top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Oil and Gas Wells / / Sid-Ali Ouadfeul, Leila Aliouane
Oil and Gas Wells / / Sid-Ali Ouadfeul, Leila Aliouane
Autore Ouadfeul Sid-Ali
Pubbl/distr/stampa London : , : IntechOpen, , 2020
Descrizione fisica 1 online resource (116 pages) : illustrations
Disciplina 622.338
Soggetto topico Oil wells
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910688274803321
Ouadfeul Sid-Ali  
London : , : IntechOpen, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physics of fluid flow and transport in unconventional reservoir rocks / / edited by Behzad Ghanbarian, Feng Liang, and Hui-Hai Liu
Physics of fluid flow and transport in unconventional reservoir rocks / / edited by Behzad Ghanbarian, Feng Liang, and Hui-Hai Liu
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (380 pages)
Disciplina 622.338
Soggetto topico Hydrocarbon reservoirs - Analysis
Rocks - Permiability
Petroleum - Migration
Fluid dynamics
ISBN 1-119-72991-2
1-119-72784-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Introduction -- Chapter 1 Unconventional Reservoirs: Advances and Challenges -- 1.1 Background -- 1.2 Advances -- 1.2.1 Wettability -- 1.2.2 Permeability -- 1.3 Challenges -- 1.3.1 Multiscale Systems -- 1.3.2 Hydrocarbon Production -- 1.3.3 Recovery Factor -- 1.3.4 Unproductive Wells -- 1.4 Concluding Remarks -- References -- Part I Pore-Scale Characterizations -- Chapter 2 Pore-Scale Simulations and Digital Rock Physics -- 2.1 Introduction -- 2.2 Physics of Pore-Scale Fluid Flow in Unconventional Rocks -- 2.2.1 Physics of Gas Flow -- 2.2.1.1 Gas Slippage and Knudsen Layer Effect -- 2.2.1.2 Gas Adsorption/Desorption and Surface Diffusion -- 2.2.2 Physics of Water Flow -- 2.2.3 Physics of Condensation -- 2.3 Theory of Pore-Scale Simulation Methods -- 2.3.1 The Isothermal Single-Phase Lattice Boltzmann Method -- 2.3.1.1 Bhatnagar-Gross-Krook (BGK) Collision Operator -- 2.3.1.2 The Multi-Relaxation Time (MRT)-LB Scheme -- 2.3.1.3 The Regularization Procedure -- 2.3.2 Multi-phase Lattice Boltzmann Simulation Method -- 2.3.2.1 Color-Gradient Model -- 2.3.2.2 Shan-Chen Model -- 2.3.3 Capture Fluid Slippage at the Solid Boundary -- 2.3.4 Capture the Knudsen Layer/Effective Viscosity -- 2.3.5 Capture the Adsorption/Desorption and Surface Diffusion Effects -- 2.3.5.1 Modeling of Adsorption in LBM -- 2.3.5.2 Modeling of Surface Diffusion Via LBM -- 2.4 Applications -- 2.4.1 Simulation of Gas Flow in Unconventional Reservoir Rocks -- 2.4.1.1 Gas Slippage -- 2.4.1.2 Gas Adsorption -- 2.4.1.3 Surface Diffusion of Adsorbed Gas -- 2.4.2 Simulation of Water Flow in Unconventional Reservoir Rocks -- 2.4.3 Simulation of Immiscible Two-Phase Flow -- 2.4.4 Simulation of Vapor Condensation -- 2.4.4.1 Model Validations.
2.4.4.2 Vapor Condensation in Two Adjacent Nano-Pores -- 2.5 Conclusion -- References -- Chapter 3 Digital Rock Modeling: A Review -- 3.1 Introduction -- 3.2 Single-Scale Modeling of Digital Rocks -- 3.2.1 Experimental Techniques -- 3.2.1.1 Imaging Technique of Serial Sectioning -- 3.2.1.2 Laser Scanning Confocal Microscopy -- 3.2.1.3 X-Ray Computed Tomography Scanning -- 3.2.2 Computational Methods -- 3.2.2.1 Simulated Annealing -- 3.2.2.2 Markov Chain Monte Carlo -- 3.2.2.3 Sequential Indicator Simulation -- 3.2.2.4 Multiple-Point Statistics -- 3.2.2.5 Machine Learning -- 3.2.2.6 Process-Based Modeling -- 3.3 Multiscale Modeling of Digital Rocks -- 3.3.1 Multiscale Imaging Techniques -- 3.3.2 Computational Methods -- 3.3.2.1 Image Superposition -- 3.3.2.2 Pore-Network Integration -- 3.3.2.3 Image Resolution Enhancement -- 3.3.2.4 Object-Based Reconstruction -- 3.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 4 Scale Dependence of Permeability and Formation Factor: A Simple Scaling Law -- 4.1 Introduction -- 4.2 Theory -- 4.2.1 Funnel Defect Approach -- 4.2.2 Application to Porous Media -- 4.3 Pore-network Simulations -- 4.4 Results and Discussion -- 4.5 Limitations -- 4.6 Conclusion -- Acknowledgment -- References -- Part II Core-Scale Heterogeneity -- Chapter 5 Modeling Gas Permeability in Unconventional Reservoir Rocks -- 5.1 Introduction -- 5.1.1 Theoretical Models -- 5.1.2 Pore-Network Models -- 5.1.3 Gas Transport Mechanisms -- 5.1.4 Objectives -- 5.2 Effective-Medium Theory -- 5.3 Single-Phase Gas Permeability -- 5.3.1 Gas Permeability in a Cylindrical Tube -- 5.3.2 Pore Pressure-Dependent Gas Permeability in Tight Rocks -- 5.3.3 Comparison with Experiments -- 5.3.4 Comparison with Pore-Network Simulations -- 5.3.5 Comparaison with Lattice-Boltzmann Simulations.
5.4 Gas Relative Permeability -- 5.4.1 Hydraulic Flow in a Cylindrical Pore -- 5.4.2 Molecular Flow in a Cylindrical Pore -- 5.4.3 Total Gas Flow in a Cylindrical Pore -- 5.4.4 Gas Relative Permeability in Tight Rocks -- 5.4.5 Comparison with Experiments -- 5.4.6 Comparison with Pore-Network Simulations -- 5.5 Conclusions -- Acknowledgment -- References -- Chapter 6 NMR and Its Applications in Tight Unconventional Reservoir Rocks -- 6.1 Introduction -- 6.2 Basic NMR Physics -- 6.2.1 Nuclear Spin -- 6.2.2 Nuclear Zeeman Splitting and NMR -- 6.2.3 Nuclear Magnetization -- 6.2.4 Bloch „Equations’and NMR Relaxation -- 6.2.5 Simple NMR Experiments: Free Induction Decay and CPMG Echoes -- 6.2.6 NMR Relaxation of a Pure Fluid in a Rock Pore -- 6.2.7 Measured NMR CPMG Echoes in a Formation Rock -- 6.2.8 Inversion -- 6.2.8.1 Regularized Linear Least Squares -- 6.2.8.2 Constrains of the Resulted NMR Spectrum in Inversion -- 6.2.9 Data from NMR Measurement -- 6.3 NMR Logging for Unconventional Source Rock Reservoirs -- 6.3.1 Brief Introduction of Unconventional Source Rocks -- 6.3.2 NMR Measurement of Source Rocks -- 6.3.2.1 NMR Log of a Source Rock Reservoir -- 6.3.3 Pore Size Distribution in a Shale Gas Reservoir -- 6.4 NMR Measurement of Long Whole Core -- 6.4.1 Issues of NMR Instrument for Long Sample -- 6.4.2 HSR-NMR of Long Core -- 6.4.3 Application Example -- 6.5 NMR Measurement on Drill Cuttings -- 6.5.1 Measurement Method -- 6.5.1.1 Preparation of Drill Cuttings -- 6.5.1.2 Measurements -- 6.5.2 Results -- 6.6 Conclusions -- References -- Chapter 7 Tight Rock Permeability Measurement in Laboratory: Some Recent Progress -- 7.1 Introduction -- 7.2 Commonly Used Laboratory Methods -- 7.2.1 Steady-State Flow Method -- 7.2.2 Pressure Pulse-Decay Method -- 7.2.3 Gas Research Institute Method.
7.3 Simultaneous Measurement of Fracture and Matrix Permeabilities from Fractured Core Samples -- 7.3.1 Estimation of Fracture and Matrix Permeability from PPD Data for’Two’Flow’Regimes -- 7.3.2 Mathematical Model -- 7.3.3 Method Validation and Discussion -- 7.4 Direct Measurement of Permeability-Pore Pressure Function -- 7.4.1 Knudsen Diffusion, Slippage Flow, and Effective Gas Permeability -- 7.4.2 Methodology for Directly Measuring Permeability-Pore Pressure Function -- 7.4.3 Experiments -- 7.5 Summary and Conclusions -- References -- Chapter 8 Stress-Dependent Matrix Permeability in Unconventional Reservoir Rocks -- 8.1 Introduction -- 8.2 Sample Descriptions -- 8.3 Permeability Test Program -- 8.4 Permeability Behavior with Confining Stress Cycling -- 8.5 Matrix Permeability Behavior -- 8.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Assessment of Shale Wettability from Spontaneous Imbibition Experiments -- 9.1 Introduction -- 9.2 Spontaneous Imbibition Theory -- 9.3 Samples and Analytical Methods -- 9.3.1 SI Experiments -- 9.3.2 Barnett Shale from United States -- 9.3.3 Silurian Longmaxi Formation and Triassic Yanchang Formation Shales from China -- 9.3.4 Jurassic Ziliujing Formation Shale from China -- 9.4 Results and Discussion -- 9.4.1 Complicated Wettability of Barnett Shale Inferred Qualitatively from SI Experiments -- 9.4.1.1 Wettability of Barnett Shale -- 9.4.1.2 Properties of Barnett Samples and Their Correlation to Wettability -- 9.4.1.3 Low Pore Connectivity to Water of Barnett Samples -- 9.4.2 More Oil-Wet Longmaxi Formation Shale and More Water-Wet Yanchang Formation Shale -- 9.4.2.1 TOC and Mineralogy -- 9.4.2.2 Pore Structure Difference Between Longmaxi and Yanchang Samples -- 9.4.2.3 Water and Oil Imbibition Experiments.
9.4.2.4 Wettability of Longmaxi and Yanchang Shale Samples Deduced from SI Experiments -- 9.4.3 Complicated Wettability of Ziliujing Formation Shale -- 9.4.3.1 TOC and Mineralogy -- 9.4.3.2 Pore Structure -- 9.4.3.3 Water and Oil Imbibition Experiments -- 9.4.3.4 Wettability of Ziliujing Formation Shale Indicated from SI Experiments and its Correlation to Shale Pore Structure and Composition -- 9.4.4 Shale Wettability Evolution Model -- 9.5 Conclusions -- Acknowledgments -- References -- Chapter 10 Permeability Enhancement in Shale Induced by Desorption -- 10.1 Introduction -- 10.1.1 Shale Mineralogical Characteristics -- 10.1.2 Flow Network -- 10.1.2.1 Bedding-Parallel Flow Network -- 10.1.2.2 Bedding-Perpendicular Flow Paths -- 10.2 Adsorption in Shales -- 10.2.1 Langmuir Theory -- 10.2.2 Competing Strains in Permeability Evolution -- 10.2.2.1 Poro-Sorptive Strain -- 10.2.2.2 Thermal-Sorptive Strain -- 10.3 Permeability Models for Sorptive Media -- 10.3.1 Strain Based Models -- 10.4 Competing Processes during Permeability Evolution -- 10.4.1 Resolving Competing Strains -- 10.4.2 Solving for Sorption-Induced Permeability Evolution -- 10.5 Desorption Processes Yielding Permeability Enhancement -- 10.5.1 Pressure Depletion -- 10.5.2 Lowering Partial Pressure -- 10.5.3 Sorptive Gas Injection -- 10.5.4 Desorption with Increased Temperature -- 10.6 Permeability Enhancement Due to Nitrogen Flooding -- 10.7 Discussion -- 10.8 Conclusion -- References -- Chapter 11 Multiscale Experimental Study on Interactions Between Imbibed Stimulation Fluids and Tight Carbonate Source Rocks -- 11.1 Introduction -- 11.2 Fluid Uptake Pathways -- 11.2.1 Experimental Methods -- 11.2.1.1 Materials -- 11.2.1.1.1 Rock Sample -- 11.2.1.2 Experimental Procedure.
11.2.1.2.1 3D Microscale Visualization of Thin-Section Rock Sample in As-Received State.
Record Nr. UNINA-9910830019503321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical reservoir engineering and characterization / / Richard O. Baker, Harvey W. Yarranton, Jerry L. Jensen
Practical reservoir engineering and characterization / / Richard O. Baker, Harvey W. Yarranton, Jerry L. Jensen
Autore Baker Richard O.
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , 2015
Descrizione fisica 1 online resource (535 p.)
Disciplina 622.338
Soggetto topico Hydrocarbon reservoirs
Petroleum engineering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Practical Reservoir Engineering and Characterization; Copyright; Dedications; Contents; Preface; 1 - Introduction; 1.1 Overview of Reservoir Engineering; 1.2 Reservoir Classifications; 1.3 General Workflow for Reservoir Characterization; 1.4 Approach and Purpose of This Book; Part One - Basic Reservoir EngineeringPrinciples; 2 - Rock and Fluid Properties; 2.1 Petroleum Geology; 2.2 Rock Properties; 2.3 Rock-Fluid Interactions; 2.4 Types of Reservoir Fluids; 2.5 Reservoir Fluid Properties; 3 - Basic Reservoir Engineering Calculations; 3.1 Reservoir Volumetrics
3.2 Reservoir Material Balance3.3 Steady-State Flow Through Porous Media; 3.4 Transient Flow Through Porous Media; Part Two - Reservoir Data Analysis; 4 - Pool History; 4.1 Well History; 4.2 Production History; 5 - Fluid Properties (PVT Data); 5.1 Fluid Property Assays and Studies; 5.2 Analysis of a Black Oil Dataset; 5.3 Correlations for Fluid Data; 5.4 Sources of Error and Corrections for Black Oil Fluid Data; 5.5 Properties of Unconventional Fluids; 6 - Pressure and Flow Test Data; 6.1 Pressure Measurements; 6.2 Pressure Transient Tests of Oil Wells
6.3 Preparation of Pool Pressure History6.4 Flow Tests; 6.5 Other Tests-Interference, Pulse, and Tracer Tests; 7 - Conventional Core Analysis-Rock Properties; 7.1 Core Sampling and Errors; 7.2 Conventional Core Data; 7.3 Analyzing Conventional Core Data; 7.4 Rock Compressibility and the Effect of Overburden Pressure; 7.5 Formation Resistivity; 8 - Special Core Analysis-Rock-Fluid Interactions; 8.1 Relative Permeability; 8.2 Measurement of Relative Permeability; 8.3 Analyzing Relative Permeability Data; 8.4 Two-Phase Relative Permeability Correlations
8.5 Three-Phase Relative Permeability Correlations8.6 Guidelines for Determining Endpoints; 8.7 Capillary Pressure; 8.8 Measurement of Capillary Pressure; 8.9 Analyzing Capillary Pressure Data; 9 - Openhole Well Logs-Log Interpretation Basics; 9.1 Openhole Logging; 9.2 Types of Openhole Log; 9.3 Basic Log Interpretation; 9.4 Comparison of Log and Core Porosity; 9.5 Net Pay Cutoffs; Part Three - Reservoir Characterization; Chapter 10 - Reservoir Characterization Methods; 10.1 Data Reconciliation; 10.2 Reservoir Mapping; 10.3 Volumetrics; 10.4 Analysis of Well, Production, and Pressure History
10.5 Material Balance11 - The Practice of Reservoir Characterization; 11.1 Overview of Characterization; 11.2 Characterization Workflow; 11.3 Reservoir Classification; 11.4 Case Studies; References; Index
Record Nr. UNINA-9910788287203321
Baker Richard O.  
Amsterdam, Netherlands : , : Elsevier, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical reservoir engineering and characterization / / Richard O. Baker, Harvey W. Yarranton, Jerry L. Jensen
Practical reservoir engineering and characterization / / Richard O. Baker, Harvey W. Yarranton, Jerry L. Jensen
Autore Baker Richard O.
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , 2015
Descrizione fisica 1 online resource (535 p.)
Disciplina 622.338
Soggetto topico Hydrocarbon reservoirs
Petroleum engineering
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Practical Reservoir Engineering and Characterization; Copyright; Dedications; Contents; Preface; 1 - Introduction; 1.1 Overview of Reservoir Engineering; 1.2 Reservoir Classifications; 1.3 General Workflow for Reservoir Characterization; 1.4 Approach and Purpose of This Book; Part One - Basic Reservoir EngineeringPrinciples; 2 - Rock and Fluid Properties; 2.1 Petroleum Geology; 2.2 Rock Properties; 2.3 Rock-Fluid Interactions; 2.4 Types of Reservoir Fluids; 2.5 Reservoir Fluid Properties; 3 - Basic Reservoir Engineering Calculations; 3.1 Reservoir Volumetrics
3.2 Reservoir Material Balance3.3 Steady-State Flow Through Porous Media; 3.4 Transient Flow Through Porous Media; Part Two - Reservoir Data Analysis; 4 - Pool History; 4.1 Well History; 4.2 Production History; 5 - Fluid Properties (PVT Data); 5.1 Fluid Property Assays and Studies; 5.2 Analysis of a Black Oil Dataset; 5.3 Correlations for Fluid Data; 5.4 Sources of Error and Corrections for Black Oil Fluid Data; 5.5 Properties of Unconventional Fluids; 6 - Pressure and Flow Test Data; 6.1 Pressure Measurements; 6.2 Pressure Transient Tests of Oil Wells
6.3 Preparation of Pool Pressure History6.4 Flow Tests; 6.5 Other Tests-Interference, Pulse, and Tracer Tests; 7 - Conventional Core Analysis-Rock Properties; 7.1 Core Sampling and Errors; 7.2 Conventional Core Data; 7.3 Analyzing Conventional Core Data; 7.4 Rock Compressibility and the Effect of Overburden Pressure; 7.5 Formation Resistivity; 8 - Special Core Analysis-Rock-Fluid Interactions; 8.1 Relative Permeability; 8.2 Measurement of Relative Permeability; 8.3 Analyzing Relative Permeability Data; 8.4 Two-Phase Relative Permeability Correlations
8.5 Three-Phase Relative Permeability Correlations8.6 Guidelines for Determining Endpoints; 8.7 Capillary Pressure; 8.8 Measurement of Capillary Pressure; 8.9 Analyzing Capillary Pressure Data; 9 - Openhole Well Logs-Log Interpretation Basics; 9.1 Openhole Logging; 9.2 Types of Openhole Log; 9.3 Basic Log Interpretation; 9.4 Comparison of Log and Core Porosity; 9.5 Net Pay Cutoffs; Part Three - Reservoir Characterization; Chapter 10 - Reservoir Characterization Methods; 10.1 Data Reconciliation; 10.2 Reservoir Mapping; 10.3 Volumetrics; 10.4 Analysis of Well, Production, and Pressure History
10.5 Material Balance11 - The Practice of Reservoir Characterization; 11.1 Overview of Characterization; 11.2 Characterization Workflow; 11.3 Reservoir Classification; 11.4 Case Studies; References; Index
Record Nr. UNINA-9910818320603321
Baker Richard O.  
Amsterdam, Netherlands : , : Elsevier, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Practical solutions to integrated oil and gas reservoir analysis : geophysical and geological perspectives / / Enwenode Onajite
Practical solutions to integrated oil and gas reservoir analysis : geophysical and geological perspectives / / Enwenode Onajite
Autore Onajite Enwenode
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , 2017
Descrizione fisica 1 online resource (439 pages) : color illustrations
Disciplina 622.338
Soggetto topico Hydrocarbon reservoirs
ISBN 0-12-805460-3
0-12-805464-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Section 1. Basin analysis and qualitative seismic interpretation -- Chapter 1. Basin analysis: overview and uses. Uses of basin analysis; What is a sedimentary basin?; Basin analysis workflow: From large-scale to mini-scale; Large-scale analysis; Medium-scale analysis; Small-scale analysis; Structural movement and migration pathways; Hydrothermal fluid movement ; Small-scale depositional modeling with typing of grains/mineralogy, along with reservoir fluids ; Unconventional Reservoirs; Unconventional and tight gas sands: what we know now ; Shale oil and gas; Oil shale; Tar sands; Tar sands extraction and processing ; Coal-bed methane ; Tight gas sands ; Early shale play production projections and subsequent adjustments ; Geochemistry ; Geomechanics ; Thermal profiles ; Data mining/mathematical modeling on a large scale -- Chapter 2. Overview of qualitative seismic interpretation. Data set needed for seismic interpretation ; Seismic section ; Advantages of seismic data ; Disadvantages of seismic data ; Structural analysis ; Fault interpretation ; Fault picking ; Guide to fault picking ; Fault interpretation in carbonate reservoir ; Seismic horizon mapping ; Seismic horizon interpretation steps ; Gridding ; Fault shadow on seismic section ; Seismic attribute analysis ; Why are seismic attributes important? ; Seismic attribute reflection strength ; The use of interval attributes on an interface property ; Poststack attributes ; Filter applied on coherence cube to reduce noise ; Prestack attributes ; Zero crossing attribute ; Attribute analysis in carbonate reservoir ; Seismic attribute analysis in seismic stratigraphy ; Seismic attribute for unconventional reservoir ; Spectral decomposition ; Starting point of spectral decomposition ; Spectral whitening/blueing ; Attribute for fault detection in thin bedded structure ; How to determine reservoir thickness using seismic attribute ; Seismic attribute as DHI ; Seismic attribute as DHI : carbonate reservoir ; Attribute map ; Colored seismic inversion -- Chapter 3. Subsurface seismic velocity measurement. Check-shot data ; Vertical seismic profile data ; Types of VSP measurements ; Difference between check-shot and VSP data ; How to import VSP section to match your seismic ; How to QC VSP data ; How to determine the static correction for VSP data ; VSPs replacement velocity ; Difference between check-shot and VSP and Depth-time model ; Seismic time-to-depth conversion ; Time-to-depth conversion ; Section 2: Reservoir characterization -- Chapter 4. Quantitative seismic interpretation ; Petrophysical workflow for quantitative seismic interpretation studies ; Synthetic seismogram ; Reasons why we do synthetic seismogram ; Well-to-Seismic Tie; Objectives of Well-to-Seismic Tie ; Uncertainties in well-to-seismic tie ; Stretch/squeeze to improve well synthetics to seismic match ; More technical analysis of question 57 by industry experts ; Knee picking in sonic calibration ; Depth-depth curve synthetic seismogram ; Seismic attributes from synthetic seismic data ; Wavelet extraction /derivation -- Chapter 5. Zero-phasing of seismic data. Phase of seismic data ; How to determine the phase of seismic data ; How to determine the phase of thin reservoir bed -- Chapter 6. AVO analysis and interpretation. Understanding AVO ; AVO attributes ; How to compute AVO attributes (Intercept and gradient) From seismic gather and the data needed ; AVO crossplot and reflection characteristics of sand and shale ; Factors that affect AVO analysis ; AVO classification ; Four classes of gas sands ; Anisotropy AVO modeling and prestack gathers ; Offset balancing ; Shallow gas -- Chapter 7. Gassmann's fluid substitution. Fluid substitution ; Fluid substitution in unconventional (shale oil/gas) ; Reservoirs ; Forward stratigraphy ; Porosity concepts in fluid substitution -- Chapter 8. Seismic inversion. Data needed to do seismic inversion ; Low-frequency model use for seismic inversion ; How to determine the low frequency model ; Simultaneous elastic inversion and extended elastic inversion ; Performing seismic inversion on high-resolution 2D ; Seismic data ; Difference between AVO analysis and seismic inversion ; Colored seismic inversion ; Advantages of colored inversion over trace integration method ; Reduce uncertainties in reservoir predictions using ; Sequence stratigraphy and seismic inversion -- Section 3. Pore pressure prediction. Chapter 9. Pore pressure and pore pressure gradient. Major cause of overpressure ; Relationship between shale anistropy and pore pressure ; Fracture pressure and fracture gradient ; Some methods of pore pressure prediction ; Pore pressure prediction using seismic data and well data ; Pore pressure prediction in deviated well ; Overpresure and wellbore instability ; RT pore pressure analysis ; Density extrapolation in pore pressure prediction ; Compaction trend ; Normal compaction trend in carbonate reservoir ; New theoretical models of pore pressure prediction ; Case applications -- Gulf of Mexico ; Pore pressure prediction in carbonate reservoir ; Pore pressure prediction in an unconventional reservoir ; Case study Bossier and Haynesville shales.
Record Nr. UNINA-9910583014103321
Onajite Enwenode  
Amsterdam, Netherlands : , : Elsevier, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Progressing cavity pumps, downhole pumps and mudmotors / / Lev Nelik, Jim Brennan
Progressing cavity pumps, downhole pumps and mudmotors / / Lev Nelik, Jim Brennan
Autore Nelik Lev
Pubbl/distr/stampa Houston, TX : , : Gulf Publishing Company, , [2005]
Descrizione fisica 1 online resource (244 p.)
Disciplina 622
622.338
622/.338
Altri autori (Persone) BrennanJim
Collana Gulf pump guides Progressing cavity pumps, downhole pumps and mudmotors
Gulf pump guides
Soggetto topico Pumping machinery
Oil well pumps
ISBN 0-12-799971-X
1-59124-889-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Progressing Cavity Pumps, Downhole Pumps, and Mudmotors; Copyright Page; Table of Contents; About the Authors; Preface; Acknowledgments; Nomenclature and Abbreviations; Introduction; Chapter 1. Benefits of Progressing Cavity Pumps; Chapter 2. Three Main Types of Progressing Cavity Machines: PCPs, DHPs, and DHMs; Chapter 3. Operating Principles of Hydraulic Sections (Rotor/Stator Pairs); Chapter 4. Geometry; Cavity/Displacement; Profile Generation; Rotor-to-Stator Fit (Clearance versus Interference); Core Sizing for Stator Production; Performance: Operating Characteristics
How to Obtain Performance Characteristics for a Given Design, versus Designing a Unit for the Specified Desired PerformanceExamples; Multilobe versus Single-Lobe Geometry: More Performance?; Chapter 5.Design-Related Considerations; Key Design Parameters; Important Ratios; Variation of Ratios and Their Effect on Performance and Life; Power Transmission Methods; Chapter 6. Application Guidelines; Abrasion; Temperature; Chemicals; Viscosity; Speed (rpm); Pressure and Flow; Entrained Gas; Dry-Running; Chapter 7. Installation Examples; Installation Case 1: A PC Pump Maintains Foam Concentration
Installation Case 2: A Sludge Pumping ProblemInstallation Case 3: A Food Application- Soya Milk Processing; Installation Case 4: A Sanitary Application at a Bakery; Installation Case 5: Effluent Treatment; Installation Case 6: A Storm Water Runoff Application; Installation Case 7: A Sludge Application; Installation Case 8: A Sludge Treatment Application; Installation Case 9: Reliability Is Key at a Food Processing Plant; Installation Case 10: Sewage Treatment at an Airport; Installation Case 11: Offshore Supply Vessels for Drilling Mud; Installation Case 12: Main Feed Pump Plus Additives
Installation Case 13: Vertical OrientationChapter 8. Troubleshooting; Before You Begin Troubleshooting; Information Gathering; PC Components in Service; Chapter 9. Progressing Cavity Pump Selection and Sizing; Example 1: Pump Sizing; Example 2: Pump Sizing; Metallic Stators; Chapter 10. Progressing Cavity Pump Startups; Pipe and Valves; Foundation, Alignment, and Rotation; Lubrication; Startup Spares; Resources; Last-Minute Startup Thoughts; Rotary Pump Startup Checklist; Chapter 11. Progressing Cavity Pump Overhaul Guide; Conclusion; References; Index
Record Nr. UNISA-996262839703316
Nelik Lev  
Houston, TX : , : Gulf Publishing Company, , [2005]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Progressing cavity pumps, downhole pumps and mudmotors / / Lev Nelik, Jim Brennan
Progressing cavity pumps, downhole pumps and mudmotors / / Lev Nelik, Jim Brennan
Autore Nelik Lev
Pubbl/distr/stampa Houston, TX : , : Gulf Publishing Company, , [2005]
Descrizione fisica 1 online resource (244 p.)
Disciplina 622
622.338
622/.338
Altri autori (Persone) BrennanJim
Collana Gulf pump guides Progressing cavity pumps, downhole pumps and mudmotors
Gulf pump guides
Soggetto topico Pumping machinery
Oil well pumps
ISBN 0-12-799971-X
1-59124-889-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Progressing Cavity Pumps, Downhole Pumps, and Mudmotors; Copyright Page; Table of Contents; About the Authors; Preface; Acknowledgments; Nomenclature and Abbreviations; Introduction; Chapter 1. Benefits of Progressing Cavity Pumps; Chapter 2. Three Main Types of Progressing Cavity Machines: PCPs, DHPs, and DHMs; Chapter 3. Operating Principles of Hydraulic Sections (Rotor/Stator Pairs); Chapter 4. Geometry; Cavity/Displacement; Profile Generation; Rotor-to-Stator Fit (Clearance versus Interference); Core Sizing for Stator Production; Performance: Operating Characteristics
How to Obtain Performance Characteristics for a Given Design, versus Designing a Unit for the Specified Desired PerformanceExamples; Multilobe versus Single-Lobe Geometry: More Performance?; Chapter 5.Design-Related Considerations; Key Design Parameters; Important Ratios; Variation of Ratios and Their Effect on Performance and Life; Power Transmission Methods; Chapter 6. Application Guidelines; Abrasion; Temperature; Chemicals; Viscosity; Speed (rpm); Pressure and Flow; Entrained Gas; Dry-Running; Chapter 7. Installation Examples; Installation Case 1: A PC Pump Maintains Foam Concentration
Installation Case 2: A Sludge Pumping ProblemInstallation Case 3: A Food Application- Soya Milk Processing; Installation Case 4: A Sanitary Application at a Bakery; Installation Case 5: Effluent Treatment; Installation Case 6: A Storm Water Runoff Application; Installation Case 7: A Sludge Application; Installation Case 8: A Sludge Treatment Application; Installation Case 9: Reliability Is Key at a Food Processing Plant; Installation Case 10: Sewage Treatment at an Airport; Installation Case 11: Offshore Supply Vessels for Drilling Mud; Installation Case 12: Main Feed Pump Plus Additives
Installation Case 13: Vertical OrientationChapter 8. Troubleshooting; Before You Begin Troubleshooting; Information Gathering; PC Components in Service; Chapter 9. Progressing Cavity Pump Selection and Sizing; Example 1: Pump Sizing; Example 2: Pump Sizing; Metallic Stators; Chapter 10. Progressing Cavity Pump Startups; Pipe and Valves; Foundation, Alignment, and Rotation; Lubrication; Startup Spares; Resources; Last-Minute Startup Thoughts; Rotary Pump Startup Checklist; Chapter 11. Progressing Cavity Pump Overhaul Guide; Conclusion; References; Index
Record Nr. UNINA-9910678483203321
Nelik Lev  
Houston, TX : , : Gulf Publishing Company, , [2005]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Upstream oil and gas technology
Upstream oil and gas technology
Pubbl/distr/stampa [London] : , : Elsevier Ltd., , [2019]-
Descrizione fisica 1 online resource
Disciplina 622.338
Soggetto topico Petroleum - Geology
Natural gas
Petroleum engineering
Gas engineering
Pétrole - Géologie
Gaz naturel
Technique du pétrole
Gaz, Technologie du
Soggetto genere / forma Periodicals
ISSN 2666-2604
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Upstream oil & gas technology
Record Nr. UNINA-9910383848603321
[London] : , : Elsevier Ltd., , [2019]-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Well productivity handbook : vertical, fractured, horizontal, multilateral, and intelligent wells / / Boyun Guo, Kai Sun, Ali Ghalambor
Well productivity handbook : vertical, fractured, horizontal, multilateral, and intelligent wells / / Boyun Guo, Kai Sun, Ali Ghalambor
Autore Guo Boyun
Pubbl/distr/stampa Houston, Texas : , : Gulf Publishing Company, , 2008
Descrizione fisica 1 online resource (367 p.)
Disciplina 622.338
622/.338
Soggetto topico Oil wells
Gas wells
Oil reservoir engineering
Gas reservoirs
ISBN 0-12-799992-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Well Productivity Handbook: Vertical, Fractured, Horizontal, Multilateral, and Intelligent Wells; Copyright Page; Dedication; Table of Contents; Preface; List of Symbols; List of Figures; List of Tables; Chapter 1. Introduction; 1.1 Wells and Reservoirs; 1.2 Well Productivity; 1.3 About This Book; 1.4 Summary; 1.5 References; 1.6 Problems; Chapter 2. Properties of Petroleum Fluids; 2.1 Introduction; 2.2 Petroleum Fluids; 2.3 Properties of Oil; 2.4 Properties of Natural Gas; 2.5 Properties of Produced Water; 2.6 Summary; 2.7 References; 2.8 Problems
Chapter 3. Properties of Petroleum Reservoirs 3.1 Introduction; 3.2 Lithology; 3.3 Reservoir Porosity; 3.4 Reservoir Total Compressibility; 3.5 Reservoir Permeability; 3.6 Effective Permeability; 3.7 Summary; 3.8 References; 3.9 Problems; Chapter 4. Reservoir Deliverability; 4.1 Introduction; 4.2 Vertical Wells; 4.3 Fractured Wells; 4.4 Horizontal Wells; 4.5 Inflow Performance Relationship (IPR); 4.6 Construction of IPR Curves Using Test Points; 4.7 Composite IPR of Stratified Reservoirs; 4.8 Predicting Future IPR; 4.9 Summary; 4.10 References; 4.11 Problems; Chapter 5. Wellbore Performance
5.1 Introduction 5.2 Single-Phase Liquid Flow; 5.3 Multiphase Flow in Oil Wells; 5.4 Single-Phase Gas Flow; 5.5 Mist Flow in Gas Wells; 5.6 Summary; 5.7 References; 5.8 Problems; Chapter 6. Productivity of Wells with Simple Trajectories; 6.1 Introduction; 6.2 Principles of Well Productivity Analysis; 6.3 Deliverability of Vertical Wells; 6.4 Deliverability of Fractured Wells; 6.5 Deliverability of Horizontal Wells; 6.6 Summary; 6.7 References; 6.8 Problems; Chapter 7. Productivity of Wells with Complex Trajectories; 7.1 Introduction; 7.2 Multi-Fractured Horizontal Wells; 7.3 Multilateral Wells
7.4 Summary 7.5 References; 7.6 Problems; Chapter 8. Productivity of Intelligent Well Systems; 8.1 Introduction; 8.2 IWS Description; 8.3 Performance of Down-Hole Flow Control Valves; 8.4 Well Deliverability; 8.5 Summary; 8.6 References; Appendix A: Unit Conversion Factors; Appendix B: Minimum Performance Properties of API Tubing; Appendix C: Mathematical Model for Obtaining Oil Rate Correction Factor Fo; Appendix D: Mathematical Model for Obtaining Gas Rate Correction Factor Fg; Index
Record Nr. UNISA-996202982603316
Guo Boyun  
Houston, Texas : , : Gulf Publishing Company, , 2008
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Well productivity handbook : vertical, fractured, horizontal, multilateral, and intelligent wells / / Boyun Guo, Kai Sun, Ali Ghalambor
Well productivity handbook : vertical, fractured, horizontal, multilateral, and intelligent wells / / Boyun Guo, Kai Sun, Ali Ghalambor
Autore Guo Boyun
Pubbl/distr/stampa Houston, Texas : , : Gulf Publishing Company, , 2008
Descrizione fisica 1 online resource (367 p.)
Disciplina 622.338
622/.338
Soggetto topico Oil wells
Gas wells
Oil reservoir engineering
Gas reservoirs
ISBN 0-12-799992-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Well Productivity Handbook: Vertical, Fractured, Horizontal, Multilateral, and Intelligent Wells; Copyright Page; Dedication; Table of Contents; Preface; List of Symbols; List of Figures; List of Tables; Chapter 1. Introduction; 1.1 Wells and Reservoirs; 1.2 Well Productivity; 1.3 About This Book; 1.4 Summary; 1.5 References; 1.6 Problems; Chapter 2. Properties of Petroleum Fluids; 2.1 Introduction; 2.2 Petroleum Fluids; 2.3 Properties of Oil; 2.4 Properties of Natural Gas; 2.5 Properties of Produced Water; 2.6 Summary; 2.7 References; 2.8 Problems
Chapter 3. Properties of Petroleum Reservoirs 3.1 Introduction; 3.2 Lithology; 3.3 Reservoir Porosity; 3.4 Reservoir Total Compressibility; 3.5 Reservoir Permeability; 3.6 Effective Permeability; 3.7 Summary; 3.8 References; 3.9 Problems; Chapter 4. Reservoir Deliverability; 4.1 Introduction; 4.2 Vertical Wells; 4.3 Fractured Wells; 4.4 Horizontal Wells; 4.5 Inflow Performance Relationship (IPR); 4.6 Construction of IPR Curves Using Test Points; 4.7 Composite IPR of Stratified Reservoirs; 4.8 Predicting Future IPR; 4.9 Summary; 4.10 References; 4.11 Problems; Chapter 5. Wellbore Performance
5.1 Introduction 5.2 Single-Phase Liquid Flow; 5.3 Multiphase Flow in Oil Wells; 5.4 Single-Phase Gas Flow; 5.5 Mist Flow in Gas Wells; 5.6 Summary; 5.7 References; 5.8 Problems; Chapter 6. Productivity of Wells with Simple Trajectories; 6.1 Introduction; 6.2 Principles of Well Productivity Analysis; 6.3 Deliverability of Vertical Wells; 6.4 Deliverability of Fractured Wells; 6.5 Deliverability of Horizontal Wells; 6.6 Summary; 6.7 References; 6.8 Problems; Chapter 7. Productivity of Wells with Complex Trajectories; 7.1 Introduction; 7.2 Multi-Fractured Horizontal Wells; 7.3 Multilateral Wells
7.4 Summary 7.5 References; 7.6 Problems; Chapter 8. Productivity of Intelligent Well Systems; 8.1 Introduction; 8.2 IWS Description; 8.3 Performance of Down-Hole Flow Control Valves; 8.4 Well Deliverability; 8.5 Summary; 8.6 References; Appendix A: Unit Conversion Factors; Appendix B: Minimum Performance Properties of API Tubing; Appendix C: Mathematical Model for Obtaining Oil Rate Correction Factor Fo; Appendix D: Mathematical Model for Obtaining Gas Rate Correction Factor Fg; Index
Record Nr. UNINA-9910679389603321
Guo Boyun  
Houston, Texas : , : Gulf Publishing Company, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui