top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Methode zur thermischen Modellierung elektrischer Traktionsmaschinen für Hybridfahrzeuganwendungen / / von Holger Hinrich
Methode zur thermischen Modellierung elektrischer Traktionsmaschinen für Hybridfahrzeuganwendungen / / von Holger Hinrich
Autore Hinrich Holger
Pubbl/distr/stampa Göttingen : , : Cuvillier Verlag, , [2019]
Descrizione fisica 1 online resource (257 pages)
Disciplina 621.4028
Soggetto topico Heat storage
ISBN 3-7369-6055-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910793996503321
Hinrich Holger  
Göttingen : , : Cuvillier Verlag, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Methode zur thermischen Modellierung elektrischer Traktionsmaschinen für Hybridfahrzeuganwendungen / / von Holger Hinrich
Methode zur thermischen Modellierung elektrischer Traktionsmaschinen für Hybridfahrzeuganwendungen / / von Holger Hinrich
Autore Hinrich Holger
Pubbl/distr/stampa Göttingen : , : Cuvillier Verlag, , [2019]
Descrizione fisica 1 online resource (257 pages)
Disciplina 621.4028
Soggetto topico Heat storage
ISBN 3-7369-6055-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910828891603321
Hinrich Holger  
Göttingen : , : Cuvillier Verlag, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Phase Change Materials : Technology and Applications / / edited by Manish Rathod
Phase Change Materials : Technology and Applications / / edited by Manish Rathod
Pubbl/distr/stampa London : , : IntechOpen, , 2022
Descrizione fisica 1 online resource (190 pages)
Disciplina 621.4028
Soggetto topico Heat storage
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introductory Chapter: Phase Change Material as Energy Storage Substance -- 2. Technology in Design of Heat Exchangers for Thermal Energy Storage -- 3. Techniques for the Thermal Analysis of PCM -- 4. Review of the Use of the Carbon-Based Phase Change Material Composites in Battery Thermal Management for Electric Vehicles -- 5. Phase Transformation Processes in the Active Material of Lead-acid Batteries -- 6. Application of Semi-Circular Micro-Channel Heat Sink with Phase Change Material for Cooling of Electronic Devices -- 7. The Effect of Laundering on the Physical and Thermal Properties of Phase Change Textile Materials -- 8. Germanium Telluride: A Chalcogenide Phase Change Material with Many Possibilities -- 9. Photo-Induced Displacive Phase Transition in Two-dimensional MoTe2 from First-Principle Calculations.
Altri titoli varianti Phase Change Materials
Record Nr. UNINA-9910647493103321
London : , : IntechOpen, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Phase Change Materials : Technology and Applications / / edited by Manish Rathod
Phase Change Materials : Technology and Applications / / edited by Manish Rathod
Pubbl/distr/stampa London : , : IntechOpen, , 2022
Descrizione fisica 1 online resource (190 pages) : illustrations
Disciplina 621.4028
Soggetto topico Heat storage
Materials - Thermal properties
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introductory Chapter: Phase Change Material as Energy Storage Substance -- 2. Technology in Design of Heat Exchangers for Thermal Energy Storage -- 3. Techniques for the Thermal Analysis of PCM -- 4. Review of the Use of the Carbon-Based Phase Change Material Composites in Battery Thermal Management for Electric Vehicles -- 5. Phase Transformation Processes in the Active Material of Lead-acid Batteries -- 6. Application of Semi-Circular Micro-Channel Heat Sink with Phase Change Material for Cooling of Electronic Devices -- 7. The Effect of Laundering on the Physical and Thermal Properties of Phase Change Textile Materials -- 8. Germanium Telluride: A Chalcogenide Phase Change Material with Many Possibilities -- 9. Photo-Induced Displacive Phase Transition in Two-dimensional MoTe2 from First-Principle Calculations.
Record Nr. UNINA-9910688149703321
London : , : IntechOpen, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Phase Change Materials and Their Applications / / edited by Mohsen Mhadhbi
Phase Change Materials and Their Applications / / edited by Mohsen Mhadhbi
Pubbl/distr/stampa Croatia : , : IntechOpen, , 2018
Descrizione fisica 1 online resource (174 pages) : illustrations
Disciplina 621.4028
Soggetto topico Heat storage
ISBN 1-83881-623-2
1-78923-531-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910317801103321
Croatia : , : IntechOpen, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal energy storage : systems and applications / Ibrahim Dincer, Marc A. Rosen
Thermal energy storage : systems and applications / Ibrahim Dincer, Marc A. Rosen
Autore Dincer, Ibrahim
Pubbl/distr/stampa New York, : John Wiley & Sons, c2002
Descrizione fisica x, 579 p. ; 25 cm.
Disciplina 621.4028
Altri autori (Persone) Rosen, Marc A.
Soggetto topico Calore
ISBN 0471495735
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAS-RML0265768
Dincer, Ibrahim  
New York, : John Wiley & Sons, c2002
Materiale a stampa
Lo trovi qui: Univ. di Cassino
Opac: Controlla la disponibilità qui
Thermal energy storage : systems and applications / / Ibrahim Dincer, Marc A. Rosen
Thermal energy storage : systems and applications / / Ibrahim Dincer, Marc A. Rosen
Autore Dinçer İbrahim <1964->
Edizione [Third edition.]
Pubbl/distr/stampa Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (674 pages)
Disciplina 621.4028
Soggetto topico Heat storage
Soggetto genere / forma Electronic books.
ISBN 1-119-71314-5
1-119-71317-X
1-119-71316-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Basic Introductory Thermal Aspects -- 1.1 Introduction -- 1.2 Systems of Units -- 1.3 Fundamental Properties and Quantities -- 1.3.1 Mass, Time, Length, and Force -- 1.3.2 Pressure -- 1.3.3 Temperature -- 1.3.4 Specific Volume and Density -- 1.3.5 Mass and Volumetric Flow Rates -- 1.4 General Aspects of Thermodynamics -- 1.4.1 Thermodynamic Systems -- 1.4.2 Process -- 1.4.3 Cycle -- 1.4.4 Thermodynamic Property -- 1.4.5 Sensible and Latent Heats -- 1.4.6 Latent Heat of Fusion -- 1.4.7 Vapor -- 1.4.8 Thermodynamic Tables -- 1.4.9 State and Change of State -- 1.4.10 Specific Internal Energy -- 1.4.11 Specific Enthalpy -- 1.4.12 Specific Entropy -- 1.4.13 Pure Substance -- 1.4.14 Ideal Gases -- 1.4.15 Energy Transfer -- 1.4.16 Heat -- 1.4.17 Work -- 1.4.18 The First Law of Thermodynamics -- 1.4.19 The Second Law of Thermodynamics -- 1.4.20 Reversibility and Irreversibility -- 1.4.21 Exergy -- 1.5 General Aspects of Fluid Flow -- 1.5.1 Classification of Fluid Flows -- 1.5.2 Viscosity -- 1.5.3 Equations of Flow -- 1.5.4 Boundary Layer -- 1.6 General Aspects of Heat Transfer -- 1.6.1 Conduction Heat Transfer -- 1.6.2 Convection Heat Transfer -- 1.6.3 Radiation Heat Transfer -- 1.6.4 Thermal Resistance -- 1.6.5 The Composite Wall -- 1.6.6 The Cylinder -- 1.6.7 The Sphere -- 1.6.8 Conduction with Heat Generation -- 1.6.9 Natural Convection -- 1.6.10 Forced Convection -- 1.7 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Chapter 2 Energy Storage Systems -- 2.1 Introduction -- 2.2 Energy Demand -- 2.3 Energy Storage Basics -- 2.4 Energy Storage Methods -- 2.4.1 Mechanical Energy Storage -- 2.4.2 Chemical Energy Storage -- 2.4.3 Electrochemical Energy Storage -- 2.4.4 Biological Storage -- 2.4.5 Magnetic Storage.
2.4.6 Thermal Energy Storage (TES) -- 2.5 Hydrogen for Energy Storage -- 2.5.1 Storage Characteristics of Hydrogen -- 2.5.2 Hydrogen Storage Technologies -- 2.5.3 Hydrogen Production -- 2.6 Comparison of ES Technologies -- 2.7 Energy Storage and Environmental Impact -- 2.7.1 Energy and Environment -- 2.7.2 Major Environmental Problems -- 2.8 Environmental Impact and Energy Storage Systems and Applications -- 2.9 Potential Solutions to Environmental Problems -- 2.9.1 General Solutions -- 2.9.2 TES-Related Solutions -- 2.10 Sustainable Development -- 2.10.1 Conceptual Issues -- 2.10.2 The Brundtland Commission's Definition -- 2.10.3 Environmental Limits -- 2.10.4 Global, Regional, and Local Sustainability -- 2.10.5 Environmental, Social, and Economic Components of Sustainability -- 2.10.6 Energy and Sustainable Development -- 2.10.7 Environment and Sustainable Development -- 2.10.8 Achieving Sustainable Development in Larger Countries -- 2.10.9 Important Factors for Sustainable Development -- 2.10.10 Sustainable Development Goals -- 2.11 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Thermal Energy Storage Methods -- 3.1 Introduction -- 3.2 Thermal Energy -- 3.3 Thermal Energy Storage -- 3.3.1 Basic Principle of TES -- 3.3.2 Benefits of TES -- 3.3.3 Criteria for TES Evaluation -- 3.3.4 TES Market Considerations -- 3.3.5 TES Heating and Cooling Applications -- 3.3.6 TES Operating Characteristics -- 3.3.7 ASHRAE TES Standards -- 3.4 Solar Energy and TES -- 3.4.1 TES Challenges for Solar Applications -- 3.4.2 TES Types and Solar Energy Systems -- 3.4.3 Storage Durations and Solar Applications -- 3.4.4 Building Applications of TES and Solar Energy -- 3.4.5 Design Considerations for Solar Energy-Based TES -- 3.5 TES Methods -- 3.6 Sensible TES -- 3.6.1 Thermally-Stratified TES Tanks -- 3.6.2 Concrete TES.
3.6.3 Rock and Water/Rock TES -- 3.6.4 Aquifer Thermal Energy Storage (ATES) -- 3.6.5 Solar Ponds -- 3.6.6 Evacuated Solar Collector TES -- 3.7 Latent TES -- 3.7.1 Operational Aspects of Latent TES -- 3.7.2 Phase Change Materials (PCMs) -- 3.8 Cold TES (CTES) -- 3.8.1 Working Principle -- 3.8.2 Operational Loading of CTES -- 3.8.3 Design Considerations -- 3.8.4 CTES Sizing Strategies -- 3.8.5 Load Control and Monitoring in CTES -- 3.8.6 CTES Storage Media Selection and Characteristics -- 3.8.7 Storage Tank Types for CTES -- 3.8.8 Chilled-Water CTES -- 3.8.9 Ice CTES -- 3.8.10 Ice Forming -- 3.8.11 Ice Thickness Controls -- 3.8.12 Technical and Design Aspects of CTES -- 3.8.13 Selection Aspects of CTES -- 3.8.14 Cold Air Distribution in CTES -- 3.8.15 Potential Benefits of CTES -- 3.8.16 Electric Utilities and CTES -- 3.9 Seasonal TES -- 3.9.1 Seasonal TES for Heating Capacity -- 3.9.2 Seasonal TES for Cooling Capacity -- 3.9.3 Illustration -- 3.10 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Energy and Exergy Analyses -- 4.1 Introduction -- 4.2 Theory: Energy and Exergy Analyses -- 4.2.1 Motivation for Energy and Exergy Analyses -- 4.2.2 Conceptual Balance Equations for Mass, Energy, and Entropy -- 4.2.3 Detailed Balance Equations for Mass, Energy, and Entropy -- 4.2.4 Basic Quantities for Exergy Analysis -- 4.2.5 Detailed Exergy Balance -- 4.2.6 The Reference Environment -- 4.2.7 Efficiencies -- 4.2.8 Properties for Energy and Exergy Analyses -- 4.2.9 Implications of Results of Exergy Analyses -- 4.2.10 Steps for Energy and Exergy Analyses -- 4.3 Thermodynamic Considerations in TES Evaluation -- 4.3.1 Determining Important Analysis Quantities -- 4.3.2 Obtaining Appropriate Measures of Efficiency -- 4.3.3 Pinpointing Losses -- 4.3.4 Assessing the Effects of Stratification -- 4.3.5 Accounting for Time Duration of Storage.
4.3.6 Accounting for Variations in Reference-Environment Temperature -- 4.3.7 Closure -- 4.4 Exergy Evaluation of a Closed TES System -- 4.4.1 Description of the Case Considered -- 4.4.2 Analysis of the Overall Process -- 4.4.3 Analysis of Subprocesses -- 4.4.4 Alternative Formulations of Subprocess Efficiencies -- 4.4.5 Relations Between Performance of Subprocesses and Overall Process -- 4.4.6 Example -- 4.4.7 Closure -- 4.5 Appropriate Efficiency Measures for Closed TES Systems -- 4.5.1 TES Model Considered -- 4.5.2 Energy and Exergy Balances -- 4.5.3 Energy and Exergy Efficiencies -- 4.5.4 Overall Efficiencies -- 4.5.5 Charging-Period Efficiencies -- 4.5.6 Storing-Period Efficiencies -- 4.5.7 Discharging-Period Efficiencies -- 4.5.8 Summary of Efficiency Definitions -- 4.5.9 Illustrative Example -- 4.5.10 Closure -- 4.6 Importance of Temperature in Performance Evaluations for Sensible TES Systems -- 4.6.1 Energy, Entropy, and Exergy Balances for the TES System -- 4.6.2 TES System Model Considered -- 4.6.3 Analysis -- 4.6.4 Comparison of Energy and Exergy Efficiencies -- 4.6.5 Illustration -- 4.6.6 Closure -- 4.7 Exergy Analysis of Aquifer TES Systems -- 4.7.1 ATES Model -- 4.7.2 Energy and Exergy Analyses -- 4.7.3 Effect of a Threshold Temperature -- 4.7.4 Case Study -- 4.7.5 Closure -- 4.8 Exergy Analysis of Thermally Stratified Storages -- 4.8.1 General Stratified TES Energy and Exergy Expressions -- 4.8.2 Temperature-Distribution Models and Relevant Expressions -- 4.8.3 Discussion and Comparison of Models -- 4.8.4 Illustrative Example: The Exergy-Based Advantage of Stratification -- 4.8.5 Illustrative Example: Evaluating Stratified TES Energy and Exergy -- 4.8.6 Increasing TES Exergy Storage Capacity Using Stratification -- 4.8.7 Illustrative Example: Increasing TES Exergy with Stratification -- 4.8.8 Closure.
4.9 Energy and Exergy Analyses of Cold TES Systems -- 4.9.1 Energy Balances -- 4.9.2 Exergy Balances -- 4.9.3 Energy and Exergy Efficiencies -- 4.9.4 Illustrative Example -- 4.9.5 Case Study: Thermodynamic Performance of a Commercial Ice TES System -- 4.9.6 Case Study: Energy and Exergy Analyses of An Ice-on-Coil Thermal Energy Storage System -- 4.9.7 Closure -- 4.10 Exergy-Based Optimal Discharge Periods for Closed TES Systems -- 4.10.1 Analysis Description and Assumptions -- 4.10.2 Evaluation of Storage-Fluid Temperature During Discharge -- 4.10.3 Discharge Efficiencies -- 4.10.4 Exergy-Based Optimum Discharge Period -- 4.10.5 Illustrative Example -- 4.10.6 Closure -- 4.11 Exergy Analysis of Solar Ponds -- 4.11.1 Experimental Solar Pond -- 4.11.2 Data Acquisition and Analysis -- 4.11.3 Energy and Exergy Assessments -- 4.11.4 Potential Improvements -- 4.12 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Appendix: Glossary of Selected Exergy-Related Terminology -- Chapter 5 Numerical Modeling and Simulation -- 5.1 Introduction -- 5.2 Approaches and Methods -- 5.3 Selected Applications -- 5.4 Numerical Modeling, Simulation, and Analysis of Sensible TES Systems -- 5.4.1 Modeling -- 5.4.2 Heat Transfer and Fluid Flow Analysis -- 5.4.3 Simulation -- 5.4.4 Thermodynamic Analysis -- 5.5 Case Studies for Sensible TES Systems -- 5.5.1 Case Study 1: Natural Convection in a Hot Water Storage Tank -- 5.5.2 Case Study 2: Forced Convection in a Stratified Hot Water Tank -- 5.5.3 General Discussion of Sensible TES Case Studies -- 5.6 Numerical Modeling, Simulation, and Analysis of Latent TES Systems -- 5.6.1 Modeling -- 5.6.2 Heat Transfer and Fluid Flow Analysis -- 5.6.3 Simulation -- 5.6.4 Thermodynamic Analysis -- 5.7 Case Studies for Latent TES Systems.
5.7.1 Case Study 1: Two-Dimensional Study of the Melting Process in an Infinite Cylindrical Tube.
Record Nr. UNINA-9910555265903321
Dinçer İbrahim <1964->  
Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal energy storage : systems and applications / / Ibrahim Dincer, Marc A. Rosen
Thermal energy storage : systems and applications / / Ibrahim Dincer, Marc A. Rosen
Autore Dinçer İbrahim <1964->
Edizione [Third edition.]
Pubbl/distr/stampa Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (674 pages)
Disciplina 621.4028
Soggetto topico Heat storage
ISBN 1-119-71314-5
1-119-71317-X
1-119-71316-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Basic Introductory Thermal Aspects -- 1.1 Introduction -- 1.2 Systems of Units -- 1.3 Fundamental Properties and Quantities -- 1.3.1 Mass, Time, Length, and Force -- 1.3.2 Pressure -- 1.3.3 Temperature -- 1.3.4 Specific Volume and Density -- 1.3.5 Mass and Volumetric Flow Rates -- 1.4 General Aspects of Thermodynamics -- 1.4.1 Thermodynamic Systems -- 1.4.2 Process -- 1.4.3 Cycle -- 1.4.4 Thermodynamic Property -- 1.4.5 Sensible and Latent Heats -- 1.4.6 Latent Heat of Fusion -- 1.4.7 Vapor -- 1.4.8 Thermodynamic Tables -- 1.4.9 State and Change of State -- 1.4.10 Specific Internal Energy -- 1.4.11 Specific Enthalpy -- 1.4.12 Specific Entropy -- 1.4.13 Pure Substance -- 1.4.14 Ideal Gases -- 1.4.15 Energy Transfer -- 1.4.16 Heat -- 1.4.17 Work -- 1.4.18 The First Law of Thermodynamics -- 1.4.19 The Second Law of Thermodynamics -- 1.4.20 Reversibility and Irreversibility -- 1.4.21 Exergy -- 1.5 General Aspects of Fluid Flow -- 1.5.1 Classification of Fluid Flows -- 1.5.2 Viscosity -- 1.5.3 Equations of Flow -- 1.5.4 Boundary Layer -- 1.6 General Aspects of Heat Transfer -- 1.6.1 Conduction Heat Transfer -- 1.6.2 Convection Heat Transfer -- 1.6.3 Radiation Heat Transfer -- 1.6.4 Thermal Resistance -- 1.6.5 The Composite Wall -- 1.6.6 The Cylinder -- 1.6.7 The Sphere -- 1.6.8 Conduction with Heat Generation -- 1.6.9 Natural Convection -- 1.6.10 Forced Convection -- 1.7 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Chapter 2 Energy Storage Systems -- 2.1 Introduction -- 2.2 Energy Demand -- 2.3 Energy Storage Basics -- 2.4 Energy Storage Methods -- 2.4.1 Mechanical Energy Storage -- 2.4.2 Chemical Energy Storage -- 2.4.3 Electrochemical Energy Storage -- 2.4.4 Biological Storage -- 2.4.5 Magnetic Storage.
2.4.6 Thermal Energy Storage (TES) -- 2.5 Hydrogen for Energy Storage -- 2.5.1 Storage Characteristics of Hydrogen -- 2.5.2 Hydrogen Storage Technologies -- 2.5.3 Hydrogen Production -- 2.6 Comparison of ES Technologies -- 2.7 Energy Storage and Environmental Impact -- 2.7.1 Energy and Environment -- 2.7.2 Major Environmental Problems -- 2.8 Environmental Impact and Energy Storage Systems and Applications -- 2.9 Potential Solutions to Environmental Problems -- 2.9.1 General Solutions -- 2.9.2 TES-Related Solutions -- 2.10 Sustainable Development -- 2.10.1 Conceptual Issues -- 2.10.2 The Brundtland Commission's Definition -- 2.10.3 Environmental Limits -- 2.10.4 Global, Regional, and Local Sustainability -- 2.10.5 Environmental, Social, and Economic Components of Sustainability -- 2.10.6 Energy and Sustainable Development -- 2.10.7 Environment and Sustainable Development -- 2.10.8 Achieving Sustainable Development in Larger Countries -- 2.10.9 Important Factors for Sustainable Development -- 2.10.10 Sustainable Development Goals -- 2.11 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Thermal Energy Storage Methods -- 3.1 Introduction -- 3.2 Thermal Energy -- 3.3 Thermal Energy Storage -- 3.3.1 Basic Principle of TES -- 3.3.2 Benefits of TES -- 3.3.3 Criteria for TES Evaluation -- 3.3.4 TES Market Considerations -- 3.3.5 TES Heating and Cooling Applications -- 3.3.6 TES Operating Characteristics -- 3.3.7 ASHRAE TES Standards -- 3.4 Solar Energy and TES -- 3.4.1 TES Challenges for Solar Applications -- 3.4.2 TES Types and Solar Energy Systems -- 3.4.3 Storage Durations and Solar Applications -- 3.4.4 Building Applications of TES and Solar Energy -- 3.4.5 Design Considerations for Solar Energy-Based TES -- 3.5 TES Methods -- 3.6 Sensible TES -- 3.6.1 Thermally-Stratified TES Tanks -- 3.6.2 Concrete TES.
3.6.3 Rock and Water/Rock TES -- 3.6.4 Aquifer Thermal Energy Storage (ATES) -- 3.6.5 Solar Ponds -- 3.6.6 Evacuated Solar Collector TES -- 3.7 Latent TES -- 3.7.1 Operational Aspects of Latent TES -- 3.7.2 Phase Change Materials (PCMs) -- 3.8 Cold TES (CTES) -- 3.8.1 Working Principle -- 3.8.2 Operational Loading of CTES -- 3.8.3 Design Considerations -- 3.8.4 CTES Sizing Strategies -- 3.8.5 Load Control and Monitoring in CTES -- 3.8.6 CTES Storage Media Selection and Characteristics -- 3.8.7 Storage Tank Types for CTES -- 3.8.8 Chilled-Water CTES -- 3.8.9 Ice CTES -- 3.8.10 Ice Forming -- 3.8.11 Ice Thickness Controls -- 3.8.12 Technical and Design Aspects of CTES -- 3.8.13 Selection Aspects of CTES -- 3.8.14 Cold Air Distribution in CTES -- 3.8.15 Potential Benefits of CTES -- 3.8.16 Electric Utilities and CTES -- 3.9 Seasonal TES -- 3.9.1 Seasonal TES for Heating Capacity -- 3.9.2 Seasonal TES for Cooling Capacity -- 3.9.3 Illustration -- 3.10 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Energy and Exergy Analyses -- 4.1 Introduction -- 4.2 Theory: Energy and Exergy Analyses -- 4.2.1 Motivation for Energy and Exergy Analyses -- 4.2.2 Conceptual Balance Equations for Mass, Energy, and Entropy -- 4.2.3 Detailed Balance Equations for Mass, Energy, and Entropy -- 4.2.4 Basic Quantities for Exergy Analysis -- 4.2.5 Detailed Exergy Balance -- 4.2.6 The Reference Environment -- 4.2.7 Efficiencies -- 4.2.8 Properties for Energy and Exergy Analyses -- 4.2.9 Implications of Results of Exergy Analyses -- 4.2.10 Steps for Energy and Exergy Analyses -- 4.3 Thermodynamic Considerations in TES Evaluation -- 4.3.1 Determining Important Analysis Quantities -- 4.3.2 Obtaining Appropriate Measures of Efficiency -- 4.3.3 Pinpointing Losses -- 4.3.4 Assessing the Effects of Stratification -- 4.3.5 Accounting for Time Duration of Storage.
4.3.6 Accounting for Variations in Reference-Environment Temperature -- 4.3.7 Closure -- 4.4 Exergy Evaluation of a Closed TES System -- 4.4.1 Description of the Case Considered -- 4.4.2 Analysis of the Overall Process -- 4.4.3 Analysis of Subprocesses -- 4.4.4 Alternative Formulations of Subprocess Efficiencies -- 4.4.5 Relations Between Performance of Subprocesses and Overall Process -- 4.4.6 Example -- 4.4.7 Closure -- 4.5 Appropriate Efficiency Measures for Closed TES Systems -- 4.5.1 TES Model Considered -- 4.5.2 Energy and Exergy Balances -- 4.5.3 Energy and Exergy Efficiencies -- 4.5.4 Overall Efficiencies -- 4.5.5 Charging-Period Efficiencies -- 4.5.6 Storing-Period Efficiencies -- 4.5.7 Discharging-Period Efficiencies -- 4.5.8 Summary of Efficiency Definitions -- 4.5.9 Illustrative Example -- 4.5.10 Closure -- 4.6 Importance of Temperature in Performance Evaluations for Sensible TES Systems -- 4.6.1 Energy, Entropy, and Exergy Balances for the TES System -- 4.6.2 TES System Model Considered -- 4.6.3 Analysis -- 4.6.4 Comparison of Energy and Exergy Efficiencies -- 4.6.5 Illustration -- 4.6.6 Closure -- 4.7 Exergy Analysis of Aquifer TES Systems -- 4.7.1 ATES Model -- 4.7.2 Energy and Exergy Analyses -- 4.7.3 Effect of a Threshold Temperature -- 4.7.4 Case Study -- 4.7.5 Closure -- 4.8 Exergy Analysis of Thermally Stratified Storages -- 4.8.1 General Stratified TES Energy and Exergy Expressions -- 4.8.2 Temperature-Distribution Models and Relevant Expressions -- 4.8.3 Discussion and Comparison of Models -- 4.8.4 Illustrative Example: The Exergy-Based Advantage of Stratification -- 4.8.5 Illustrative Example: Evaluating Stratified TES Energy and Exergy -- 4.8.6 Increasing TES Exergy Storage Capacity Using Stratification -- 4.8.7 Illustrative Example: Increasing TES Exergy with Stratification -- 4.8.8 Closure.
4.9 Energy and Exergy Analyses of Cold TES Systems -- 4.9.1 Energy Balances -- 4.9.2 Exergy Balances -- 4.9.3 Energy and Exergy Efficiencies -- 4.9.4 Illustrative Example -- 4.9.5 Case Study: Thermodynamic Performance of a Commercial Ice TES System -- 4.9.6 Case Study: Energy and Exergy Analyses of An Ice-on-Coil Thermal Energy Storage System -- 4.9.7 Closure -- 4.10 Exergy-Based Optimal Discharge Periods for Closed TES Systems -- 4.10.1 Analysis Description and Assumptions -- 4.10.2 Evaluation of Storage-Fluid Temperature During Discharge -- 4.10.3 Discharge Efficiencies -- 4.10.4 Exergy-Based Optimum Discharge Period -- 4.10.5 Illustrative Example -- 4.10.6 Closure -- 4.11 Exergy Analysis of Solar Ponds -- 4.11.1 Experimental Solar Pond -- 4.11.2 Data Acquisition and Analysis -- 4.11.3 Energy and Exergy Assessments -- 4.11.4 Potential Improvements -- 4.12 Concluding Remarks -- Nomenclature -- References -- Study Questions/Problems -- Appendix: Glossary of Selected Exergy-Related Terminology -- Chapter 5 Numerical Modeling and Simulation -- 5.1 Introduction -- 5.2 Approaches and Methods -- 5.3 Selected Applications -- 5.4 Numerical Modeling, Simulation, and Analysis of Sensible TES Systems -- 5.4.1 Modeling -- 5.4.2 Heat Transfer and Fluid Flow Analysis -- 5.4.3 Simulation -- 5.4.4 Thermodynamic Analysis -- 5.5 Case Studies for Sensible TES Systems -- 5.5.1 Case Study 1: Natural Convection in a Hot Water Storage Tank -- 5.5.2 Case Study 2: Forced Convection in a Stratified Hot Water Tank -- 5.5.3 General Discussion of Sensible TES Case Studies -- 5.6 Numerical Modeling, Simulation, and Analysis of Latent TES Systems -- 5.6.1 Modeling -- 5.6.2 Heat Transfer and Fluid Flow Analysis -- 5.6.3 Simulation -- 5.6.4 Thermodynamic Analysis -- 5.7 Case Studies for Latent TES Systems.
5.7.1 Case Study 1: Two-Dimensional Study of the Melting Process in an Infinite Cylindrical Tube.
Record Nr. UNINA-9910829934803321
Dinçer İbrahim <1964->  
Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal energy storage : systems and applications / Ibrahim Dincer and Marc A. Rosen
Thermal energy storage : systems and applications / Ibrahim Dincer and Marc A. Rosen
Autore Dinçer, Ibrahim
Edizione [2. ed]
Pubbl/distr/stampa Hoboken (N.J.), : Wiley, 2011
Descrizione fisica XVIII, 599 p. : ill. ; 25 cm
Disciplina 621.402
621.4028
Altri autori (Persone) Rosen, Marc A.
Soggetto topico Energia termica
ISBN 9780470747063
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-NAP0516438
Dinçer, Ibrahim  
Hoboken (N.J.), : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Thermal Energy Storage with Phase Change Materials [[electronic resource] ] : A Literature Review of Applications for Buildings Materials / / by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Thermal Energy Storage with Phase Change Materials [[electronic resource] ] : A Literature Review of Applications for Buildings Materials / / by João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes
Autore Delgado João M.P.Q
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (80 pages)
Disciplina 621.4028
Collana SpringerBriefs in Applied Sciences and Technology
Soggetto topico Building materials
Ceramics
Glass
Composites (Materials)
Composite materials
Sustainable architecture
Building Materials
Ceramics, Glass, Composites, Natural Materials
Sustainable Architecture/Green Buildings
ISBN 3-319-97499-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Impregnation of PCMs in Building Materials -- PCM Current Applications and Thermal Performance -- Conclusions. .
Record Nr. UNINA-9910337623503321
Delgado João M.P.Q  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui