top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
SOI lubistors : lateral, unidirectional, bipolar-type insulated-gate transistors / / Yasuhisa Omura
SOI lubistors : lateral, unidirectional, bipolar-type insulated-gate transistors / / Yasuhisa Omura
Autore Omura Y (Yasuhisa)
Pubbl/distr/stampa [Hoboken, New Jersey] : , : Wiley, , 2013
Descrizione fisica 1 online resource (319 p.)
Disciplina 621.3815/28
Soggetto topico Insulated gate bipolar transistors
Silicon-on-insulator technology
ISBN 1-118-48793-1
1-118-48791-5
1-118-48792-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- Acknowledgements xv -- Introduction to an Exotic Device World xvii -- Part One BRIEF REVIEWAND MODERN APPLICATIONS OF PN-JUNCTION DEVICES -- 1 Concept of an Ideal pn Junction 3 -- References 4 -- 2 Understanding the Non-ideal pn Junction - Theoretical Reconsideration 7 -- 2.1 Introduction 7 -- 2.2 Bulk pn-Junction Diode 8 -- 2.2.1 Assumptions 8 -- 2.2.2 Model A - Low Doping Case 9 -- 2.2.3 Model B - High Doping Case 18 -- 2.3 Bulk pn-Junction Diode - Reverse Bias 24 -- 2.3.1 Model A - Low Doping Case 24 -- 2.3.2 Model B - High Doping Case 25 -- 2.4 The Insulated-Gate pn Junction of the SOI Lubistor - Forward Bias 32 -- 2.4.1 The Positive Gate Voltage Condition 32 -- 2.4.2 The Negative Gate Voltage Condition 35 -- 2.5 The Insulated-Gate pn Junction of the -- SOI Lubistor - Reverse Bias 35 -- References 37 -- 3 Modern Applications of the pn Junction 39 -- References 40 -- Part Two PHYSICS AND MODELING OF SOI LUBISTORS - THICK-FILM DEVICES -- 4 Proposal of the Lateral, Unidirectional, Bipolar-Type Insulated-Gate Transistor (Lubistor) 43 -- 4.1 Introduction 43 -- 4.2 Device Structure and Parameters 43 -- 4.3 Discussion of Current-Voltage Characteristics 45 -- 4.4 Summary 47 -- References 47 -- 5 Experimental Consideration for Modeling of Lubistor Operation 49 -- 5.1 Introduction 49 -- 5.2 Experimental Apparatus 49 -- 5.3 Current-Voltage Characteristics of Lubistors 52 -- 5.4 Lubistor Potential Profiles and Features 56 -- 5.5 Discussion 57 -- 5.5.1 Simplified Analysis of Lubistor Operation 57 -- 5.5.2 On the Design of Lubistors 60 -- 5.6 Summary 61 -- References 61 -- 6 Modeling of Lubistor Operation Without an EFS Layer for Circuit Simulations 63 -- 6.1 Introduction 63 -- 6.2 Device Structure and Measurement System 63 -- 6.3 Equivalent Circuit Models of an SOI Lubistor 65 -- 6.3.1 Device Simulation 65 -- 6.3.2 Equivalent Circuit Models 68 -- 6.4 Summary 72 -- References 73 -- 7 Noise Characteristics and Modeling of Lubistor 75 -- 7.1 Introduction 75 -- 7.2 Experiments 75.
7.2.1 Device Structure 75 -- 7.2.2 Measurement System 77 -- 7.3 Results and Discussion 77 -- 7.3.1 I-V Characteristics of an SOI Lubistor and a Simple Analytical Model 77 -- 7.3.2 Noise Spectral Density of SOI Lubistors and Their Feature 81 -- 7.3.3 Advanced Analysis of Anode Noise Spectral Density 83 -- 7.4 Summary 86 -- References 86 -- 8 Supplementary Study on Buried Oxide Characterization 89 -- 8.1 Introduction 89 -- 8.2 Physical Model for the Transition Layer 90 -- 8.3 Capacitance Simulation 93 -- 8.3.1 A Structure to Evaluate Capacitance 93 -- 8.3.2 Numerical Simulation Technique 94 -- 8.4 Device Fabrication 95 -- 8.5 Results and Discussion 96 -- 8.5.1 Electrode-to-Electrode Capacitance Dependence on Frequency 96 -- 8.5.2 Drain-to-Substrate Capacitance Dependence on Bias 98 -- 8.5.3 Electrode-to-Electrode Capacitance Dependence on Transition Layer Thickness 101 -- 8.6 Summary 101 -- References 102 -- Part Three PHYSICS AND MODELING OF SOI LUBISTORS - THIN-FILM DEVICES -- 9 Negative Conductance Properties in Extremely Thin SOI Lubistors 105 -- 9.1 Introduction 105 -- 9.2 Device Fabrication and Measurements 105 -- 9.3 Results and Discussion 106 -- 9.4 Summary 109 -- References 109 -- 10 Two-Dimensionally Confined Injection Phenomena at Low Temperatures in Sub-10-nm-Thick SOI Lubistors 111 -- 10.1 Introduction 111 -- 10.2 Experiments 111 -- 10.2.1 Anode Common Configuration 113 -- 10.2.2 Cathode Common Configuration 113 -- 10.3 Physical Models and Simulations 114 -- 10.3.1 Fundamental Models 114 -- 10.3.2 Theoretical Simulations 118 -- 10.3.3 Influences on Characteristics of Extremely Ultra-Thin SOI MOSFET Devices 122 -- 10.4 Summary 122 -- Appendix 10A: Intrinsic Carrier Concentration (niq) and the Fermi Level in 2DSS 122 -- Appendix 10B: Calculation of Electron and Hole Densities in 2DSS 125 -- References 125 -- 11 Two-Dimensional Quantization Effect on Indirect Tunneling in SOI Lubistors with a Thin Silicon Layer 127 -- 11.1 Introduction 127 -- 11.2 Experimental Results 128.
11.2.1 Junction Current Dependence on Anode Voltage 128 -- 11.2.2 Junction Current Dependence on Gate Voltage 132 -- 11.3 Theoretical Discussion 134 -- 11.3.1 Qualitative Consideration of the Low-Dimensional Indirect Tunneling Process 134 -- 11.3.2 Theoretical Formulations of Tunneling Current and Discussion 134 -- 11.4 Summary 140 -- Appendix 11A: Wave Function Coupling Effect in the Lateral Two-Dimensional-System-to-Three-Dimensional-System (2D-to-3D) Tunneling Process 141 -- References 141 -- 12 Experimental Study of Two-Dimensional Confinement Effects on Reverse-Biased Current Characteristics of Ultra-Thin SOI Lubistors 143 -- 12.1 Introduction 143 -- 12.2 Device Structures and Experimental Apparatus 144 -- 12.3 Results and Discussion 145 -- 12.3.1 I-V Characteristics under the Reverse-Biased Condition 145 -- 12.4 Summary 151 -- Appendix 12A: Derivation of Equations (12.6) and (12.9) 151 -- References 153 -- 13 Supplementary Consideration of I-V Characteristics of Forward-Biased Ultra-Thin Lubistors 155 -- 13.1 Introduction 155 -- 13.2 Device Structures and Bias Configuration 155 -- 13.3 Results and Discussion 156 -- 13.4 Summary 157 -- References 158 -- 14 Gate-Controlled Bipolar Action in the Ultra-Thin Dynamic Threshold SOI MOSFET 159 -- 14.1 Introduction 159 -- 14.2 Device and Experiments 159 -- 14.3 Results and Discussion 159 -- 14.3.1 ID-VG and IG-VG Characteristics of the Ultra-Thin-Body DT-MOSFET 159 -- 14.3.2 Control of Bipolar Action by the MOS Gate 162 -- 14.4 Channel Polarity Dependence of Bipolar Action 162 -- 14.4.1 ID-VG and gm-VG Characteristics of the Ultra-Thin-Body DT-MOSFET 162 -- 14.4.2 Difference of Bipolar Operation between the n-Channel DT-MOS and the p-Channel DT-MOS 163 -- 14.4.3 Impact of Body Thickness on Bipolar Operation 164 -- 14.5 Summary 166 -- References 166 -- 15 Supplementary Study on Gate-Controlled Bipolar Action in the Ultra-Thin Dynamic Threshold SOI MOSFET 167 -- 15.1 Introduction 167 -- 15.2 Device Structures and Parameters 167.
15.3 Results and Discussion 169 -- 15.3.1 SOI MOSFET Mode and DT-MOSFET Mode 169 -- 15.3.2 Temperature Evolution of Transconductance (gm) Characteristics and Impact of Channel Length on gm Characteristics 170 -- 15.3.3 Impact of SOI Layer Thickness on gm Characteristics 173 -- 15.4 Summary 173 -- References 174 -- Part Four CIRCUIT APPLICATIONS -- 16 Subcircuit Models of SOI Lubistors for Electrostatic Discharge Protection Circuit Design and Their Applications 179 -- 16.1 Introduction 179 -- 16.2 Equivalent Circuit Models of SOI Lubistors and their Applications 180 -- 16.2.1 Device Structure and Device Simulation 180 -- 16.2.2 Equivalent Circuit Models 183 -- 16.3 ESD Protection Circuit 183 -- 16.4 Direct Current Characteristics of the ESD Protection Devices and Their SPICE Models 186 -- 16.5 ESD Event and Performance Evaluation of an ESD Protection Circuit 189 -- 16.6 Summary 196 -- References 196 -- 17 A New Basic Element for Neural Logic Functions and Capability in Circuit Applications 199 -- 17.1 Introduction 199 -- 17.2 Device Structure, Model, and Proposal of a New Logic Element 199 -- 17.2.1 Device Structure and Fundamental Characteristics 199 -- 17.2.2 Device Model for the Lubistor 201 -- 17.2.3 Proposal of a New Logic Element 203 -- 17.3 Circuit Applications and Discussion 206 -- 17.3.1 Examples of Fundamental Elements for Circuit Applications 206 -- 17.3.2 On the Further Improvement of Functions of the Basic Logic Element 211 -- 17.4 Summary 211 -- References 211 -- 18 Sub-1-V Voltage Reference Circuit Technology as an Analog Circuit Application 213 -- 18.1 Review of Bandgap Reference 213 -- 18.2 Challenging Study of Sub-1-V Voltage Reference 214 -- References 215 -- 19 Possible Implementation of SOI Lubistors into Conventional Logic Circuits 217 -- References 218 -- Part Five OPTICAL DEVICE APPLICATIONS OF SOI LUBISTORS -- 20 Potentiality of Electro-Optic Modulator Based on the SOI Waveguide 223 -- 20.1 Introduction 223 -- 20.2 Characterization of the Quasi-One-Dimensional Photonic Crystal Waveguide 224.
20.3 Electro-Optic Modulator Based on the SOI Waveguide 230 -- 20.4 Summary 233 -- References 234 -- Part Six SOI LUBISTOR AS A TESTING TOOL -- 21 Principles of Parameter Extraction 237 -- References 239 -- 22 Charge Pumping Technique 241 -- 22.1 Introduction 241 -- 22.2 Experimental and Simulation Details 241 -- 22.3 Results and Discussion 243 -- 22.4 Summary 246 -- References 246 -- Part Seven FUTURE PROSPECTS -- 23 Overview 249 -- 23.1 Introduction 249 -- 23.2 i-MOS Transistor 249 -- 23.3 Tunnel FET 251 -- 23.4 Feedback FET 254 -- 23.5 Potential of Offset-Gate Lubistor 256 -- 23.6 Si Fin LED with a Multi-quantum Well 258 -- 23.7 Future of the pn Junction 258 -- References 259 -- 24 Feasibility of the Lubistor-Based Avalanche Phototransistor 261 -- 24.1 Introduction 261 -- 24.2 Theoretical Formulation of the Avalanche Phenomenon in Direct-Bandgap Semiconductors 261 -- 24.3 Theoretical Formulation of the Avalanche Phenomenon in Indirect-Bandgap Semiconductors 264 -- 24.4 Theoretical Consideration of the Avalanche Phenomenon in a One-Dimensional Wire pn Junction 265 -- 24.5 Summary 269 -- References 269 -- Part Eight SUMMARY OF PHYSICS FOR SEMICONDUCTOR DEVICES AND MATHEMATICS FOR DEVICE ANALYSES -- 25 Physics of Semiconductor Devices for Analysis 273 -- 25.1 Free Carrier Concentration and the Fermi Level in Semiconductors 273 -- 25.2 Impurity Doping in Semiconductors 275 -- 25.3 Drift and Diffusion of Carriers and Current Continuity in Semiconductors 275 -- 25.4 Stationary-State SchrÈodinger Equation to Analyze Quantum-Mechanical Effects in Semiconductors 276 -- 25.5 Time-dependent SchrÈodinger Equation to Analyze Dynamics in Semiconductors 277 -- 25.6 Quantum Size Effects in Nano-Scale Semiconductors 278 -- 25.7 Tunneling through Energy Barriers in Semiconductors 281 -- 25.8 Low-Dimensional Tunneling in Nano-Scale Semiconductors 282 -- 25.9 Photon Absorption and Electronic Transitions 284 -- 25.9.1 Fundamental Formulations 284 -- 25.9.2 Interband Transition - Direct Bandgap 285.
25.9.3 Interband Transition - Indirect Bandgap 286 -- References 287 -- 26 Mathematics Applicable to the Analysis of Device Physics 289 -- 26.1 Linear Differential Equation 289 -- 26.2 Operator Method 290 -- 26.3 Klein-Gordon-Type Differential Equation 291 -- References 292 -- Bibliography 293 -- Index 295.
Altri titoli varianti Lubistors
Silicon-on-insulator lubistors
Record Nr. UNINA-9910814907603321
Omura Y (Yasuhisa)  
[Hoboken, New Jersey] : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transistors [[electronic resource] ] : types, materials, and applications / / Benjamin M. Fitzgerald, editor
Transistors [[electronic resource] ] : types, materials, and applications / / Benjamin M. Fitzgerald, editor
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (210 p.)
Disciplina 621.3815/28
Altri autori (Persone) FitzgeraldBenjamin M
Collana Electrical engineering developments
Soggetto topico Transistors
Semiconductors
Soggetto genere / forma Electronic books.
ISBN 1-61728-074-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""TRANSISTORS: TYPES, MATERIALS AND APPLICATIONS ""; ""TRANSISTORS: TYPES, MATERIALS AND APPLICATIONS ""; ""CONTENTS ""; ""PREFACE ""; ""CARBON NANOMATERIAL TRANSISTORSAND CIRCUITS""; ""Abstract""; ""Introduction""; ""I. Carbon Nanomaterials""; ""A. Atomic Composition""; ""B. Physical Properties""; ""C. Electrical Properties""; ""II. Carbon Nanotube FETs (CNFETs)""; ""A. General""; ""B. Transistor Types""; ""III. Graphene Nanoribbon FETs (GNRFETs)""; ""IV. Modeling""; ""A. CNFET Modeling""; ""1. SPICE Compatible MOSFET Models""; ""2. SBFET Models""; ""B. GNRFET Modeling""
""V. Logic Gates and Circuit Structures""""A. CNFET Logic Structures""; ""B. GNRFET Logic Structures""; ""C. Circuit Structures""; ""VI. Challenges and Opportunities""; ""VII. Conclusion""; ""Acknowledgment""; ""References""; ""ELECTRONIC PROPERTIES AND SELF CONSISTENTSIMULATIONS OF CARBON NANOTUBESIN TRANSISTOR TECHNOLOGY""; ""Abstract""; ""1. Introduction""; ""2. Physical Properties and Classification of Carbon Nanotubes""; ""2.1. Properties of Graphene Structure""; ""2.2. Properties of Carbon Nanotubes""; ""2.3. Electron Wavefunctions in Carbon Nanotubes""
""3. Calculation of Electronic Properties of Carbon Nanotubes""""3.1. Transmission Spectrum and Current Calculation of Nano�ScaledDevices Using Landauer�s Formula""; ""3.2. Non-equilibrium Green�s Function Formalism for Realistic Calculationof Current-Voltage Relationships of Carbon Nanotubes""; ""3.3. Density Functional Theory for the Calculation of the ElectronDensity�Potential Relationship in Carbon Nanotube Devices""; ""3.4. DFT�NEGF Simulations of Example Nanotubes""; ""3.4.1. Simulations of Semiconductor Nanotubes""; ""3.4.2. Simulations of Metallic Nanotubes""
""4. Carbon Nanotube Field Effect Transistors, Review of TheirEquivalent Circuit Models and Experimental Applications""""5. Conclusion""; ""References""; ""NANOWIRE FIELD-EFFECT TRANSISTORS""; ""Abstract ""; ""1. Introduction ""; ""2. Brief Introduction to Nanowire Electronics ""; ""3. Typical 1-D Nanostructures ""; ""3.1. Nanorods ""; ""3.2. Nanowires""; ""3.3. Nanotubes ""; ""3.4. Nanobelts ""; ""3.5. 1-D nanoscale Heterostructures ""; ""4. Application of Nanowire Transistors ""; ""4.1. Sensors ""; ""4.2. Light-Emitting Diodes and Nanolasers ""; ""4.3. Single Nanowire Solar Cells ""
""4.4. Transparent Electronics """"5. Conclusion ""; ""Acknowledgments ""; ""References ""; ""OPERATING CHARACTERISTICS OF MOSFETSIN CHAOTIC OSCILLATORS""; ""Abstract""; ""Introduction""; ""Linear Operations""; ""Nonlinear Operators: PWL Functions""; ""Chaotic Oscillators Design: Chua�s Circuit""; ""Chaotic Synchronization and Encryption""; ""Conclusion""; ""Acknowledgments""; ""References""; ""ONTHEVARIATIONALINEQUALITIESAPPROACHTOSTUDYELECTRICALCIRCUITSWITHTRANSISTORS""; ""Abstract""; ""1.Introduction""; ""2.Set-valuedAmpere-VoltCharacteristics""; ""2.1.DiodeModels""
""2.2.TransistorModels""
Record Nr. UNINA-9910465950703321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transistors [[electronic resource] ] : types, materials, and applications / / Benjamin M. Fitzgerald, editor
Transistors [[electronic resource] ] : types, materials, and applications / / Benjamin M. Fitzgerald, editor
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (210 p.)
Disciplina 621.3815/28
Altri autori (Persone) FitzgeraldBenjamin M
Collana Electrical engineering developments
Soggetto topico Transistors
Semiconductors
ISBN 1-61728-074-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""TRANSISTORS: TYPES, MATERIALS AND APPLICATIONS ""; ""TRANSISTORS: TYPES, MATERIALS AND APPLICATIONS ""; ""CONTENTS ""; ""PREFACE ""; ""CARBON NANOMATERIAL TRANSISTORSAND CIRCUITS""; ""Abstract""; ""Introduction""; ""I. Carbon Nanomaterials""; ""A. Atomic Composition""; ""B. Physical Properties""; ""C. Electrical Properties""; ""II. Carbon Nanotube FETs (CNFETs)""; ""A. General""; ""B. Transistor Types""; ""III. Graphene Nanoribbon FETs (GNRFETs)""; ""IV. Modeling""; ""A. CNFET Modeling""; ""1. SPICE Compatible MOSFET Models""; ""2. SBFET Models""; ""B. GNRFET Modeling""
""V. Logic Gates and Circuit Structures""""A. CNFET Logic Structures""; ""B. GNRFET Logic Structures""; ""C. Circuit Structures""; ""VI. Challenges and Opportunities""; ""VII. Conclusion""; ""Acknowledgment""; ""References""; ""ELECTRONIC PROPERTIES AND SELF CONSISTENTSIMULATIONS OF CARBON NANOTUBESIN TRANSISTOR TECHNOLOGY""; ""Abstract""; ""1. Introduction""; ""2. Physical Properties and Classification of Carbon Nanotubes""; ""2.1. Properties of Graphene Structure""; ""2.2. Properties of Carbon Nanotubes""; ""2.3. Electron Wavefunctions in Carbon Nanotubes""
""3. Calculation of Electronic Properties of Carbon Nanotubes""""3.1. Transmission Spectrum and Current Calculation of Nano�ScaledDevices Using Landauer�s Formula""; ""3.2. Non-equilibrium Green�s Function Formalism for Realistic Calculationof Current-Voltage Relationships of Carbon Nanotubes""; ""3.3. Density Functional Theory for the Calculation of the ElectronDensity�Potential Relationship in Carbon Nanotube Devices""; ""3.4. DFT�NEGF Simulations of Example Nanotubes""; ""3.4.1. Simulations of Semiconductor Nanotubes""; ""3.4.2. Simulations of Metallic Nanotubes""
""4. Carbon Nanotube Field Effect Transistors, Review of TheirEquivalent Circuit Models and Experimental Applications""""5. Conclusion""; ""References""; ""NANOWIRE FIELD-EFFECT TRANSISTORS""; ""Abstract ""; ""1. Introduction ""; ""2. Brief Introduction to Nanowire Electronics ""; ""3. Typical 1-D Nanostructures ""; ""3.1. Nanorods ""; ""3.2. Nanowires""; ""3.3. Nanotubes ""; ""3.4. Nanobelts ""; ""3.5. 1-D nanoscale Heterostructures ""; ""4. Application of Nanowire Transistors ""; ""4.1. Sensors ""; ""4.2. Light-Emitting Diodes and Nanolasers ""; ""4.3. Single Nanowire Solar Cells ""
""4.4. Transparent Electronics """"5. Conclusion ""; ""Acknowledgments ""; ""References ""; ""OPERATING CHARACTERISTICS OF MOSFETSIN CHAOTIC OSCILLATORS""; ""Abstract""; ""Introduction""; ""Linear Operations""; ""Nonlinear Operators: PWL Functions""; ""Chaotic Oscillators Design: Chua�s Circuit""; ""Chaotic Synchronization and Encryption""; ""Conclusion""; ""Acknowledgments""; ""References""; ""ONTHEVARIATIONALINEQUALITIESAPPROACHTOSTUDYELECTRICALCIRCUITSWITHTRANSISTORS""; ""Abstract""; ""1.Introduction""; ""2.Set-valuedAmpere-VoltCharacteristics""; ""2.1.DiodeModels""
""2.2.TransistorModels""
Record Nr. UNINA-9910791768903321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transistors [[electronic resource] ] : types, materials, and applications / / Benjamin M. Fitzgerald, editor
Transistors [[electronic resource] ] : types, materials, and applications / / Benjamin M. Fitzgerald, editor
Edizione [1st ed.]
Pubbl/distr/stampa Hauppauge, N.Y., : Nova Science Publishers, c2010
Descrizione fisica 1 online resource (210 p.)
Disciplina 621.3815/28
Altri autori (Persone) FitzgeraldBenjamin M
Collana Electrical engineering developments
Soggetto topico Transistors
Semiconductors
ISBN 1-61728-074-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""TRANSISTORS: TYPES, MATERIALS AND APPLICATIONS ""; ""TRANSISTORS: TYPES, MATERIALS AND APPLICATIONS ""; ""CONTENTS ""; ""PREFACE ""; ""CARBON NANOMATERIAL TRANSISTORSAND CIRCUITS""; ""Abstract""; ""Introduction""; ""I. Carbon Nanomaterials""; ""A. Atomic Composition""; ""B. Physical Properties""; ""C. Electrical Properties""; ""II. Carbon Nanotube FETs (CNFETs)""; ""A. General""; ""B. Transistor Types""; ""III. Graphene Nanoribbon FETs (GNRFETs)""; ""IV. Modeling""; ""A. CNFET Modeling""; ""1. SPICE Compatible MOSFET Models""; ""2. SBFET Models""; ""B. GNRFET Modeling""
""V. Logic Gates and Circuit Structures""""A. CNFET Logic Structures""; ""B. GNRFET Logic Structures""; ""C. Circuit Structures""; ""VI. Challenges and Opportunities""; ""VII. Conclusion""; ""Acknowledgment""; ""References""; ""ELECTRONIC PROPERTIES AND SELF CONSISTENTSIMULATIONS OF CARBON NANOTUBESIN TRANSISTOR TECHNOLOGY""; ""Abstract""; ""1. Introduction""; ""2. Physical Properties and Classification of Carbon Nanotubes""; ""2.1. Properties of Graphene Structure""; ""2.2. Properties of Carbon Nanotubes""; ""2.3. Electron Wavefunctions in Carbon Nanotubes""
""3. Calculation of Electronic Properties of Carbon Nanotubes""""3.1. Transmission Spectrum and Current Calculation of Nano�ScaledDevices Using Landauer�s Formula""; ""3.2. Non-equilibrium Green�s Function Formalism for Realistic Calculationof Current-Voltage Relationships of Carbon Nanotubes""; ""3.3. Density Functional Theory for the Calculation of the ElectronDensity�Potential Relationship in Carbon Nanotube Devices""; ""3.4. DFT�NEGF Simulations of Example Nanotubes""; ""3.4.1. Simulations of Semiconductor Nanotubes""; ""3.4.2. Simulations of Metallic Nanotubes""
""4. Carbon Nanotube Field Effect Transistors, Review of TheirEquivalent Circuit Models and Experimental Applications""""5. Conclusion""; ""References""; ""NANOWIRE FIELD-EFFECT TRANSISTORS""; ""Abstract ""; ""1. Introduction ""; ""2. Brief Introduction to Nanowire Electronics ""; ""3. Typical 1-D Nanostructures ""; ""3.1. Nanorods ""; ""3.2. Nanowires""; ""3.3. Nanotubes ""; ""3.4. Nanobelts ""; ""3.5. 1-D nanoscale Heterostructures ""; ""4. Application of Nanowire Transistors ""; ""4.1. Sensors ""; ""4.2. Light-Emitting Diodes and Nanolasers ""; ""4.3. Single Nanowire Solar Cells ""
""4.4. Transparent Electronics """"5. Conclusion ""; ""Acknowledgments ""; ""References ""; ""OPERATING CHARACTERISTICS OF MOSFETSIN CHAOTIC OSCILLATORS""; ""Abstract""; ""Introduction""; ""Linear Operations""; ""Nonlinear Operators: PWL Functions""; ""Chaotic Oscillators Design: Chua�s Circuit""; ""Chaotic Synchronization and Encryption""; ""Conclusion""; ""Acknowledgments""; ""References""; ""ONTHEVARIATIONALINEQUALITIESAPPROACHTOSTUDYELECTRICALCIRCUITSWITHTRANSISTORS""; ""Abstract""; ""1.Introduction""; ""2.Set-valuedAmpere-VoltCharacteristics""; ""2.1.DiodeModels""
""2.2.TransistorModels""
Record Nr. UNINA-9910815894503321
Hauppauge, N.Y., : Nova Science Publishers, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui