top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Conference Record of the 1991 International Display Research Conference : papers presented at Hyatt Islandia, San Diego, California, October 15-17, 1991 / / International Display Research Conference
Conference Record of the 1991 International Display Research Conference : papers presented at Hyatt Islandia, San Diego, California, October 15-17, 1991 / / International Display Research Conference
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 1991
Descrizione fisica 1 online resource (vii, 257 pages) : illustrations
Disciplina 621.381542
Soggetto topico Information display systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996210134103316
Piscataway, NJ : , : IEEE, , 1991
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Digital image processing and analysis : [proceedings of the NATO Advanced Study Institute on Digital Image Processing and Analysis, Bonas, France, June 14-25, 1976] / edited by Jean Claude Simon and Azriel Rosenfeld
Digital image processing and analysis : [proceedings of the NATO Advanced Study Institute on Digital Image Processing and Analysis, Bonas, France, June 14-25, 1976] / edited by Jean Claude Simon and Azriel Rosenfeld
Autore Rosenfeld, Azriel
Pubbl/distr/stampa Leyden : Noordhoff International Publ., 1977
Descrizione fisica ix, 514 p. : ill. ; 25 cm.
Disciplina 001.6
621.381542
Altri autori (Persone) Simon, Jean Claude
Collana NATO ASI series. Series E, Applied sciences ; 20
Soggetto topico Image processing-digital techniques
ISBN 9028604677
Classificazione AMS 68U10
CR I.4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000826049707536
Rosenfeld, Azriel  
Leyden : Noordhoff International Publ., 1977
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Display interfaces [[electronic resource] ] : fundamentals and standards / / Robert L. Myers
Display interfaces [[electronic resource] ] : fundamentals and standards / / Robert L. Myers
Autore Myers Robert L (Robert Louis), <1956->
Pubbl/distr/stampa Chichester, : Wiley, 2002
Descrizione fisica 1 online resource (307 p.)
Disciplina 621.381542
621.3815422
Collana Wiley Series in Display Technology
Soggetto topico Information display systems
Video display terminals
ISBN 1-280-26969-3
9786610269693
0-470-36013-5
0-470-84614-3
0-470-85576-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Display Interfaces; Contents; Series Editor's Foreword; Preface; 1 Basic Concepts in Display Systems; 1.1 Introduction; 1.1.1 Basic components of a display system; 1.2 Imaging Concepts; 1.2.1 Vector-scan and raster-scan systems; pixels and frames; 1.2.2 Spatial formats vs. resolution; fields; 1.2.3 Moving images; frame rates; 1.2.4 Three-dimensional imaging; 1.3 Transmitting the Image Information; 2 The Human Visual System; 2.1 Introduction; 2.2 The Anatomy of the Eye; 2.3 Visual Acuity; 2.4 Dynamic Range and Visual Response; 2.5 Chromatic Aberrations; 2.6 Stereopsis
2.7 Temporal Response and Seeing Motion2.8 Display Ergonomics; References; 3 Fundamentals of Color; 3.1 Introduction; 3.2 Color Basics; 3.3 Color Spaces and Color Coordinate Systems; 3.4 Color Temperature; 3.5 Standard Illuminants; 3.6 Color Gamut; 3.7 Perceptual Uniformity in Color Spaces; the CIE L*u*v* Space; 3.8 MacAdam Ellipses and MPCDs; 3.9 The Kelly Chart; 3.10 Encoding Color; 4 Display Technologies and Applications; 4.1 Introduction; 4.2 The CRT Display; 4.3 Color CRTs; 4.4 Advantages and Limitations of the CRT; 4.5 The "Flat Panel" Display Technologies; 4.6 Liquid-Crystal Displays
4.7 Plasma Displays4.8 Electroluminescent (EL) Displays; 4.9 Organic Light-Emitting Devices (OLEDs); 4.10 Field-Emission Displays (FEDs); 4.11 Microdisplays; 4.12 Projection Displays; 4.12.1 CRT projection; 4.13 Display Applications; 5 Practical and Performance Requirements of the Display Interface; 5.1 Introduction; 5.2 Practical Channel Capacity Requirements; 5.3 Compression; 5.4 Error Correction and Encryption; 5.5 Physical Channel Bandwidth; 5.6 Performance Concerns for Analog Connections; 5.6.1 Cable impedance; 5.6.2 Shielding and filtering; 5.6.3 Cable losses; 5.6.4 Cable termination
5.6.5 Connectors5.7 Performance Concerns for Digital Connections; 6 Basics of Analog and Digital Display Interfaces; 6.1 Introduction; 6.2 "Bandwidth" vs. Channel Capacity; 6.3 Digital and Analog Interfaces with Noisy Channels; 6.4 Practical Aspects of Digital and Analog Interfaces; 6.5 Digital vs. Analog Interfacing for Fixed-Format Displays; 6.6 Digital Interfaces for CRT Displays; 6.7 The True Advantage of Digital; 6.8 Performance Measurement of Digital and Analog Interfaces; 6.8.1 Analog signal parameters and measurement; 6.8.2 Transmission-line effects and measurements
6.8.3 Digital systems7 Format and Timing Standards; 7.1 Introduction; 7.2 The Need for Image Format Standards; 7.3 The Need for Timing Standards; 7.4 Practical Requirements of Format and Timing Standards; 7.5 Format and Timing Standard Development; 7.6 An Overview of Display Format and Timing Standards; 7.7 Algorithms for Timings - The VESA GTF Standard; 8 Standards for Analog Video - Part I: Television; 8.1 Introduction; 8.2 Early Television Standards; 8.3 Broadcast Transmission Standards; 8.4 Closed-Circuit Video; The RS-170 and RS-343 Standards; 8.5 Color Television
8.6 NTSC Color Encoding
Record Nr. UNINA-9910143509803321
Myers Robert L (Robert Louis), <1956->  
Chichester, : Wiley, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The effects of dust and heat on photovoltaic modules : impacts and solutions / / Amir Al-Ahmed [and three others], editors
The effects of dust and heat on photovoltaic modules : impacts and solutions / / Amir Al-Ahmed [and three others], editors
Autore Al-Ahmed Amir
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (318 pages)
Disciplina 621.381542
Collana Green Energy and Technology
Soggetto topico Photovoltaic cells
ISBN 3-030-84635-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Dust -- Dust Deposition on Photovoltaic Modules: Its Effects on Performance -- 1 Introduction -- 2 Fundamentals of Photovoltaic Module -- 2.1 Components of a Photovoltaic Module -- 2.2 Classification of Photovoltaic Modules -- 3 Factors Affecting the Performance of Photovoltaic Modules -- 4 Sources, Transportation and Deposition of Dust -- 4.1 Sources and Characteristics of Dust -- 4.2 Dust Particles Transportation -- 4.3 Factors Governing Dust Particles Deposition on PV Module Surfaces -- 5 Effects of Dust on the Performance of PV Modules -- 5.1 Effect of Dust on the PV Module Surface Light Transmittance -- 5.2 Effect of Dust on PV Module Surface Temperature -- 5.3 Effect of Dust on Short-Circuit Current -- 5.4 Effect of Dust on Open-Circuit Voltage -- 5.5 Effect of Dust on Maximum Power Output -- 5.6 Effect of Dust on I-V Characteristics -- 5.7 Effect of Dust on Fill Factor -- 5.8 Effect of Dust on Conversion Efficiency -- 5.9 Effect of Dust on Energy Yield -- 5.10 Mechanisms of Removing Dust Particles from PV Module Surfaces -- 5.11 Natural Cleaning Methods -- 5.12 Automatic Cleaning Method -- 5.13 Sun Tracking System -- 6 Conclusions and Recommendations -- References -- Effect of Dust Accumulation on the Power Production of the PV Module at Different Heights: A Case Study -- 1 Introduction -- 2 Materials and Methods -- 2.1 Experimental Setup -- 2.2 Data Measurement -- 3 Results -- 4 Conclusions -- References -- Dust Deposition on PV Module and Its Characteristics -- 1 Introduction -- 2 Mechanism of Dust Accumulation -- 2.1 Dust Generation -- 2.2 Accumulation of Dust on Solar PV Module Surface -- 3 Allocation of the Various Continent in the Study of Impact of Dust Accumulation -- 4 Elimination of Dust Particle from Solar Photovoltaic Module -- 4.1 Natural Elimination -- 4.2 Cleaning.
4.3 Self-Cleaning Film -- 5 Discussion -- 6 Conclusion -- References -- Photovoltaic Module Dust Cleaning Techniques -- 1 Introduction -- 2 Solar PV Module Dust Cleaning Techniques -- 2.1 Natural Cleaning Method -- 2.2 Machine Cleaning -- 2.3 Passive Cleaning Method -- 3 Conclusion -- References -- Surface Texturing for a Superhydrophobic Surface -- 1 Fundamentals of Superhydrophobic Effect -- 2 Texturing Approaches for Superhydrophobic Surfaces -- 2.1 Chemical and Plasma Etching -- 2.2 Laser Surface Texturing -- 2.3 Lithography -- 2.4 Anodic Oxidation -- 2.5 Electrospinning -- 3 Textured Superhydrophobic Surfaces for Self-Cleaning of PV Modules -- 3.1 Effect of Dust Accumulation on PV Performance of Modules -- 3.2 Textured Self-Cleaning Surfaces for PV Applications -- 4 Summary -- References -- Organic Superhydrophobic Coatings for PV Modules -- 1 Introduction -- 1.1 Superhydrophobic Effect in Nature -- 1.2 Superhydrophobic Characteristics in Plants -- 1.3 Superhydrophobic Characteristics in Animals -- 2 Principles and Properties of Superhydrophobic Surfaces -- 2.1 Wettability, Contact Angle and Surface Roughness -- 2.2 Surface Tension and Surface Energy -- 3 Methods of Preparation of Superhydrophobic Surfaces -- 3.1 Soft Lithography -- 3.2 Template Method -- 3.3 Electro-spinning -- 3.4 Sol-gel -- 3.5 Layer-by-Layer (LbL) -- 3.6 Etching -- 3.7 Chemical Vapor Deposition (CVD) -- 3.8 Electroless Galvanic Deposition -- 3.9 Anodic Oxidation -- 4 Effect of Organic Superhydrophobic Coatings on the Performance of PV Modules -- 4.1 Fluorocarbons -- 4.2 Polysiloxanes -- 4.3 Polyurethane -- 5 Commercialization Challenges and Future Prospects -- References -- Super Hydrophilic Surface Coating for PV Modules -- 1 Introduction -- 2 Cleaning Methods -- 2.1 Self-Cleaning -- 3 Super Hydrophilicity -- 3.1 Photo-Induced Super Hydrophilicity.
4 Fabrication Techniques and Processes for Self-Cleaning Super Hydrophilic Coatings -- 4.1 Sol-gel Process -- 4.2 Hydrothermal Process -- 4.3 Liquid-Phase Deposition -- 4.4 Electrochemical Technology -- 4.5 Dip Coating -- 4.6 Spin Coating -- 5 Modification Methods to Enhance the Self-Cleaning of PV Modules -- 5.1 Doping With Similar Ion -- 5.2 Recombination of Semiconductor -- 6 Applications of Super Hydrophilic Coatings on PV Module -- 6.1 Super Hydrophilic Anti-reflection -- 6.2 Super Hydrophilic Anti-fogging -- 7 Conclusion -- References -- Heat -- Cooling Approaches for Solar PV Panels -- 1 Introduction -- 2 Photovoltaic Panel Heating -- 3 Cooling Approaches for Photovoltaic Panel -- 3.1 Passive Approaches -- 3.2 Active Approaches -- 4 Merit of PV Cooling Approaches -- 5 Conclusions -- References -- Heat Effect on Silicon PV Modules -- 1 Introduction -- 2 Heat effect on Silicon PV Modules -- References -- Thermoelectric Coupled Photovoltaic Modules -- 1 Introduction -- 2 Techniques -- 2.1 Split Method -- 2.2 Direct Couple -- 3 Performance -- 3.1 Direct Coupled PV-TE System -- 3.2 Splitting PV-TE System Performance -- 4 Conclusions -- References -- Photovoltaic Effects of Temperature Compensation Using Thermo-Electric Cooling -- 1 Introduction -- 2 Climatic Variability and Its Effects of Performance on Solar Cells -- 2.1 Effects of Temperature -- 3 The Design, Materials and Temperature Dependencies -- 3.1 Temperature Coefficients of Different Components -- 4 Thermo-Electric Device -- 4.1 Thermo-Electric Effect -- 4.2 Construction of a Thermo-Electric Device -- 4.3 Coefficient of Performance (COP) -- 5 The Amalgamation of the Solar Cell with the Thermo-Electric Device -- 6 Performance Evaluation and Feasibility Verification -- 7 Conclusion and Recommendations -- References -- Environmental Assessment of Perovskite Solar Cells -- 1 Introduction.
2 Factors Affecting the Performance of the Perovskite Solar Cells -- 2.1 Impact of Moisture on Perovskite Layers -- 2.2 Thermal Stresses in Perovskite Solar Cell Layers -- 2.3 Optical Instability -- 2.4 Metal Contacts -- 2.5 Morphological and Structural Instabilities -- 3 Lead Toxicity -- 4 Outlook -- References -- Influence of Temperature on Important Characteristics of Photovoltaic Cells -- 1 Physical Principles of Photovoltaic Energy Conversion -- 2 I-V Characteristics of Photovoltaic Cells -- 3 Effect of Temperature on Energy Conversion Efficiency -- 4 Effect of Damage to Photovoltaic Cells on the Parameters of the Photovoltaic Panel -- References -- Paraffin Wax and Fatty Acid-Based Passive Temperature Management of PV Modules: An Overview -- 1 Introduction -- 2 Passive Cooling of PV Modules Using Organic PCMs -- 2.1 Paraffin Wax-Based Cooling -- 2.2 Fatty Acids-Based Cooling -- 3 Proposition and Prospects -- 4 Conclusions -- References.
Record Nr. UNINA-9910522915103321
Al-Ahmed Amir  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High-speed heterostructure devices : from device concepts to circuit modeling / Patrick Roblin and Hans Rohdin
High-speed heterostructure devices : from device concepts to circuit modeling / Patrick Roblin and Hans Rohdin
Autore Roblin, Patrick <1958- >
Pubbl/distr/stampa Cambridge, : Cambridge University press, 2006
Descrizione fisica XXXIV, 688 p. : ill. ; 25 cm.
Disciplina 621.3815
621.381542
Altri autori (Persone) Rohdin, Hans <1954- >
Soggetto topico Semiconduttori
Circuiti integrati
ISBN 0521024234
9780521024235
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-MIL0703120
Roblin, Patrick <1958- >  
Cambridge, : Cambridge University press, 2006
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara
Edizione [1st edition.]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (606 pages)
Disciplina 621.381542
Soggetto topico Photovoltaic cells
Perovskite (Mineral) - Industrial applications
Soggetto genere / forma Electronic books.
ISBN 3-527-82585-1
3-527-82584-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editor -- Chapter 1 Introduction -- 1.1 Hybrid Perovskite Solar Cells -- 1.2 Unique Natures of Hybrid Perovskites -- 1.2.1 Notable Characteristics of Hybrid Perovskites -- 1.2.2 Fundamental Properties of MAPbI3 -- 1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency? -- 1.3 Advantages of Hybrid Perovskite Solar Cells -- 1.3.1 Band Gap Tunability -- 1.3.2 High Voc -- 1.3.3 Low Temperature Coefficient -- 1.4 Challenges for Hybrid Perovskites -- 1.4.1 Requirement of Improved Stability -- 1.4.2 Large‐Area Solar Cells -- 1.4.3 Toxicity of Pb and Sn Compounds -- 1.5 Overview of this Book -- Acknowledgment -- References -- Chapter 2 Overview of Hybrid Perovskite Solar Cells -- 2.1 Introduction -- 2.2 Historical Backgrounds of Halide Perovskite Photovoltaics -- 2.3 Semiconductor Properties of Organo Lead Halide Perovskites -- 2.4 Working Principle of Perovskite Photovoltaics -- 2.5 Compositional Design of the Halide Perovskite Absorbers -- 2.6 Strategy for Stabilizing Perovskite Solar Cells -- 2.7 All Inorganic and Lead‐Free Perovskites -- 2.8 Development of High‐Efficiency Tandem Solar Cells -- 2.9 Conclusion and Perspectives -- References -- Part I Characteristics of Hybrid Perovskites -- Chapter 3 Crystal Structures -- 3.1 What Is Hybrid Perovskite? -- 3.2 Structures of Hybrid Perovskite Crystals -- 3.2.1 Crystal Structure of MAPbI3 -- 3.2.2 Lattice Parameters of Hybrid Perovskites -- 3.2.3 Secondary Phase Materials -- 3.3 Tolerance Factor -- 3.3.1 Tolerance Factor of Hybrid Perovskites -- 3.3.2 Tolerance Factor of Mixed‐Cation Perovskites -- 3.4 Phase Change by Temperature -- 3.5 Refined Structures of Hybrid Perovskites -- 3.5.1 Orientation of Center Cations -- 3.5.2 Relaxation of Center Cations -- Acknowledgment -- References -- Chapter 4 Optical Properties.
4.1 Introduction -- 4.2 Light Absorption in MAPbI3 -- 4.2.1 Visible/UV Region -- 4.2.2 IR Region -- 4.2.3 THz Region -- 4.3 Band Gap of Hybrid Perovskites -- 4.3.1 Band Gap Analysis of MAPbI3 -- 4.3.2 Band Gap of Basic Perovskites -- 4.3.3 Band Gap Variation in Perovskite Alloys -- 4.4 True Absorption Coefficient of MAPbI3 -- 4.4.1 Principles of Optical Measurements -- 4.4.2 Interpretation of α Variation -- 4.5 Universal Rules for Hybrid Perovskite Optical Properties -- 4.5.1 Variation with Center Cation -- 4.5.2 Variation with Halide Anion -- 4.6 Subgap Absorption Characteristics -- 4.7 Temperature Effect on Absorption Properties -- 4.8 Excitonic Properties of Hybrid Perovskites -- References -- Chapter 5 Physical Properties Determined by Density Functional Theory -- 5.1 Introduction -- 5.2 What Is DFT? -- 5.2.1 Basic Principles -- 5.2.2 Assumptions and Limitations -- 5.3 Crystal Structures Determined by DFT -- 5.3.1 Hybrid Perovskite Structures -- 5.3.2 Organic‐Center Cations -- 5.4 Band Structures -- 5.4.1 Band Structures of Hybrid Perovskites -- 5.4.2 Direct-Indirect Issue of Hybrid Perovskite -- 5.4.3 Density of States -- 5.4.4 Effective Mass -- 5.5 Band Gap -- 5.5.1 What Determines Band Gap? -- 5.5.2 Effect of Center Cation -- 5.5.3 Effect of Halide Anion -- 5.6 Defect Physics -- Acknowledgment -- References -- Chapter 6 Carrier Transport Properties -- 6.1 Introduction -- 6.2 Carrier Properties of Hybrid Perovskites -- 6.2.1 Self‐Doping in Hybrid Perovskites -- 6.2.2 Effect of Carrier Concentration on Mobility -- 6.3 Carrier Mobility of MAPbI3 -- 6.3.1 Variation of Mobility with Characterization Method -- 6.3.2 Temperature Dependence -- 6.3.3 Effect of Effective Mass -- 6.3.4 What Determines Maximum Mobility of MAPbI3? -- 6.4 Diffusion Length -- 6.5 Carrier Transport in Various Hybrid Perovskites -- References.
Chapter 7 Ferroelectric Properties -- 7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells -- 7.2 Ferroelectricity -- 7.2.1 Crystallographic Considerations -- 7.2.2 Ferroelectricity in Thin Films -- 7.2.3 Crystallography of MAPbI3 Thin Films -- 7.3 Probing Ferroelectricity on the Microscale -- 7.3.1 Atomic Force Microscopy -- 7.3.2 Piezoresponse Force Microscopy -- 7.3.3 Characterization of MAPbI3 Thin Films with sf‐PFM -- 7.3.4 Correlative Domain Characterization -- 7.3.4.1 Transmission Electron Microscopy -- 7.3.4.2 X‐ray Diffraction -- 7.3.4.3 Electron Backscatter Diffraction -- 7.3.4.4 Kelvin Probe Force Microscopy -- 7.3.5 Polarization Orientation -- 7.3.6 Ferroelastic Effects in MAPbI3 Thin Films -- 7.4 Ferroelectric Poling of MAPbI3 -- 7.4.1 AC Poling of MAPbI3 -- 7.4.2 Creeping Poling and Switching Events on the Microscopic Scale -- 7.4.3 Macroscopic Effects of Poling -- 7.5 Impact of Ferroelectricity on the Performance of Solar Cells -- 7.5.1 Pitfalls During Sample Measurements -- 7.5.2 Charge Carrier Dynamics in Solar Cells -- References -- Chapter 8 Photoluminescence Properties -- 8.1 Introduction -- 8.2 Overview of Luminescent Properties -- 8.3 Room‐Temperature PL Spectra of a Hybrid Perovskite Thin Film -- 8.4 Time‐Resolved PL of a Hybrid Perovskite -- 8.5 PL Quantum Efficiency -- 8.6 Temperature‐Dependent PL -- 8.7 Material and Device Characterization by PL Spectroscopy -- 8.7.1 Degradation and Healing of Hybrid Perovskites -- 8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Role of Grain Boundaries -- 9.1 Introduction -- 9.2 Role of Grain Boundaries in Device Performance -- 9.2.1 Potential Barrier at GBs and Charge Transport -- 9.2.2 Engineering of GB Properties -- 9.3 Ion Migration Through Grain Boundaries.
9.3.1 Enhanced Ion Transport at Grain Boundaries -- 9.3.2 Role of GBs for Ion Migration -- 9.4 Role of Grain Boundaries in Stability -- 9.4.1 MAPbI3 Hydrated Phase at GBs -- 9.4.2 Formation of Non‐perovskite Phase at GBs of FAPbI3 -- References -- Chapter 10 Roles of Center Cations -- 10.1 Introduction -- 10.2 Cubic Perovskite Phase Tolerance Factor -- 10.3 Thin Film Stability -- 10.4 Optoelectronic Property Variations -- 10.5 Solar Cell Performance -- References -- Part II Hybrid Perovskite Solar Cells -- Chapter 11 Operational Principles of Hybrid Perovskite Solar Cells -- 11.1 Introduction -- 11.2 Operation of Hybrid Perovskite Solar Cells -- 11.2.1 Operational Principle and Basic Structures -- 11.2.2 Band Alignment -- 11.3 Band Diagram of Hybrid Perovskite Solar Cells -- 11.3.1 Device Simulation -- 11.3.2 Experimental Observation -- 11.4 Refined Analyses of Hybrid Perovskite Solar Cells -- 11.4.1 Carrier Generation and Loss -- 11.4.2 Power Loss Mechanism -- 11.4.3 e‐ARC Software -- 11.5 What Determines Voc? -- 11.5.1 Effect of Interface -- 11.5.2 Effect of Passivation -- 11.5.3 Effect of Grain Boundary -- References -- Chapter 12 Efficiency Limits of Single and Tandem Solar Cells -- 12.1 Introduction -- 12.2 What Is the SQ Limit? -- 12.2.1 Physical Model -- 12.2.2 Blackbody Radiation -- 12.2.3 SQ Limit -- 12.3 Maximum Efficiencies of Perovskite Single Cells -- 12.3.1 Concept of Thin‐Film Limit -- 12.3.2 EQE Calculation Method -- 12.3.3 Maximum Efficiencies of Single Solar Cells -- 12.3.4 Performance‐Limiting Factors of Hybrid Perovskite Devices -- 12.4 Maximum Efficiency of Tandem Cells -- 12.4.1 Optical Model and Assumptions -- 12.4.2 Calculation of Tandem‐Cell EQE Spectra -- 12.4.3 Maximum Efficiencies of Tandem Devices -- 12.4.4 Realistic Maximum Efficiency of Tandem Cell -- 12.5 Free Software for Efficiency Limit Calculation -- References.
Chapter 13 Multi‐cation Hybrid Perovskite Solar Cells -- 13.1 Introduction -- 13.2 Types of A‐Site Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.1 Pb‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.2 Sn‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.3 Cation Selection in Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.3.1 Organic A‐Cations -- 13.3.2 Inorganic A‐Cations -- 13.4 Fabrication of Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.4.1 Traditional Fabrication Approach -- 13.4.2 Emerging Fabrication Technologies -- 13.5 Charge Transport Materials -- 13.6 Surface Passivation -- 13.7 Mixed B‐Cation Hybrid Organic-Inorganic Perovskite Solar Cells -- 13.8 Basic Characterization of Mixed‐Cation Hybrid Perovskite Solar Cells -- References -- Chapter 14 Tin Halide Perovskite Solar Cells -- 14.1 Introduction -- 14.1.1 Device Structure and Operating Principle -- 14.1.2 Crystal Structure -- 14.2 Tin Perovskite Solar Cells -- 14.2.1 Intrinsic Properties -- 14.2.2 Carrier Lifetime and Diffusion Length -- 14.3 The Status of Sn Perovskite Solar Cells -- 14.3.1 Different Type of Sn Perovskite Solar Cells -- 14.3.1.1 CsSnI3 -- 14.3.1.2 MASnI3 -- 14.3.1.3 FASnI3 -- 14.3.1.4 FAxMA1−xSnI3 -- 14.3.1.5 2D/3D FASnI3 -- 14.3.1.6 Sn-Ge mixed PSCs -- 14.3.2 Strategies to Improve the Efficiency -- 14.3.2.1 Film Fabrication Methods -- 14.3.2.2 Use of Reducing Agents -- 14.3.2.3 Doping Effect of Large Organic Cations -- 14.3.2.4 Device Engineering and Lattice Relaxation -- 14.4 Sn-Pb Perovskite Solar Cells -- 14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect) -- 14.4.2 Physical Properties -- 14.4.2.1 Intrinsic Carrier Concentration -- 14.4.2.2 Carrier Lifetime and Diffusion Length -- 14.5 The Status of Sn-Pb Perovskite Solar Cells -- 14.5.1 Different Types of Sn-Pb Perovskite Solar Cells -- 14.5.1.1 First Kind of Sn-Pb PSC absorber: MASnxPb1−xI3.
14.5.1.2 Multi Cation Sn-Pb Perovskites: (FA, MA, Cs) (Sn, Pb) (I, Br, Cl)3.
Record Nr. UNINA-9910555011903321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara
Hybrid perovskite solar cells : characteristics and operation / / editor, Hiroyuki Fujiwara
Edizione [1st edition.]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (606 pages)
Disciplina 621.381542
Soggetto topico Photovoltaic cells
Perovskite (Mineral) - Industrial applications
ISBN 3-527-82585-1
3-527-82584-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editor -- Chapter 1 Introduction -- 1.1 Hybrid Perovskite Solar Cells -- 1.2 Unique Natures of Hybrid Perovskites -- 1.2.1 Notable Characteristics of Hybrid Perovskites -- 1.2.2 Fundamental Properties of MAPbI3 -- 1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency? -- 1.3 Advantages of Hybrid Perovskite Solar Cells -- 1.3.1 Band Gap Tunability -- 1.3.2 High Voc -- 1.3.3 Low Temperature Coefficient -- 1.4 Challenges for Hybrid Perovskites -- 1.4.1 Requirement of Improved Stability -- 1.4.2 Large‐Area Solar Cells -- 1.4.3 Toxicity of Pb and Sn Compounds -- 1.5 Overview of this Book -- Acknowledgment -- References -- Chapter 2 Overview of Hybrid Perovskite Solar Cells -- 2.1 Introduction -- 2.2 Historical Backgrounds of Halide Perovskite Photovoltaics -- 2.3 Semiconductor Properties of Organo Lead Halide Perovskites -- 2.4 Working Principle of Perovskite Photovoltaics -- 2.5 Compositional Design of the Halide Perovskite Absorbers -- 2.6 Strategy for Stabilizing Perovskite Solar Cells -- 2.7 All Inorganic and Lead‐Free Perovskites -- 2.8 Development of High‐Efficiency Tandem Solar Cells -- 2.9 Conclusion and Perspectives -- References -- Part I Characteristics of Hybrid Perovskites -- Chapter 3 Crystal Structures -- 3.1 What Is Hybrid Perovskite? -- 3.2 Structures of Hybrid Perovskite Crystals -- 3.2.1 Crystal Structure of MAPbI3 -- 3.2.2 Lattice Parameters of Hybrid Perovskites -- 3.2.3 Secondary Phase Materials -- 3.3 Tolerance Factor -- 3.3.1 Tolerance Factor of Hybrid Perovskites -- 3.3.2 Tolerance Factor of Mixed‐Cation Perovskites -- 3.4 Phase Change by Temperature -- 3.5 Refined Structures of Hybrid Perovskites -- 3.5.1 Orientation of Center Cations -- 3.5.2 Relaxation of Center Cations -- Acknowledgment -- References -- Chapter 4 Optical Properties.
4.1 Introduction -- 4.2 Light Absorption in MAPbI3 -- 4.2.1 Visible/UV Region -- 4.2.2 IR Region -- 4.2.3 THz Region -- 4.3 Band Gap of Hybrid Perovskites -- 4.3.1 Band Gap Analysis of MAPbI3 -- 4.3.2 Band Gap of Basic Perovskites -- 4.3.3 Band Gap Variation in Perovskite Alloys -- 4.4 True Absorption Coefficient of MAPbI3 -- 4.4.1 Principles of Optical Measurements -- 4.4.2 Interpretation of α Variation -- 4.5 Universal Rules for Hybrid Perovskite Optical Properties -- 4.5.1 Variation with Center Cation -- 4.5.2 Variation with Halide Anion -- 4.6 Subgap Absorption Characteristics -- 4.7 Temperature Effect on Absorption Properties -- 4.8 Excitonic Properties of Hybrid Perovskites -- References -- Chapter 5 Physical Properties Determined by Density Functional Theory -- 5.1 Introduction -- 5.2 What Is DFT? -- 5.2.1 Basic Principles -- 5.2.2 Assumptions and Limitations -- 5.3 Crystal Structures Determined by DFT -- 5.3.1 Hybrid Perovskite Structures -- 5.3.2 Organic‐Center Cations -- 5.4 Band Structures -- 5.4.1 Band Structures of Hybrid Perovskites -- 5.4.2 Direct-Indirect Issue of Hybrid Perovskite -- 5.4.3 Density of States -- 5.4.4 Effective Mass -- 5.5 Band Gap -- 5.5.1 What Determines Band Gap? -- 5.5.2 Effect of Center Cation -- 5.5.3 Effect of Halide Anion -- 5.6 Defect Physics -- Acknowledgment -- References -- Chapter 6 Carrier Transport Properties -- 6.1 Introduction -- 6.2 Carrier Properties of Hybrid Perovskites -- 6.2.1 Self‐Doping in Hybrid Perovskites -- 6.2.2 Effect of Carrier Concentration on Mobility -- 6.3 Carrier Mobility of MAPbI3 -- 6.3.1 Variation of Mobility with Characterization Method -- 6.3.2 Temperature Dependence -- 6.3.3 Effect of Effective Mass -- 6.3.4 What Determines Maximum Mobility of MAPbI3? -- 6.4 Diffusion Length -- 6.5 Carrier Transport in Various Hybrid Perovskites -- References.
Chapter 7 Ferroelectric Properties -- 7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells -- 7.2 Ferroelectricity -- 7.2.1 Crystallographic Considerations -- 7.2.2 Ferroelectricity in Thin Films -- 7.2.3 Crystallography of MAPbI3 Thin Films -- 7.3 Probing Ferroelectricity on the Microscale -- 7.3.1 Atomic Force Microscopy -- 7.3.2 Piezoresponse Force Microscopy -- 7.3.3 Characterization of MAPbI3 Thin Films with sf‐PFM -- 7.3.4 Correlative Domain Characterization -- 7.3.4.1 Transmission Electron Microscopy -- 7.3.4.2 X‐ray Diffraction -- 7.3.4.3 Electron Backscatter Diffraction -- 7.3.4.4 Kelvin Probe Force Microscopy -- 7.3.5 Polarization Orientation -- 7.3.6 Ferroelastic Effects in MAPbI3 Thin Films -- 7.4 Ferroelectric Poling of MAPbI3 -- 7.4.1 AC Poling of MAPbI3 -- 7.4.2 Creeping Poling and Switching Events on the Microscopic Scale -- 7.4.3 Macroscopic Effects of Poling -- 7.5 Impact of Ferroelectricity on the Performance of Solar Cells -- 7.5.1 Pitfalls During Sample Measurements -- 7.5.2 Charge Carrier Dynamics in Solar Cells -- References -- Chapter 8 Photoluminescence Properties -- 8.1 Introduction -- 8.2 Overview of Luminescent Properties -- 8.3 Room‐Temperature PL Spectra of a Hybrid Perovskite Thin Film -- 8.4 Time‐Resolved PL of a Hybrid Perovskite -- 8.5 PL Quantum Efficiency -- 8.6 Temperature‐Dependent PL -- 8.7 Material and Device Characterization by PL Spectroscopy -- 8.7.1 Degradation and Healing of Hybrid Perovskites -- 8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Role of Grain Boundaries -- 9.1 Introduction -- 9.2 Role of Grain Boundaries in Device Performance -- 9.2.1 Potential Barrier at GBs and Charge Transport -- 9.2.2 Engineering of GB Properties -- 9.3 Ion Migration Through Grain Boundaries.
9.3.1 Enhanced Ion Transport at Grain Boundaries -- 9.3.2 Role of GBs for Ion Migration -- 9.4 Role of Grain Boundaries in Stability -- 9.4.1 MAPbI3 Hydrated Phase at GBs -- 9.4.2 Formation of Non‐perovskite Phase at GBs of FAPbI3 -- References -- Chapter 10 Roles of Center Cations -- 10.1 Introduction -- 10.2 Cubic Perovskite Phase Tolerance Factor -- 10.3 Thin Film Stability -- 10.4 Optoelectronic Property Variations -- 10.5 Solar Cell Performance -- References -- Part II Hybrid Perovskite Solar Cells -- Chapter 11 Operational Principles of Hybrid Perovskite Solar Cells -- 11.1 Introduction -- 11.2 Operation of Hybrid Perovskite Solar Cells -- 11.2.1 Operational Principle and Basic Structures -- 11.2.2 Band Alignment -- 11.3 Band Diagram of Hybrid Perovskite Solar Cells -- 11.3.1 Device Simulation -- 11.3.2 Experimental Observation -- 11.4 Refined Analyses of Hybrid Perovskite Solar Cells -- 11.4.1 Carrier Generation and Loss -- 11.4.2 Power Loss Mechanism -- 11.4.3 e‐ARC Software -- 11.5 What Determines Voc? -- 11.5.1 Effect of Interface -- 11.5.2 Effect of Passivation -- 11.5.3 Effect of Grain Boundary -- References -- Chapter 12 Efficiency Limits of Single and Tandem Solar Cells -- 12.1 Introduction -- 12.2 What Is the SQ Limit? -- 12.2.1 Physical Model -- 12.2.2 Blackbody Radiation -- 12.2.3 SQ Limit -- 12.3 Maximum Efficiencies of Perovskite Single Cells -- 12.3.1 Concept of Thin‐Film Limit -- 12.3.2 EQE Calculation Method -- 12.3.3 Maximum Efficiencies of Single Solar Cells -- 12.3.4 Performance‐Limiting Factors of Hybrid Perovskite Devices -- 12.4 Maximum Efficiency of Tandem Cells -- 12.4.1 Optical Model and Assumptions -- 12.4.2 Calculation of Tandem‐Cell EQE Spectra -- 12.4.3 Maximum Efficiencies of Tandem Devices -- 12.4.4 Realistic Maximum Efficiency of Tandem Cell -- 12.5 Free Software for Efficiency Limit Calculation -- References.
Chapter 13 Multi‐cation Hybrid Perovskite Solar Cells -- 13.1 Introduction -- 13.2 Types of A‐Site Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.1 Pb‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.2.2 Sn‐Based Multi‐cation Hybrid Perovskite Solar Cells -- 13.3 Cation Selection in Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.3.1 Organic A‐Cations -- 13.3.2 Inorganic A‐Cations -- 13.4 Fabrication of Mixed‐Cation Hybrid Perovskite Solar Cells -- 13.4.1 Traditional Fabrication Approach -- 13.4.2 Emerging Fabrication Technologies -- 13.5 Charge Transport Materials -- 13.6 Surface Passivation -- 13.7 Mixed B‐Cation Hybrid Organic-Inorganic Perovskite Solar Cells -- 13.8 Basic Characterization of Mixed‐Cation Hybrid Perovskite Solar Cells -- References -- Chapter 14 Tin Halide Perovskite Solar Cells -- 14.1 Introduction -- 14.1.1 Device Structure and Operating Principle -- 14.1.2 Crystal Structure -- 14.2 Tin Perovskite Solar Cells -- 14.2.1 Intrinsic Properties -- 14.2.2 Carrier Lifetime and Diffusion Length -- 14.3 The Status of Sn Perovskite Solar Cells -- 14.3.1 Different Type of Sn Perovskite Solar Cells -- 14.3.1.1 CsSnI3 -- 14.3.1.2 MASnI3 -- 14.3.1.3 FASnI3 -- 14.3.1.4 FAxMA1−xSnI3 -- 14.3.1.5 2D/3D FASnI3 -- 14.3.1.6 Sn-Ge mixed PSCs -- 14.3.2 Strategies to Improve the Efficiency -- 14.3.2.1 Film Fabrication Methods -- 14.3.2.2 Use of Reducing Agents -- 14.3.2.3 Doping Effect of Large Organic Cations -- 14.3.2.4 Device Engineering and Lattice Relaxation -- 14.4 Sn-Pb Perovskite Solar Cells -- 14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect) -- 14.4.2 Physical Properties -- 14.4.2.1 Intrinsic Carrier Concentration -- 14.4.2.2 Carrier Lifetime and Diffusion Length -- 14.5 The Status of Sn-Pb Perovskite Solar Cells -- 14.5.1 Different Types of Sn-Pb Perovskite Solar Cells -- 14.5.1.1 First Kind of Sn-Pb PSC absorber: MASnxPb1−xI3.
14.5.1.2 Multi Cation Sn-Pb Perovskites: (FA, MA, Cs) (Sn, Pb) (I, Br, Cl)3.
Record Nr. UNINA-9910830531003321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE First World Conference on Photovoltaic Energy
IEEE First World Conference on Photovoltaic Energy
Pubbl/distr/stampa [Place of publication not identified], : IEEE, 1995
Descrizione fisica 1 online resource : illustrations
Disciplina 621.381542
Soggetto topico Photovoltaic cells
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996209191103316
[Place of publication not identified], : IEEE, 1995
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic (PV) Systems / / Institute of Electrical and Electronics Engineers
IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic (PV) Systems / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York : , : IEEE, , 2008
Descrizione fisica 1 online resource (ix, 22 pages) : illustrations
Disciplina 621.381542
Soggetto topico Photovoltaic cells
Photovoltaic power systems
ISBN 0-7381-5356-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 1562-2007 - IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic
IEEE Std 1562-2007: IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic (PV) Systems
IEEE Std 1562-2007
IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic
Record Nr. UNINA-9910141785803321
New York : , : IEEE, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic (PV) Systems / / Institute of Electrical and Electronics Engineers
IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic (PV) Systems / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York : , : IEEE, , 2008
Descrizione fisica 1 online resource (ix, 22 pages) : illustrations
Disciplina 621.381542
Soggetto topico Photovoltaic cells
Photovoltaic power systems
ISBN 0-7381-5356-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 1562-2007 - IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic
IEEE Std 1562-2007: IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic (PV) Systems
IEEE Std 1562-2007
IEEE Guide for Array and Battery Sizing in Stand-Alone Photovoltaic
Record Nr. UNISA-996278274503316
New York : , : IEEE, , 2008
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui