top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Thermal Spreading and Contact Resistance : Fundamentals and Applications
Thermal Spreading and Contact Resistance : Fundamentals and Applications
Autore Muzychka Yuri S
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.402/2
Altri autori (Persone) YovanovichM. Michael
Collana Wiley-ASME Press Series
Soggetto topico Heat - Transmission
Heat - Conduction
ISBN 1-394-18756-4
1-394-18755-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Nomenclature -- Chapter 1 Fundamental Principles of Thermal Spreading Resistance -- 1.1 Applications -- 1.2 Semi‐Infinite Regions, Flux Tubes, Flux Channels, and Finite Spreaders -- 1.3 Governing Equations and Boundary Conditions -- 1.3.1 Source Plane Conditions -- 1.3.2 Sink Plane Conditions -- 1.3.3 Interface Conditions -- 1.4 Thermal Spreading Resistance -- 1.4.1 Half‐Space Regions -- 1.4.2 Semi‐Infinite Flux Tubes and Channels -- 1.4.3 Finite Disks and Channels -- 1.5 Solution Methods -- 1.6 Summary -- References -- Chapter 2 Thermal Spreading in Isotropic Half‐Space Regions -- 2.1 Circular Area on a Half‐Space -- 2.1.1 Isothermal Circular Source -- 2.1.2 Isoflux Circular Source -- 2.1.3 Parabolic Flux Circular Source -- 2.1.4 Summary of Circular Source Thermal Spreading Resistance -- 2.2 Elliptical Area on a Half‐Space -- 2.2.1 Isothermal Elliptical Source -- 2.2.2 Isoflux Elliptical Source -- 2.2.3 Parabolic Flux Elliptical Source -- 2.3 Method of Superposition of Point Sources -- 2.3.1 Application to a Circular Source -- 2.3.2 Application to Triangular Source Areas -- 2.4 Rectangular Area on a Half‐Space -- 2.4.1 Isothermal Rectangular Area -- 2.4.2 Isoflux Rectangular Source -- 2.5 Spreading Resistance of Symmetric Singly Connected Areas: The Hyperellipse -- 2.6 Regular Polygonal Isoflux Sources -- 2.7 Additional Results for Other Source Shapes -- 2.7.1 Triangular Source -- 2.7.2 Rhombic Source -- 2.7.3 Rectangular Source with Rounded Ends -- 2.7.4 Rectangular Source with Semicircular Ends -- 2.8 Model for an Arbitrary Singly Connected Heat Source on a Half‐Space -- 2.9 Circular Annular Area on a Half‐Space -- 2.9.1 Isothermal Circular Annular Ring Source -- 2.9.2 Isoflux Circular Annular Ring Source.
2.10 Other Doubly Connected Areas on a Half‐Space -- 2.11 Problems with Source Plane Conductance -- 2.11.1 Isoflux Heat Source on a Convectively Cooled Half‐Space -- 2.11.2 Effect of Source Contact Conductance on Spreading Resistance -- 2.12 Circular Area on Single Layer (Coating) on Half‐Space -- 2.12.1 Equivalent Isothermal Circular Contact -- 2.12.2 Isoflux Circular Contact -- 2.12.3 Isoflux, Equivalent Isothermal, and Isothermal Solutions -- 2.12.3.1 Isoflux Contact Area -- 2.12.3.2 Equivalent Isothermal Contact Area -- 2.12.3.3 Isothermal Contact Area -- 2.13 Thermal Spreading Resistance Zone: Elliptical Heat Source -- 2.14 Temperature Rise of Multiple Isoflux Sources -- 2.14.1 Two Coplanar Isoflux Circular Sources -- 2.15 Temperature Rise in an Arbitrary Area -- 2.15.1 Temperature Rise at Arbitrary Point -- 2.15.2 Average Temperature Rise -- 2.16 Superposition of Isoflux Circular Heat Sources -- 2.16.1 Nine Coplanar Circles on Square Cluster -- 2.16.2 Five Coplanar Circles on Square Cluster -- 2.16.3 Four Coplanar Circles on Triangular Cluster -- 2.17 Superposition of Micro‐ and Macro‐Spreading Resistances -- References -- Chapter 3 Circular Flux Tubes and Disks -- 3.1 Semi‐Infinite Flux Tube -- 3.1.1 Isothermal Source on a Flux Tube -- 3.2 Finite Disk with Sink Plane Conductance -- 3.2.1 Distributed Heat Flux over Source Area -- 3.3 Compound Disk -- 3.3.1 Special Limits in the Compound Disk Solution -- 3.4 Multilayered Disks -- 3.5 Flux Tube with Circular Annular Heat Source -- 3.6 Flux Tubes and Disks with Edge Conductance -- 3.7 Spreading Resistance for an Eccentric Source on a Flux Tube -- 3.8 Thermal Spreading with Variable Conductivity Near the Contact Surface -- 3.9 Effect of Surface Curvature on Thermal Spreading Resistance in a Flux Tube -- References -- Chapter 4 Rectangular Flux Channels.
4.1 Two‐Dimensional Semi‐Infinite Flux Channel -- 4.1.1 Variable Heat Flux Distributions -- 4.2 Three‐Dimensional Semi‐Infinite Flux Channel -- 4.2.1 Correlation Equations for Various Combinations of Source Areas and Boundary Conditions -- 4.3 Finite Two‐ and Three‐Dimensional Flux Channels -- 4.4 Compound Two‐ and Three‐Dimensional Flux Channels -- 4.4.1 Special Limiting Cases for Rectangular Flux Channels -- 4.5 Finite Two‐ and Three‐Dimensional Flux Channels with Eccentric Heat Sources -- 4.6 Rectangular Flux Channels with Edge Conductance -- 4.7 Multilayered Rectangular Flux Channels -- 4.8 Rectangular Flux Channel with an Elliptic Heat Source -- 4.9 Spreading in a Curved Flux Channel (Annular Sector) -- 4.10 Effect of Surface Curvature on Thermal Spreading Resistance in a Two‐Dimensional Flux Channel -- References -- Chapter 5 Orthotropic Media -- 5.1 Heat Conduction in Orthotropic Media -- 5.2 Circular Source on a Half‐Space -- 5.3 Single‐Layer Flux Tubes -- 5.3.1 Circular Flux Tubes with Edge Cooling -- 5.4 Single‐Layer Rectangular Flux Channel -- 5.4.1 Rectangular Flux Channels with Edge Cooling -- 5.5 Multilayered Orthotropic Spreaders -- 5.5.1 Circular Flux Tubes -- 5.5.2 Multilayered Orthotropic Flux Channels -- 5.5.3 Multilayered Orthotropic Flux Channels with an Eccentric Source -- 5.6 General Multilayered Rectangular Orthotropic Spreaders -- 5.6.1 Coordinate Transformations for Fully Orthotropic Media -- 5.6.2 General Solution for kx≠ky≠kz -- 5.6.3 Total Thermal Resistance -- 5.7 Measurement of Orthotropic Thermal Conductivity -- References -- Chapter 6 Multisource Analysis for Microelectronic Devices -- 6.1 Multiple Heat Sources on Finite Isotropic Spreaders -- 6.1.1 Single Source Surface Temperature Distribution -- 6.1.1 Centroidal Source Temperature -- 6.1.1 Mean Source Temperature.
6.1.2 Multisource Surface Temperature Distribution -- 6.1.2 Centroidal Source Temperature -- 6.1.2 Mean Source Temperature -- 6.2 Influence Coefficient Method -- 6.2.1 Thermal Resistance -- 6.2.2 Source Plane Convection -- 6.3 Extension to Compound, Orthotropic, and Multilayer Spreaders -- 6.3.1 Compound Media -- 6.3.1 Finite Interfacial Conductance -- 6.3.1 Perfect Interfacial Contact -- 6.3.2 Orthotropic Spreaders -- 6.3.3 Multilayer Isotropic/Orthotropic Spreaders -- 6.4 Non‐Fourier Conduction Effects in Microscale Devices -- 6.5 Application to Irregular‐Shaped Heat Sources -- References -- Chapter 7 Transient Thermal Spreading Resistance -- 7.1 Transient Spreading Resistance of an Isoflux Source on an Isotropic Half‐Space -- 7.1.1 Transient Spreading Resistance of an Isoflux Circular Area -- 7.1.2 Transient Spreading Resistance of an Isoflux Strip on a Half‐Space -- 7.1.3 Transient Spreading Resistance of an Isoflux Hyperellipse -- 7.1.4 Transient Spreading Resistance of Isoflux Regular Polygons -- 7.1.5 Universal Time Function -- 7.2 Transient Spreading Resistance of an Isothermal Source on a Half‐Space -- 7.3 Models for Transient Thermal Spreading in a Half‐Space -- 7.4 Transient Spreading Resistance Between Two Half‐Spaces in Contact Through a Circular Area -- 7.5 Transient Spreading in a Two‐Dimensional Flux Channel -- 7.6 Transient Spreading in a Circular Flux Tube from an Isoflux Source -- 7.7 Transient Spreading in a Circular Flux Tube from an Isothermal Source -- 7.8 Models for Transient Thermal Spreading in Circular Flux Tubes -- References -- Chapter 8 Applications with Nonuniform Conductance in the Sink Plane -- 8.1 Applications with Nonuniform Conductance -- 8.1.1 Distributed Heat Transfer Coefficient Models -- 8.1.2 Mixed‐Boundary Conditions in the Source Plane -- 8.1.3 Least Squares Approximation.
8.2 Finite Flux Channels with Variable Conductance -- 8.2.1 Two‐Dimensional Flux Channel -- 8.2.2 Three‐Dimensional Flux Channel -- 8.3 Finite Flux Tube with Variable Conductance -- References -- Chapter 9 Further Applications of Spreading Resistance -- 9.1 Moving Heat Sources -- 9.1.1 Governing Equations -- 9.1.2 Asymptotic Limits -- 9.1.3 Stationary and Moving Heat Source Limits -- 9.1.3.1 Stationary Heat Sources (Pe0) -- 9.1.3.2 Moving Heat Sources (Pe∞) -- 9.1.4 Analysis of Real Contacts -- 9.1.4.1 Effect of Contact Shape -- 9.1.4.2 Models for All Peclet Numbers -- 9.1.5 Prediction of Flash Temperature -- 9.2 Problems Involving Mass Diffusion -- 9.2.1 Mass Transport from a Circular Source on a Half‐Space -- 9.2.2 Diffusion from Other Source Shapes -- 9.2.2.1 Elliptic Source -- 9.2.2.2 Rectangular Source -- 9.3 Mass Diffusion with Chemical Reaction -- 9.3.1 Diffusion from a 2D Strip Source with Chemical Reaction -- 9.3.2 Circular Source on a Disk with Chemical Reaction -- 9.3.3 Diffusion from a Rectangular Source with Chemical Reaction -- 9.4 Diffusion Limited Slip Behavior: Super‐Hydrophobic Surfaces -- 9.4.1 Circular and Square Pillars -- 9.4.1.1 Circular/Square -- 9.4.1.2 Ridges -- 9.4.2 Rectangular and Elliptical Pillars for ϕs0 -- 9.4.3 Effect of Meniscus Curvature -- 9.5 Problems with Phase Change in the Source Region (Solidification) -- 9.6 Thermal Spreading with Temperature‐Dependent Thermal Conductivity -- 9.6.1 Kirchoff Transform -- 9.6.2 Thermal Conductivity Models -- 9.6.3 Application for Thermal Spreading Resistance in a Rectangular Flux Channel -- 9.7 Thermal Spreading in Spherical Domains -- 9.7.1 Thermal Spreading in Hollow Spherical Shells -- 9.7.2 Thermal Spreading in a Hollow Hemispherical Shell with Convection on the Interior Boundary -- References -- Chapter 10 Introduction to Thermal Contact Resistance.
10.1 Thermal Contact Resistance.
Record Nr. UNINA-9910830302103321
Muzychka Yuri S  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal Spreading and Contact Resistance : Fundamentals and Applications
Thermal Spreading and Contact Resistance : Fundamentals and Applications
Autore Muzychka Yuri S
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.402/2
Altri autori (Persone) YovanovichM. Michael
Collana Wiley-ASME Press Series
Soggetto topico Heat - Transmission
Heat - Conduction
ISBN 1-394-18756-4
1-394-18755-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Nomenclature -- Chapter 1 Fundamental Principles of Thermal Spreading Resistance -- 1.1 Applications -- 1.2 Semi‐Infinite Regions, Flux Tubes, Flux Channels, and Finite Spreaders -- 1.3 Governing Equations and Boundary Conditions -- 1.3.1 Source Plane Conditions -- 1.3.2 Sink Plane Conditions -- 1.3.3 Interface Conditions -- 1.4 Thermal Spreading Resistance -- 1.4.1 Half‐Space Regions -- 1.4.2 Semi‐Infinite Flux Tubes and Channels -- 1.4.3 Finite Disks and Channels -- 1.5 Solution Methods -- 1.6 Summary -- References -- Chapter 2 Thermal Spreading in Isotropic Half‐Space Regions -- 2.1 Circular Area on a Half‐Space -- 2.1.1 Isothermal Circular Source -- 2.1.2 Isoflux Circular Source -- 2.1.3 Parabolic Flux Circular Source -- 2.1.4 Summary of Circular Source Thermal Spreading Resistance -- 2.2 Elliptical Area on a Half‐Space -- 2.2.1 Isothermal Elliptical Source -- 2.2.2 Isoflux Elliptical Source -- 2.2.3 Parabolic Flux Elliptical Source -- 2.3 Method of Superposition of Point Sources -- 2.3.1 Application to a Circular Source -- 2.3.2 Application to Triangular Source Areas -- 2.4 Rectangular Area on a Half‐Space -- 2.4.1 Isothermal Rectangular Area -- 2.4.2 Isoflux Rectangular Source -- 2.5 Spreading Resistance of Symmetric Singly Connected Areas: The Hyperellipse -- 2.6 Regular Polygonal Isoflux Sources -- 2.7 Additional Results for Other Source Shapes -- 2.7.1 Triangular Source -- 2.7.2 Rhombic Source -- 2.7.3 Rectangular Source with Rounded Ends -- 2.7.4 Rectangular Source with Semicircular Ends -- 2.8 Model for an Arbitrary Singly Connected Heat Source on a Half‐Space -- 2.9 Circular Annular Area on a Half‐Space -- 2.9.1 Isothermal Circular Annular Ring Source -- 2.9.2 Isoflux Circular Annular Ring Source.
2.10 Other Doubly Connected Areas on a Half‐Space -- 2.11 Problems with Source Plane Conductance -- 2.11.1 Isoflux Heat Source on a Convectively Cooled Half‐Space -- 2.11.2 Effect of Source Contact Conductance on Spreading Resistance -- 2.12 Circular Area on Single Layer (Coating) on Half‐Space -- 2.12.1 Equivalent Isothermal Circular Contact -- 2.12.2 Isoflux Circular Contact -- 2.12.3 Isoflux, Equivalent Isothermal, and Isothermal Solutions -- 2.12.3.1 Isoflux Contact Area -- 2.12.3.2 Equivalent Isothermal Contact Area -- 2.12.3.3 Isothermal Contact Area -- 2.13 Thermal Spreading Resistance Zone: Elliptical Heat Source -- 2.14 Temperature Rise of Multiple Isoflux Sources -- 2.14.1 Two Coplanar Isoflux Circular Sources -- 2.15 Temperature Rise in an Arbitrary Area -- 2.15.1 Temperature Rise at Arbitrary Point -- 2.15.2 Average Temperature Rise -- 2.16 Superposition of Isoflux Circular Heat Sources -- 2.16.1 Nine Coplanar Circles on Square Cluster -- 2.16.2 Five Coplanar Circles on Square Cluster -- 2.16.3 Four Coplanar Circles on Triangular Cluster -- 2.17 Superposition of Micro‐ and Macro‐Spreading Resistances -- References -- Chapter 3 Circular Flux Tubes and Disks -- 3.1 Semi‐Infinite Flux Tube -- 3.1.1 Isothermal Source on a Flux Tube -- 3.2 Finite Disk with Sink Plane Conductance -- 3.2.1 Distributed Heat Flux over Source Area -- 3.3 Compound Disk -- 3.3.1 Special Limits in the Compound Disk Solution -- 3.4 Multilayered Disks -- 3.5 Flux Tube with Circular Annular Heat Source -- 3.6 Flux Tubes and Disks with Edge Conductance -- 3.7 Spreading Resistance for an Eccentric Source on a Flux Tube -- 3.8 Thermal Spreading with Variable Conductivity Near the Contact Surface -- 3.9 Effect of Surface Curvature on Thermal Spreading Resistance in a Flux Tube -- References -- Chapter 4 Rectangular Flux Channels.
4.1 Two‐Dimensional Semi‐Infinite Flux Channel -- 4.1.1 Variable Heat Flux Distributions -- 4.2 Three‐Dimensional Semi‐Infinite Flux Channel -- 4.2.1 Correlation Equations for Various Combinations of Source Areas and Boundary Conditions -- 4.3 Finite Two‐ and Three‐Dimensional Flux Channels -- 4.4 Compound Two‐ and Three‐Dimensional Flux Channels -- 4.4.1 Special Limiting Cases for Rectangular Flux Channels -- 4.5 Finite Two‐ and Three‐Dimensional Flux Channels with Eccentric Heat Sources -- 4.6 Rectangular Flux Channels with Edge Conductance -- 4.7 Multilayered Rectangular Flux Channels -- 4.8 Rectangular Flux Channel with an Elliptic Heat Source -- 4.9 Spreading in a Curved Flux Channel (Annular Sector) -- 4.10 Effect of Surface Curvature on Thermal Spreading Resistance in a Two‐Dimensional Flux Channel -- References -- Chapter 5 Orthotropic Media -- 5.1 Heat Conduction in Orthotropic Media -- 5.2 Circular Source on a Half‐Space -- 5.3 Single‐Layer Flux Tubes -- 5.3.1 Circular Flux Tubes with Edge Cooling -- 5.4 Single‐Layer Rectangular Flux Channel -- 5.4.1 Rectangular Flux Channels with Edge Cooling -- 5.5 Multilayered Orthotropic Spreaders -- 5.5.1 Circular Flux Tubes -- 5.5.2 Multilayered Orthotropic Flux Channels -- 5.5.3 Multilayered Orthotropic Flux Channels with an Eccentric Source -- 5.6 General Multilayered Rectangular Orthotropic Spreaders -- 5.6.1 Coordinate Transformations for Fully Orthotropic Media -- 5.6.2 General Solution for kx≠ky≠kz -- 5.6.3 Total Thermal Resistance -- 5.7 Measurement of Orthotropic Thermal Conductivity -- References -- Chapter 6 Multisource Analysis for Microelectronic Devices -- 6.1 Multiple Heat Sources on Finite Isotropic Spreaders -- 6.1.1 Single Source Surface Temperature Distribution -- 6.1.1 Centroidal Source Temperature -- 6.1.1 Mean Source Temperature.
6.1.2 Multisource Surface Temperature Distribution -- 6.1.2 Centroidal Source Temperature -- 6.1.2 Mean Source Temperature -- 6.2 Influence Coefficient Method -- 6.2.1 Thermal Resistance -- 6.2.2 Source Plane Convection -- 6.3 Extension to Compound, Orthotropic, and Multilayer Spreaders -- 6.3.1 Compound Media -- 6.3.1 Finite Interfacial Conductance -- 6.3.1 Perfect Interfacial Contact -- 6.3.2 Orthotropic Spreaders -- 6.3.3 Multilayer Isotropic/Orthotropic Spreaders -- 6.4 Non‐Fourier Conduction Effects in Microscale Devices -- 6.5 Application to Irregular‐Shaped Heat Sources -- References -- Chapter 7 Transient Thermal Spreading Resistance -- 7.1 Transient Spreading Resistance of an Isoflux Source on an Isotropic Half‐Space -- 7.1.1 Transient Spreading Resistance of an Isoflux Circular Area -- 7.1.2 Transient Spreading Resistance of an Isoflux Strip on a Half‐Space -- 7.1.3 Transient Spreading Resistance of an Isoflux Hyperellipse -- 7.1.4 Transient Spreading Resistance of Isoflux Regular Polygons -- 7.1.5 Universal Time Function -- 7.2 Transient Spreading Resistance of an Isothermal Source on a Half‐Space -- 7.3 Models for Transient Thermal Spreading in a Half‐Space -- 7.4 Transient Spreading Resistance Between Two Half‐Spaces in Contact Through a Circular Area -- 7.5 Transient Spreading in a Two‐Dimensional Flux Channel -- 7.6 Transient Spreading in a Circular Flux Tube from an Isoflux Source -- 7.7 Transient Spreading in a Circular Flux Tube from an Isothermal Source -- 7.8 Models for Transient Thermal Spreading in Circular Flux Tubes -- References -- Chapter 8 Applications with Nonuniform Conductance in the Sink Plane -- 8.1 Applications with Nonuniform Conductance -- 8.1.1 Distributed Heat Transfer Coefficient Models -- 8.1.2 Mixed‐Boundary Conditions in the Source Plane -- 8.1.3 Least Squares Approximation.
8.2 Finite Flux Channels with Variable Conductance -- 8.2.1 Two‐Dimensional Flux Channel -- 8.2.2 Three‐Dimensional Flux Channel -- 8.3 Finite Flux Tube with Variable Conductance -- References -- Chapter 9 Further Applications of Spreading Resistance -- 9.1 Moving Heat Sources -- 9.1.1 Governing Equations -- 9.1.2 Asymptotic Limits -- 9.1.3 Stationary and Moving Heat Source Limits -- 9.1.3.1 Stationary Heat Sources (Pe0) -- 9.1.3.2 Moving Heat Sources (Pe∞) -- 9.1.4 Analysis of Real Contacts -- 9.1.4.1 Effect of Contact Shape -- 9.1.4.2 Models for All Peclet Numbers -- 9.1.5 Prediction of Flash Temperature -- 9.2 Problems Involving Mass Diffusion -- 9.2.1 Mass Transport from a Circular Source on a Half‐Space -- 9.2.2 Diffusion from Other Source Shapes -- 9.2.2.1 Elliptic Source -- 9.2.2.2 Rectangular Source -- 9.3 Mass Diffusion with Chemical Reaction -- 9.3.1 Diffusion from a 2D Strip Source with Chemical Reaction -- 9.3.2 Circular Source on a Disk with Chemical Reaction -- 9.3.3 Diffusion from a Rectangular Source with Chemical Reaction -- 9.4 Diffusion Limited Slip Behavior: Super‐Hydrophobic Surfaces -- 9.4.1 Circular and Square Pillars -- 9.4.1.1 Circular/Square -- 9.4.1.2 Ridges -- 9.4.2 Rectangular and Elliptical Pillars for ϕs0 -- 9.4.3 Effect of Meniscus Curvature -- 9.5 Problems with Phase Change in the Source Region (Solidification) -- 9.6 Thermal Spreading with Temperature‐Dependent Thermal Conductivity -- 9.6.1 Kirchoff Transform -- 9.6.2 Thermal Conductivity Models -- 9.6.3 Application for Thermal Spreading Resistance in a Rectangular Flux Channel -- 9.7 Thermal Spreading in Spherical Domains -- 9.7.1 Thermal Spreading in Hollow Spherical Shells -- 9.7.2 Thermal Spreading in a Hollow Hemispherical Shell with Convection on the Interior Boundary -- References -- Chapter 10 Introduction to Thermal Contact Resistance.
10.1 Thermal Contact Resistance.
Record Nr. UNINA-9910840711303321
Muzychka Yuri S  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui