top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
GaN transistors for efficient power conversion / / Alex Lidow, Michael de Rooij, Johan Strydom, David Reusch, John Glaser
GaN transistors for efficient power conversion / / Alex Lidow, Michael de Rooij, Johan Strydom, David Reusch, John Glaser
Autore Lidow Alex
Edizione [Third edition.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , 2020
Disciplina 621.3815284
Soggetto topico Field-effect transistors - Materials
Power transistors - Materials
Gallium nitride
Transistors à effet de champ - Matériaux
Transistors de puissance - Matériaux
Nitrure de gallium
ISBN 1-5231-2819-4
1-119-59440-5
1-119-59437-5
1-119-59442-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830227303321
Lidow Alex  
Hoboken, NJ : , : John Wiley & Sons, Inc., , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graphene Field-Effect Transistors : Advanced Bioelectronic Devices for Sensing Applications
Graphene Field-Effect Transistors : Advanced Bioelectronic Devices for Sensing Applications
Autore Azzaroni Omar
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (446 pages)
Disciplina 621.3815284
Altri autori (Persone) KnollWolfgang
ISBN 3-527-84337-X
3-527-84339-6
3-527-84338-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 2D Electronic Circuits for Sensing Applications -- 1.1 Introduction -- 1.2 Graphene Inductors -- 1.2.1 Modeling of Graphene Inductors -- 1.3 Graphene Capacitors -- 1.3.1 Modeling Graphene Capacitors -- 1.4 2D Material Transistors -- 1.4.1 Most Common Topologies for Transistors -- 1.4.2 Modeling of 2D Materials-Based Transistors -- 1.5 2D Material Diodes -- 1.5.1 Most Common Topologies -- 1.5.2 Modeling of 2D Materials-Based Diodes -- 1.6 Graphene Devices -- 1.6.1 Graphene Frequency Multipliers -- 1.6.2 Graphene Mixers -- 1.6.3 Graphene Oscillators -- 1.6.3.1 Ring Oscillators -- 1.6.3.2 LC Tank Oscillators -- 1.7 Conclusion -- References -- Chapter 2 Large Graphene Oxide for Sensing Applications -- 2.1 Graphene Oxide (GO) -- 2.2 GO as Biosensors -- 2.3 Large GO -- 2.4 Mechanism of Large GO via Modified Hummers Method -- 2.5 Large GO (Modified Hummers Method) Biosensors -- 2.6 Mechanism of Large GO via Reduced GO Growth -- 2.7 Large GO (Reduced GO Growth) Biosensors -- 2.8 Conclusion -- 2.9 Further Developments -- References -- Chapter 3 Solution-Gated Reduced Graphene Oxide FETs: Device Fabrication and Biosensors Applications -- 3.1 Introduction -- 3.2 Graphene, Graphene Oxide, and Reduced Graphene Oxide -- 3.2.1 Chemical Reduction -- 3.2.2 Thermal Reduction -- 3.2.3 Electrochemical Reduction -- 3.3 rGO-Based Solution-Gated FETs -- 3.3.1 Manufacturing Strategies -- 3.4 Applications of rGO SG-FETs as Biosensors -- 3.4.1 rGO Functionalization -- 3.4.2 Enzymatic Biosensors -- 3.4.3 Affinity Biosensors -- 3.4.4 Debye Length Screening and How to Overcome It -- 3.5 Final Remarks and Challenges -- Acknowledgments -- References -- Chapter 4 Graphene-Based Electronic Biosensors for Disease Diagnostics -- 4.1 Introduction -- 4.1.1 A Promise for Diagnostics.
4.1.2 Principle of Graphene FET Sensor -- 4.2 Device Fabrication Process -- 4.2.1 Graphene Synthesis -- 4.2.2 Graphene Transfer Over Substrates -- 4.2.3 Fabrication of GFET -- 4.2.4 New Developments -- 4.3 Functionalization and Passivation -- 4.3.1 Probe Molecules -- 4.3.2 Immobilization of Probe Molecules -- 4.3.3 Debye Length -- 4.3.4 Passivation -- 4.4 CVD GFETs for Diagnostics -- 4.4.1 Graphene-Based FET Biosensors for Nucleic Acids -- 4.4.2 Graphene-Based FET Biosensors for Antibody-Antigen Interactions -- 4.4.3 Graphene-Based FET Biosensors for Enzymatic Biosensors -- 4.4.4 Graphene-Based FET Biosensors for Sensing of Small Ions -- 4.5 Discussion -- 4.5.1 Summary -- 4.5.2 Challenges -- 4.5.3 Future Perspectives -- References -- Chapter 5 Graphene Field-Effect Transistors: Advanced Bioelectronic Devices for Sensing Applications -- 5.1 Introduction -- 5.1.1 Bioelectronic Nose Using Olfactory Receptor-Conjugated Graphene -- 5.1.2 Bioelectronics for Diagnosis Using Bioprobe-Modified Graphene -- 5.1.3 Biosensors for Environmental Component Monitoring Using Graphene -- 5.2 Conclusion -- Acknowledgments -- References -- Chapter 6 Thin-Film Transistors Based on Reduced Graphene Oxide for Biosensing -- 6.1 Introduction -- 6.2 Working Principle of TFT-Based Biosensing -- 6.3 TFTs Based on rGO for Biosensing -- 6.3.1 Protein Detection -- 6.3.2 Metal-Ion Detection -- 6.3.3 Nucleic Acid Detection -- 6.3.4 Small Biomolecular Biosensor -- 6.3.5 Living-Cell Biosensor -- 6.3.6 Gas Detection -- 6.4 Conclusion -- References -- Chapter 7 Towards Graphene-FET Health Sensors: Hardware and Implementation Considerations -- 7.1 Introduction to Health Sensing -- 7.2 Graphene-FET in Liquid for Sensing -- 7.2.1 Graphene Transistors -- 7.2.2 Graphene Hall Structures in Liquid -- 7.2.3 Graphene Membrane Transistors -- 7.3 Device Implementation Considerations.
7.3.1 Hardware and Instrumentation -- 7.3.2 Biostability and Biocompatibility -- 7.3.3 Medical Imaging Compatibility -- References -- Chapter 8 Quadratic Fit Analysis of the Nonlinear Transconductance of Disordered Bilayer Graphene Field-Effect Biosensors Functionalized with Pyrene Derivatives -- 8.1 Introduction -- 8.2 Fabrication of Graphene-Based Field-Effect Biosensors -- 8.3 Fundamental Sensing Parameters of Graphene-Based Field-Effect Biosensors -- 8.4 Disordered Bilayer Graphene Field-Effect Biosensors Functionalized with Pyrene Derivatives -- 8.5 Quadratic Fit Analysis of the Nonlinear Transconductance of Disordered Bilayer Graphene Field-Effect Biosensors -- 8.6 Conclusion -- Acknowledgment -- References -- Chapter 9 Theoretical and Experimental Characterization of Molecular Self-Assembly on Graphene Films -- 9.1 Introduction -- 9.2 Experimental Tools to Characterize Molecular Functionalization of Graphene -- 9.2.1 Considering the Three Distinct Techniques Available for Functionalizing Graphene Are the Outcomes of the Three Functionalization Techniques Consistent, Similar, Reproducible Across all Three Techniques? -- 9.2.2 What Tools and Methods Are Available to Perform Such a Characterization of Molecular Self-Assembly Across the Nano to Macro Scale? -- 9.3 Atomistic Insights to Guide Molecular Functionalization of Graphene -- References -- Chapter 10 The Holy Grail of Surface Chemistry of C VD Graphene: Effect on Sensing of cTNI as Model Analyte -- 10.1 Introduction -- 10.2 General Overview of C VD Graphene Production, Substrate Transfer and Characterization -- 10.3 Evaluation of Graphene Topographical Quality -- 10.4 CVD Graphene for FET-Based Sensing -- 10.4.1 Diazonium Chemistry on CVD Graphene -- 10.4.2 Pyrene Chemistry on CVD Graphene -- 10.5 Conclusion -- References.
Chapter 11 Sensing Mechanisms in Graphene Field-Effect Transistors Operating in Liquid -- 11.1 Introduction -- 11.2 Field-Effect Operation in Liquid Compared to Operation in Air -- 11.3 Caveats When Operating FETs in Liquid -- 11.4 Graphene FETs in Liquid -- 11.5 Measurement Modes -- 11.6 Using FETs for Sensing in Liquid - Sensing Mechanisms -- 11.7 The Electrochemical Perspective -- 11.8 The GLI and pH Sensing -- 11.9 Detection of Nucleic Acids -- 11.10 Other Examples -- 11.11 Concluding Remarks -- References -- Chapter 12 Surface Modification Strategies to Increase the Sensing Length in Electrolyte-Gated Graphene Field-Effect Transistors -- 12.1 Introduction -- 12.2 Ion-Exclusion and Donnan Potential -- 12.3 Surface Modification with Polymer Films -- 12.4 Surface Modification with Lipid Layers -- 12.5 Surface Modification with Mesoporous Materials -- 12.6 Kinetic Cost of Extending the Sensing Length -- 12.7 Conclusions -- References -- Chapter 13 Hybridized Graphene Field-Effect Transistors for Gas Sensing Applications -- 13.1 Introduction -- 13.2 Graphene -- 13.3 Graphene FET -- 13.4 Graphene in Gas Sensing -- 13.5 Graphene FET for Gas Sensing -- 13.6 Hybrid Graphene FET for Gas Sensing -- 13.7 Conclusion -- Acknowledgments -- References -- Chapter 14 Polyelectrolyte-Enzyme Assemblies Integrated into Graphene Field-Effect Transistors for Biosensing Applications -- 14.1 Introduction -- 14.2 Field-Effect Transistors Based on Reduced Graphene Oxide -- 14.3 Enzyme-Based GFET Sensors Fabricated via Layer-by-Layer Assembly -- 14.3.1 Layer-by-Layer (LbL) Assemblies of Polyethylenimine and Urease onto Reduced Graphene-Oxide-Based Field-Effect Transistors (rGO FETs) for the Detection of Urea -- 14.3.2 Ultrasensitive Sensing Through Enzymatic Cascade Reactions on Graphene-Based FETs -- 14.4 Conclusions -- References.
Chapter 15 Graphene Field-Effect Transistor Biosensor for Detection of Heart Failure-Related Biomarker in Whole Blood -- 15.1 Introduction -- 15.2 Experimental Systems and Procedures -- 15.2.1 Fabrication of GFET Sensor -- 15.2.2 Decoration of Platinum Nanoparticles -- 15.2.3 Surface Functionalization -- 15.2.4 Immunodetection in Whole Blood -- 15.2.5 Electrical Measurements -- 15.3 Sensing Principle of GFET for BNP Detection -- 15.4 Device Characterization -- 15.5 Sensing Performance -- 15.5.1 Stability and Reproducibility -- 15.5.2 Selectivity -- 15.5.3 Sensitivity -- 15.6 Clinical Application Prospects -- 15.7 Advantages, Limitations, and Outlook of the FET-Based BNP Assay -- References -- Chapter 16 Enzymatic Biosensors Based on the Electrochemical Functionalization of Graphene Field-Effect Transistors with Conducting Polymers -- 16.1 Introduction -- 16.2 Functionalization of Graphene Transistors with Poly(3-amino-benzylamine-co-aniline) Nanofilms -- 16.3 Construction of Acetylcholine Biosensors Based on GFET Devices Functionalized with Electropolymerized Poly(3-amino-benzylamine-co-aniline) Nanofilms -- 16.4 Glucose Detection by Graphene Field-Effect Transistors Functionalized with Electropolymerized Poly(3-amino-benzylamine-co-aniline) Nanofilms -- 16.5 Conclusions -- References -- Chapter 17 Graphene Field-Effect Transistors for Sensing Stress and Fatigue Biomarkers -- 17.1 Introduction -- 17.2 Molecular Biomarkers -- 17.3 Graphene Field-Effect Transistor Based Biosensors -- 17.3.1 Graphene -- 17.3.2 Structure of Graphene Field-Effect Transistors -- 17.3.3 Sensing Mechanism of GFET Biosensors -- 17.4 GFET Biosensor Fabrication -- 17.4.1 Graphene Production -- 17.4.2 Device Fabrication -- 17.4.3 Graphene Functionalization -- 17.5 GFET-Based Stress and Fatigue Biosensors -- 17.6 Flexible, Wearable GFET Biosensors, and Biosensor Systems.
17.7 Current Challenges and Future Perspective.
Record Nr. UNINA-9910830375003321
Azzaroni Omar  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Growth of High Permittivity Dielectrics by High Pressure Sputtering from Metallic Targets / / by María Ángela Pampillón Arce
Growth of High Permittivity Dielectrics by High Pressure Sputtering from Metallic Targets / / by María Ángela Pampillón Arce
Autore Pampillón Arce María Ángela
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XXIII, 164 p. 116 illus., 6 illus. in color.)
Disciplina 621.3815284
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Surfaces (Physics)
Interfaces (Physical sciences)
Thin films
Nanotechnology
Electronic circuits
Surface and Interface Science, Thin Films
Electronic Circuits and Devices
Nanotechnology and Microengineering
ISBN 3-319-66607-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Fabrication Techniques -- Characterization Techniques -- Thermal Oxidation of Gd2o3 -- Plasma Oxidation of Gd2o3 and Sc2o3 -- Gadolinium Scandate -- Interface Scavenging -- Gd2o3 on Inp Substrates -- Conclusions and Future Work.
Record Nr. UNINA-9910254588603321
Pampillón Arce María Ángela  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
HEMT technology and applications / / editors, Trupti Ranjan Lenka, Hieu Pham Trung Nguyen
HEMT technology and applications / / editors, Trupti Ranjan Lenka, Hieu Pham Trung Nguyen
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (246 pages)
Disciplina 621.3815284
Collana Springer tracts in mechanical engineering
Soggetto topico Modulation-doped field-effect transistors
ISBN 981-19-2165-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910627239303321
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
HEMTs and HBTs : devices, fabrication, and circuits / Fazal Ali, Aditya Gupta editors
HEMTs and HBTs : devices, fabrication, and circuits / Fazal Ali, Aditya Gupta editors
Pubbl/distr/stampa Boston ; London, : Artech house, c1991
Descrizione fisica XII, 377 p. : ill. ; 24 cm.
Disciplina 621.3815
621.3815284
Collana The Artech House microwave library
Soggetto topico Transistori a effetto di campo
ISBN 0890064016
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti HEMTs & HBTs. -
Record Nr. UNISANNIO-MIL0075214
Boston ; London, : Artech house, c1991
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
IEEE standard for test methods for the characterization of organic transistors and materials / / Institute of Electrical and Electronics Engineers
IEEE standard for test methods for the characterization of organic transistors and materials / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY : , : IEEE, , 2004
Descrizione fisica 1 online resource (vi, 13 pages)
Disciplina 621.3815284
Soggetto topico Field-effect transistors
Organic semiconductors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1620-2004
Record Nr. UNINA-9910147230703321
New York, NY : , : IEEE, , 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE standard for test methods for the characterization of organic transistors and materials / / Institute of Electrical and Electronics Engineers
IEEE standard for test methods for the characterization of organic transistors and materials / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY : , : IEEE, , 2004
Descrizione fisica 1 online resource (vi, 13 pages)
Disciplina 621.3815284
Soggetto topico Field-effect transistors
Organic semiconductors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1620-2004
Record Nr. UNISA-996278279303316
New York, NY : , : IEEE, , 2004
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Indium phosphide HBT in thermally optimized periphery for applications up to 300 GHz / / vorgelegt von M. Eng. and Tech. Ksenia Nosaeva
Indium phosphide HBT in thermally optimized periphery for applications up to 300 GHz / / vorgelegt von M. Eng. and Tech. Ksenia Nosaeva
Autore Nosaeva Ksenia
Edizione [1. Auflage.]
Pubbl/distr/stampa Gottingen, [Germany] : , : Cuvillier Verlag, , 2016
Descrizione fisica 1 online resource (155 pages) : illustrations (some color), tables, graphs
Disciplina 621.3815284
Collana Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut fur Hochstfrequenztechnik
Soggetto topico Modulation-doped field-effect transistors
Soggetto genere / forma Electronic books.
ISBN 3-7369-8287-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910511640503321
Nosaeva Ksenia  
Gottingen, [Germany] : , : Cuvillier Verlag, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Indium phosphide HBT in thermally optimized periphery for applications up to 300 GHz / / vorgelegt von M. Eng. and Tech. Ksenia Nosaeva
Indium phosphide HBT in thermally optimized periphery for applications up to 300 GHz / / vorgelegt von M. Eng. and Tech. Ksenia Nosaeva
Autore Nosaeva Ksenia
Edizione [1. Auflage.]
Pubbl/distr/stampa Gottingen, [Germany] : , : Cuvillier Verlag, , 2016
Descrizione fisica 1 online resource (155 pages) : illustrations (some color), tables, graphs
Disciplina 621.3815284
Collana Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut fur Hochstfrequenztechnik
Soggetto topico Modulation-doped field-effect transistors
ISBN 3-7369-8287-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910794942703321
Nosaeva Ksenia  
Gottingen, [Germany] : , : Cuvillier Verlag, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Indium phosphide HBT in thermally optimized periphery for applications up to 300 GHz / / vorgelegt von M. Eng. and Tech. Ksenia Nosaeva
Indium phosphide HBT in thermally optimized periphery for applications up to 300 GHz / / vorgelegt von M. Eng. and Tech. Ksenia Nosaeva
Autore Nosaeva Ksenia
Edizione [1. Auflage.]
Pubbl/distr/stampa Gottingen, [Germany] : , : Cuvillier Verlag, , 2016
Descrizione fisica 1 online resource (155 pages) : illustrations (some color), tables, graphs
Disciplina 621.3815284
Collana Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut fur Hochstfrequenztechnik
Soggetto topico Modulation-doped field-effect transistors
ISBN 3-7369-8287-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910821367203321
Nosaeva Ksenia  
Gottingen, [Germany] : , : Cuvillier Verlag, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui