISBN 1-280-74752-8
9786610747528
0-08-046826-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Pinch Analysis and Process Integration; Copyright page; Contents; Foreword; Foreword to the first edition; Preface; Acknowledgements; Figure acknowledgements; Chapter 1: Introduction; 1.1 What is pinch analysis?; 1.2 History and industrial experience; 1.3 Why does pinch analysis work?; 1.4 The concept of process synthesis; 1.5 The role of thermodynamics in process design; 1.5.1 How can we apply thermodynamics practically?; 1.5.2 Capital and energy costs; 1.6 Learning and applying the techniques; Chapter 2: Key concepts of pinch analysis; 2.1 Heat recovery and heat exchange
2.1.1 Basic concepts of heat exchange 2.1.2 The temperature-enthalpy diagram; 2.1.3 Composite curves; 2.1.4 A targeting procedure: the ""Problem Table""; 2.1.5 The grand composite curve and shifted composite curves; 2.2 The pinch and its significance; 2.3 Heat exchanger network design; 2.3.1 Network grid representation; 2.3.2 A ""commonsense"" network design; 2.3.3 Design for maximum energy recovery; 2.3.4 A word about design strategy; 2.4 Choosing ΔT[sub(min)]: supertargeting; 2.4.1 Further implications of the choice of ΔT[sub(min)]; 2.5 Methodology of pinch analysis
2.5.1 The range of pinch analysis techniques 2.5.2 How to do a pinch study; Exercise; Chapter 3: Data extraction and energy targeting; 3.1 Data extraction; 3.1.1 Heat and mass balance; 3.1.2 Stream data extraction; 3.1.3 Calculating heat loads and heat capacities; 3.1.4 Choosing streams; 3.1.5 Mixing; 3.1.6 Heat losses; 3.1.7 Summary guidelines; 3.2 Case study: organics distillation plant; 3.2.1 Process description; 3.2.2 Heat and mass balance; 3.2.3 Stream data extraction; 3.2.4 Cost data; 3.3 Energy targeting; 3.3.1 ΔT[sub(min)] contributions for individual streams; 3.3.2 Threshold problems
3.4 Multiple utilities 3.4.1 Types of utility; 3.4.2 The Appropriate Placement principle; 3.4.3 Constant-temperature utilities; 3.4.4 Utility pinches; 3.4.5 Variable-temperature utilities; 3.4.6 Balanced composite and grand composite curves; 3.4.7 Choice of multiple utility levels; 3.5 More advanced energy targeting; 3.5.1 Zonal targeting; 3.5.2 Pressure drop targeting; 3.6 Targeting heat exchange units, area and shells; 3.6.1 Targeting for number of units; 3.6.2 Targeting for the minimum number of units; 3.6.3 Area targeting; 3.6.4 Deviations from pure countercurrent flow
3.6.5 Number of shells targeting 3.6.6 Performance of existing systems; 3.6.7 Topology traps; 3.7 Supertargeting: cost targeting for optimal ΔT[sub(min)]; 3.7.1 Trade-offs in choosing ΔT[sub(min)]; 3.7.2 Illustration for two-stream example; 3.7.3 Factors affecting the optimal ΔT[sub(min)]; 3.7.4 Approximate estimation of ideal ΔT[sub(min)]; 3.8 Targeting for organics distillation plant case study; 3.8.1 Energy targeting; 3.8.2 Area targeting; 3.8.3 Cost targeting; 3.8.4 Zonal targeting; 3.8.5 Targeting with utility streams included
3.9 Appendix: Algorithms for Problem Table and composite curves
Record Nr. UNINA-9910828005303321
Kemp Ian C  
Oxford, : Butterworth-Heinemann, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pipeline design & construction : a practical approach / M. Mohitpour, H. Golshan, A. Murray
Pipeline design & construction : a practical approach / M. Mohitpour, H. Golshan, A. Murray
Autore Mohitpour, Mo
Edizione [3. ed.]
Pubbl/distr/stampa New York : ASME PRESS, 2007
Descrizione fisica XX, 734 p. : ill. ; 27 cm
Disciplina 660.281
Altri autori (Persone) Golshan, Hossein
Murray, Matthew Alan
Soggetto non controllato Impianti chimici - Progettazione
ISBN 0-7918-0257-4
978-0-7918-0257-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNIPARTHENOPE-000018452
Mohitpour, Mo  
New York : ASME PRESS, 2007
Materiale a stampa
Lo trovi qui: Univ. Parthenope
Opac: Controlla la disponibilità qui