top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Coaxial Lithography / Tuncay Ozel
Coaxial Lithography / Tuncay Ozel
Autore Ozel, Tuncay
Pubbl/distr/stampa Cham, : Springer, 2016
Descrizione fisica XXIX, 92 p. : ill. ; 24 cm
Disciplina 621.366(Fisica applicata. Laser spettroscopia)
540(Chimica generale)
535.2(Ottica fisica)
620.5(Nanotecnologia)
541.37(Elettrochimica e magnetochimica)
621.365(Fotonica)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0242762
Ozel, Tuncay  
Cham, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Coherent light / A. F. Harvey
Coherent light / A. F. Harvey
Autore Harvey, Arthur Frank
Pubbl/distr/stampa London [etc.] : Wiley-Interscience, c1970
Descrizione fisica 1329 p. : ill. ; 23 cm
Disciplina 621.366
Soggetto non controllato Laser
ISBN 0-471-35776-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990000503370403321
Harvey, Arthur Frank  
London [etc.] : Wiley-Interscience, c1970
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Pubbl/distr/stampa Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Descrizione fisica 1 online resource (343 p.)
Disciplina 621.366
Soggetto topico Lasers - Industrial applications
Semiconductor lasers - Mathematical models
ISBN 3-527-65536-0
3-527-65534-4
3-527-65537-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Compact Semiconductor Lasers; Contents; Preface and Introduction; List of Contributors; Color Plates; Chapter 1 Nanoscale Metallo-Dielectric Coherent Light Sources; 1.1 Introduction; 1.2 Composite Metallo-Dielectric-Gain Resonators; 1.2.1 Composite Gain-Dielectric-Metal Waveguides; 1.2.2 Composite Gain-Dielectric-Metal 3D Resonators; 1.3 Experimental Validations of Subwavelength Metallo-Dielectric Lasers for Operation at Room-Temperature; 1.3.1 Fabrication Processes for Subwavelength Metallo-Dielectric Lasers; 1.3.2 Characterization and Testing of Subwavelength Metallo-Dielectric Lasers
1.4 Electrically Pumped Subwavelength Metallo-Dielectric Lasers1.4.1 Cavity Design and Modeling of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.2 Fabrication of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.3 Measurements and Discussion of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.5 Thresholdless Nanoscale Coaxial Lasers; 1.5.1 Design and Fabrication of Thresholdless Nanoscale Coaxial Lasers; 1.5.2 Characterization and Discussion of Thresholdless Nanoscale Coaxial Lasers; 1.6 Summary, Discussions, and Conclusions; Acknowledgments
ReferencesChapter 2 Optically Pumped Semiconductor Photonic Crystal Lasers; 2.1 Introduction; 2.2 Photonic Crystal Lasers: Design and Fabrication; 2.2.1 Micro/Nano Cavity Based PhC Lasers; 2.2.1.1 Lasers Based on 2D PhC Cavities; 2.2.1.2 Lasers Based on 3D PhC Cavities; 2.2.2 Slow-Light Based PhC Lasers: DFB-Like Lasers; 2.2.2.1 2D PhC DFB-Like Lasers for In-Plane Emission; 2.2.2.2 2D PhC DFB- Like Lasers for Surface Emission; 2.3 Photonic Crystal Laser Characteristics; 2.3.1 Rate Equation Model and PhC Laser Parameters; 2.3.1.1 Linear Rate Equation Model; 2.3.1.2 PhC Laser Parameters
2.3.2 The Stationary Regime in PhC Lasers2.3.3 Dynamics of PhC Lasers; 2.4 The Final Assault: Issues That Have Been Partially Solved and Others That Remain to Be Solved Before Photonic Crystal Lasers Become Ready for Application; 2.4.1 Room Temperature Continuous Wave Room Temperature Operation of Photonic Crystal Nano-Lasers; 2.4.1.1 CW Operation via Nonradiative Recombination Reduction; 2.4.1.1.1 CW Operation in Air Clad PhCs by a Smart Choice of Active Material; 2.4.1.1.2 RT CW Operation with QWs in an Air Cladding Membrane, via ``Fine Processing'' and Surface Passivation
2.4.1.2 CW Operation via Increased Heat Sinking2.4.1.2.1 A Comparison of Heat Sinking Between a Membrane and a Bonded PhC Laser; 2.4.1.2.2 CW Operation at RT Obtained by Heat Sinking through a Substrate; 2.4.1.2.3 CW Operation at RT Obtained through the Use of a PhC with Higher Thermal Conductivity; 2.4.2 Interfacing and Power Issues; 2.4.2.1 Interfacing an Isolated PhC Cavity-Based Device with the External World; 2.4.2.2 Interfacing Active-PhC Cavity-Based Devices within an Optical Circuit; 2.5 Conclusions; References
Chapter 3 Electrically Pumped Photonic Crystal Lasers: Laser Diodes and Quantum Cascade Lasers
Record Nr. UNINA-9910132213903321
Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Compact semiconductor lasers / / edited by Richard M. De La Rue, Siyuan Yu, and Jean-Michel Lourtioz
Pubbl/distr/stampa Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Descrizione fisica 1 online resource (343 p.)
Disciplina 621.366
Soggetto topico Lasers - Industrial applications
Semiconductor lasers - Mathematical models
ISBN 3-527-65536-0
3-527-65534-4
3-527-65537-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Compact Semiconductor Lasers; Contents; Preface and Introduction; List of Contributors; Color Plates; Chapter 1 Nanoscale Metallo-Dielectric Coherent Light Sources; 1.1 Introduction; 1.2 Composite Metallo-Dielectric-Gain Resonators; 1.2.1 Composite Gain-Dielectric-Metal Waveguides; 1.2.2 Composite Gain-Dielectric-Metal 3D Resonators; 1.3 Experimental Validations of Subwavelength Metallo-Dielectric Lasers for Operation at Room-Temperature; 1.3.1 Fabrication Processes for Subwavelength Metallo-Dielectric Lasers; 1.3.2 Characterization and Testing of Subwavelength Metallo-Dielectric Lasers
1.4 Electrically Pumped Subwavelength Metallo-Dielectric Lasers1.4.1 Cavity Design and Modeling of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.2 Fabrication of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.4.3 Measurements and Discussion of Electrically Pumped Subwavelength Metallo-Dielectric Lasers; 1.5 Thresholdless Nanoscale Coaxial Lasers; 1.5.1 Design and Fabrication of Thresholdless Nanoscale Coaxial Lasers; 1.5.2 Characterization and Discussion of Thresholdless Nanoscale Coaxial Lasers; 1.6 Summary, Discussions, and Conclusions; Acknowledgments
ReferencesChapter 2 Optically Pumped Semiconductor Photonic Crystal Lasers; 2.1 Introduction; 2.2 Photonic Crystal Lasers: Design and Fabrication; 2.2.1 Micro/Nano Cavity Based PhC Lasers; 2.2.1.1 Lasers Based on 2D PhC Cavities; 2.2.1.2 Lasers Based on 3D PhC Cavities; 2.2.2 Slow-Light Based PhC Lasers: DFB-Like Lasers; 2.2.2.1 2D PhC DFB-Like Lasers for In-Plane Emission; 2.2.2.2 2D PhC DFB- Like Lasers for Surface Emission; 2.3 Photonic Crystal Laser Characteristics; 2.3.1 Rate Equation Model and PhC Laser Parameters; 2.3.1.1 Linear Rate Equation Model; 2.3.1.2 PhC Laser Parameters
2.3.2 The Stationary Regime in PhC Lasers2.3.3 Dynamics of PhC Lasers; 2.4 The Final Assault: Issues That Have Been Partially Solved and Others That Remain to Be Solved Before Photonic Crystal Lasers Become Ready for Application; 2.4.1 Room Temperature Continuous Wave Room Temperature Operation of Photonic Crystal Nano-Lasers; 2.4.1.1 CW Operation via Nonradiative Recombination Reduction; 2.4.1.1.1 CW Operation in Air Clad PhCs by a Smart Choice of Active Material; 2.4.1.1.2 RT CW Operation with QWs in an Air Cladding Membrane, via ``Fine Processing'' and Surface Passivation
2.4.1.2 CW Operation via Increased Heat Sinking2.4.1.2.1 A Comparison of Heat Sinking Between a Membrane and a Bonded PhC Laser; 2.4.1.2.2 CW Operation at RT Obtained by Heat Sinking through a Substrate; 2.4.1.2.3 CW Operation at RT Obtained through the Use of a PhC with Higher Thermal Conductivity; 2.4.2 Interfacing and Power Issues; 2.4.2.1 Interfacing an Isolated PhC Cavity-Based Device with the External World; 2.4.2.2 Interfacing Active-PhC Cavity-Based Devices within an Optical Circuit; 2.5 Conclusions; References
Chapter 3 Electrically Pumped Photonic Crystal Lasers: Laser Diodes and Quantum Cascade Lasers
Record Nr. UNINA-9910818489903321
Weinheim an der Bergstrasse, Germany : , : Wiley-VCH, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Conference Proceedings IEEE Lasers and Electro-Optics Society 1990 Annual Meeting : 4-9 November 1990, Boston, Massachusetts / / Institute of Electrical and Electronics Engineers
Conference Proceedings IEEE Lasers and Electro-Optics Society 1990 Annual Meeting : 4-9 November 1990, Boston, Massachusetts / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 1990
Descrizione fisica 1 online resource (59 pages)
Disciplina 621.366
Soggetto topico Lasers
Optoelectronics
Optical detectors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996208117303316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 1990
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Conference proceedings on IEEE Lasers and Electro-Optics Society 1992 Annual Meeting : November 16-19, 1992, Boston, MA, USA / / Institute of Electrical and Electronics Engineers
Conference proceedings on IEEE Lasers and Electro-Optics Society 1992 Annual Meeting : November 16-19, 1992, Boston, MA, USA / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 1992
Descrizione fisica 1 online resource (48 pages)
Disciplina 621.366
Soggetto topico Lasers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996211931503316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 1992
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Creating with laser cutters and engravers / / Mary-Lane Kamberg
Creating with laser cutters and engravers / / Mary-Lane Kamberg
Autore Kamberg Mary-Lane <1948->
Edizione [First edition.]
Pubbl/distr/stampa New York : , : Rosen Central, , 2017
Descrizione fisica 1 online resource (64 pages) : color illustrations
Disciplina 621.366
Collana Getting creative with Fab Lab
Soggetto topico Lasers
Laser beam cutting
Engraving
Makerspaces
ISBN 1-4994-6505-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The scoop on Fab Labs -- What's a laser cutter and how does it work? -- What's it like in a Fab Lab? -- Starter projects and beyond -- Your project -- Fab Labs and your future.
Record Nr. UNINA-9910158648303321
Kamberg Mary-Lane <1948->  
New York : , : Rosen Central, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diode lasers and photonic integrated circuits / L.A. Coldren, S.W. Corzine
Diode lasers and photonic integrated circuits / L.A. Coldren, S.W. Corzine
Autore Coldren, Larry A.
Pubbl/distr/stampa New York : Wiley, c1995
Descrizione fisica xxiii, 594 p. : ill. ; 25 cm
Disciplina 621.366
Altri autori (Persone) Corzine, Scott W.
Collana Wiley series in microwave and optical engineering
Soggetto topico Semiconductor lasers
Integrated circuits
ISBN 0471118753
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001158499707536
Coldren, Larry A.  
New York : Wiley, c1995
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Dissipative optical solitons / / Mário F. S. Ferreira
Dissipative optical solitons / / Mário F. S. Ferreira
Autore Ferreira Mário F. S.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (369 pages)
Disciplina 621.366
Collana Springer Series in Optical Sciences
Soggetto topico Lasers - Resonators
Solitons - Research
ISBN 3-030-97493-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Contributors -- Chapter 1: Dissipative Optical Solitons: An Introduction -- 1.1 Solitary Waves -- 1.2 Solitons in Optical Fibers -- 1.3 The Complex Ginzburg-Landau Equation -- 1.4 Dissipative Solitons -- 1.5 Dissipative Soliton Molecules -- 1.6 Recent Experimental Results on Pulsating Dissipative Solitons -- References -- Chapter 2: Dissipative Solitons in Passively Mode-Locked Lasers -- 2.1 From Solitons to Dissipative Solitons in Ultrafast Lasers -- 2.1.1 Early Advances Toward Soliton Lasers -- 2.1.2 Reconsidering the Value of Dissipation in Lasers -- 2.2 Signatures of Dissipative Soliton Dynamics -- 2.3 Dissipative Soliton Molecules -- 2.3.1 The Wealth of Soliton Interaction Processes Within a Laser Cavity -- 2.3.2 From Stationary to Pulsating Soliton Molecules -- 2.4 Toward Incoherent Dissipative Solitons -- 2.5 Summary and Prospects -- References -- Chapter 3: Dissipative Soliton Buildup Dynamics -- 3.1 Introduction -- 3.2 Conventional Soliton Buildup Dynamics in an Anomalous Dispersion Fiber Laser -- 3.3 Dissipative Solitons Buildup Dynamics in a Normal Dispersion Fiber Laser -- 3.4 Dissipative Soliton Buildup Dynamics in a Bidirectional Fiber Laser with Net-Normal Dispersion -- 3.5 Buildup Dynamics of Dissipative Soliton Molecules -- 3.6 Conclusion -- References -- Chapter 4: Dissipative Soliton Resonance -- 4.1 Introduction -- 4.1.1 Numerical Approach: Propagation in an Oscillator with a Saturable Absorber (SA) -- 4.1.2 DSR Pulses in Passively Mode-Locked Fiber Lasers -- 4.1.2.1 Experimental Features of DSR Pulses -- 4.1.2.2 Control of Pulse Characteristics in Dual-Amplifier Configuration -- 4.2 Multi-pulsing Instabilities in DSR Regime -- 4.3 Chapter Summary -- References -- Chapter 5: Ultra-Short High-Amplitude Dissipative Solitons -- 5.1 Introduction -- 5.2 The Cubic-Quintic Complex Ginzburg-Landau Equation.
5.3 Soliton Perturbation Theory -- 5.4 Method of Moments -- 5.5 Very-High Amplitude CGLE Solitons -- 5.6 Effects of Dispersion -- 5.7 Impact of Higher-Order Effects -- 5.7.1 Results of the Soliton Perturbation Theory -- 5.7.2 Linear Stability Analysis -- 5.7.3 Numerical Results -- 5.8 Conclusions -- References -- Chapter 6: Vector Dissipative Solitons -- 6.1 Introduction -- 6.2 DS Trapping in Fiber Lasers -- 6.3 Various Forms of VDSs -- 6.3.1 High-Order VDSs -- 6.3.2 Dark-Bright VDSs -- 6.3.3 Vector Soliton Molecules -- 6.3.4 Vector Noise-Like Pulses -- 6.4 Real-Time Dynamics of VDSs -- 6.4.1 Dispersive Fourier Transform Based Polarization Resolved Analysis -- 6.4.2 Real-Time Polarization Dynamics of VDSs -- 6.4.3 Pulsation of VDSs -- 6.5 Conclusions -- References -- Chapter 7: Dynamics of Pulsating Dissipative Solitons -- 7.1 Introduction -- 7.2 Theory of Pulsating Dissipative Solitons -- 7.2.1 Numerical Analysis of Pulsation Dynamics -- 7.2.2 Semi-Analytical Analysis of Pulsation Dynamics -- 7.3 Transient Behaviors of Pulsating Dissipative Solitons -- 7.3.1 Stationary Soliton -- 7.3.2 Single-Period Pulsating Soliton -- 7.3.3 Double-Period Pulsating Soliton -- 7.3.4 Periodic Soliton Explosion -- 7.3.5 Multi-Soliton Synchronous Pulsation -- 7.3.6 Pulsating Soliton Molecule -- 7.3.7 Multi-Soliton Asynchronous Pulsation -- References -- Chapter 8: Raman Dissipative Solitons -- 8.1 Introduction -- 8.2 Principle of Generation -- 8.3 Simulation -- 8.4 Brief Theory -- 8.5 Applications -- References -- Chapter 9: L-Band Wavelength Tunable Dissipative Soliton Fiber Laser -- 9.1 Introduction -- 9.2 Laser Design -- 9.3 Methods of Wavelength Tuning -- 9.3.1 Wavelength Tuning Based on Spectral Birefringence Filter with 45Tilted Fiber Grating -- 9.3.1.1 Laser Setup and Device Characteristics -- 9.3.1.2 Experimental Results and Discussions.
9.3.2 Wavelength Tuning Based on Tunable Filter with Fiber Taper -- 9.3.2.1 Laser Setup and Device Characteristics -- 9.3.2.2 Experimental Results and Discussions -- 9.3.3 Wavelength Tuning Based on Cavity Loss Control with Commercial Mechanical VOA -- 9.3.3.1 Laser Setup and Device Characteristics -- 9.3.3.2 Experimental Results and Discussions -- 9.3.4 Wavelength Tuning Based on Cavity Loss Control with Taper-Type VOA -- 9.3.4.1 Laser Setup and Device Property -- 9.3.4.2 Experimental Results and Discussions -- 9.3.5 Comparison with Different Wavelength Tuning Methods -- 9.4 Conclusion -- References -- Chapter 10: Multiplexed Dissipative Soliton Fiber Lasers -- 10.1 Introduction -- 10.2 Bidirectional Multiplexed Dissipative Soliton Fiber Lasers -- 10.2.1 SESAM -- 10.2.2 CNT -- 10.2.3 Graphene -- 10.2.4 NPR -- 10.2.5 Hybrid -- 10.3 Wavelength Multiplexed Dissipative Soliton Fiber Lasers -- 10.4 Polarization Multiplexed Dissipative Soliton Fiber Lasers -- 10.5 Conclusion and Outlook -- References -- Chapter 11: Multi-soliton Complex in Nonlinear Cavities -- 11.1 Introduction -- 11.2 Multi-soliton Complex in Mode-Locked Fiber Lasers -- 11.2.1 Multi-soliton States in Mode-Locked Lasers and Their Interaction -- 11.2.1.1 Soliton Molecule -- 11.2.1.2 Pulse Bunching and Harmonic Mode-Locking -- 11.2.1.3 Other States -- 11.2.2 Rapid Measurements of Multi-soliton Dynamics in Mode-Locked Fiber Lasers -- 11.2.2.1 Multi-soliton in Spatiotemporal Mode-Locked Fiber Lasers -- 11.3 Mutli-soliton Complex in Microcavities -- 11.3.1 Basic Principle of Coherently Pumped Solitons -- 11.3.2 Multi-soliton States and Their Interactions in Microcavities -- 11.3.2.1 Dispersive Wave Emission in Microcavities -- 11.3.2.2 From Soliton Molecules to Soliton Crystals in Microcavities -- 11.3.2.3 Multi-soliton State Using Advanced Pumping Schemes -- 11.4 Summary and Discussions.
References -- Chapter 12: Dissipative Solitons in Microresonators -- 12.1 Introduction -- 12.2 Modeling -- 12.2.1 Higher-Order Dispersion -- 12.2.2 Raman Effect -- 12.3 Dispersion Engineered Cavity Dynamics -- 12.3.1 Capabilities of Dispersion Engineering -- 12.3.2 Advanced Control of Dissipative Soliton Dynamics -- 12.3.3 Novel Phenomena in Dispersion-Tailored Microring Resonators -- 12.4 Soliton Comb Generation Schemes -- 12.4.1 Frequency Scanning -- 12.4.2 Power Kicking -- 12.4.3 Thermal Tuning -- 12.4.4 Self-Injection Locking and Laser-Based Configurations -- 12.5 Nonlinear Dynamics of DKS -- 12.6 Applications -- References -- Chapter 13: Vector Vortex Solitons and Soliton Control in Vertical-Cavity Surface-Emitting Lasers -- 13.1 Introduction -- 13.2 Mechanism of Bistability in Lasers with Frequency-Selective Feedback -- 13.3 Vector Vortex Solitons -- 13.3.1 What Are Vector Vortex Beams? -- 13.3.2 Experimental Setup -- 13.3.3 Principle Observations -- 13.3.4 Complex Hysteresis Loops -- 13.3.5 Influencing Polarization Selection by Intra-Cavity Waveplates -- 13.3.6 Interpretation -- 13.4 Flip-Flop Operation of Laser Cavity Solitons -- 13.4.1 Soliton Control in Systems with and Without Holding Beams -- 13.4.2 Experimental Setup -- 13.4.3 Experimental Results -- 13.5 Conclusions and Outlook -- References -- Chapter 14: Discrete Solitons of the Ginzburg-Landau Equation -- 14.1 Introduction -- 14.2 The Model and Linear Dispersion Relation -- 14.3 Dissipative Solitons of the DGLE -- 14.4 Saturable Nonlinearity and MI Analysis -- 14.5 Exact Dissipative Discrete Soliton Solutions -- 14.6 Conclusion -- References -- Chapter 15: Noise-Like Pulses in Mode-Locked Fiber Lasers -- 15.1 Introduction -- 15.2 Examples of NLP Lasers -- 15.3 Mechanisms of NLP Formation -- 15.3.1 Effect of Cavity Birefringence.
15.3.2 Soliton Collapse Due to Reverse Saturable Absorption -- 15.3.3 Raman-Driven NLP -- 15.3.4 NLP Formation in Amplifiers -- 15.4 Dynamics, Coherence and Stability of NLP Lasers -- 15.5 Applications of NLP Lasers -- 15.5.1 Metrology -- 15.5.2 Spectroscopy -- 15.5.3 Spectral Broadening and Supercontinuum Generation -- 15.5.4 Optical Coherence Tomography -- 15.5.5 Nonlinear Microscopy -- 15.6 Summary -- References -- Chapter 16: Dissipative Rogue Waves -- 16.1 Introduction -- 16.1.1 Rogue Waves in the Oceans -- 16.1.2 Introduction of Optical Rogue Waves -- 16.1.3 Real-Time Techniques for Observing Optical Rogue Waves -- 16.1.3.1 Dispersive-Fourier-Transform-Based Ultrafast Spectroscopy -- 16.1.3.2 Time Magnifier -- 16.2 Dissipative Rogue Waves -- 16.2.1 Rogue Waves in Dissipative Systems -- 16.2.2 Dissipative Rogue Waves in Ultrafast Lasers -- 16.2.3 Dissipative Rogue Waves in Microresonators -- 16.2.4 Dissipative Rogue Waves in Extended Systems -- 16.2.5 Optical Polarization Rogue Waves -- 16.3 Generating Mechanisms of Dissipative Rogue Waves -- 16.3.1 Two Interpretations -- 16.3.2 Are the Dissipative Rogue Waves Predictable? -- References.
Record Nr. UNISA-996490349603316
Ferreira Mário F. S.  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Dissipative optical solitons / / Mário F. S. Ferreira
Dissipative optical solitons / / Mário F. S. Ferreira
Autore Ferreira Mário F. S.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (369 pages)
Disciplina 621.366
Collana Springer Series in Optical Sciences
Soggetto topico Lasers - Resonators
Solitons - Research
ISBN 3-030-97493-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Contributors -- Chapter 1: Dissipative Optical Solitons: An Introduction -- 1.1 Solitary Waves -- 1.2 Solitons in Optical Fibers -- 1.3 The Complex Ginzburg-Landau Equation -- 1.4 Dissipative Solitons -- 1.5 Dissipative Soliton Molecules -- 1.6 Recent Experimental Results on Pulsating Dissipative Solitons -- References -- Chapter 2: Dissipative Solitons in Passively Mode-Locked Lasers -- 2.1 From Solitons to Dissipative Solitons in Ultrafast Lasers -- 2.1.1 Early Advances Toward Soliton Lasers -- 2.1.2 Reconsidering the Value of Dissipation in Lasers -- 2.2 Signatures of Dissipative Soliton Dynamics -- 2.3 Dissipative Soliton Molecules -- 2.3.1 The Wealth of Soliton Interaction Processes Within a Laser Cavity -- 2.3.2 From Stationary to Pulsating Soliton Molecules -- 2.4 Toward Incoherent Dissipative Solitons -- 2.5 Summary and Prospects -- References -- Chapter 3: Dissipative Soliton Buildup Dynamics -- 3.1 Introduction -- 3.2 Conventional Soliton Buildup Dynamics in an Anomalous Dispersion Fiber Laser -- 3.3 Dissipative Solitons Buildup Dynamics in a Normal Dispersion Fiber Laser -- 3.4 Dissipative Soliton Buildup Dynamics in a Bidirectional Fiber Laser with Net-Normal Dispersion -- 3.5 Buildup Dynamics of Dissipative Soliton Molecules -- 3.6 Conclusion -- References -- Chapter 4: Dissipative Soliton Resonance -- 4.1 Introduction -- 4.1.1 Numerical Approach: Propagation in an Oscillator with a Saturable Absorber (SA) -- 4.1.2 DSR Pulses in Passively Mode-Locked Fiber Lasers -- 4.1.2.1 Experimental Features of DSR Pulses -- 4.1.2.2 Control of Pulse Characteristics in Dual-Amplifier Configuration -- 4.2 Multi-pulsing Instabilities in DSR Regime -- 4.3 Chapter Summary -- References -- Chapter 5: Ultra-Short High-Amplitude Dissipative Solitons -- 5.1 Introduction -- 5.2 The Cubic-Quintic Complex Ginzburg-Landau Equation.
5.3 Soliton Perturbation Theory -- 5.4 Method of Moments -- 5.5 Very-High Amplitude CGLE Solitons -- 5.6 Effects of Dispersion -- 5.7 Impact of Higher-Order Effects -- 5.7.1 Results of the Soliton Perturbation Theory -- 5.7.2 Linear Stability Analysis -- 5.7.3 Numerical Results -- 5.8 Conclusions -- References -- Chapter 6: Vector Dissipative Solitons -- 6.1 Introduction -- 6.2 DS Trapping in Fiber Lasers -- 6.3 Various Forms of VDSs -- 6.3.1 High-Order VDSs -- 6.3.2 Dark-Bright VDSs -- 6.3.3 Vector Soliton Molecules -- 6.3.4 Vector Noise-Like Pulses -- 6.4 Real-Time Dynamics of VDSs -- 6.4.1 Dispersive Fourier Transform Based Polarization Resolved Analysis -- 6.4.2 Real-Time Polarization Dynamics of VDSs -- 6.4.3 Pulsation of VDSs -- 6.5 Conclusions -- References -- Chapter 7: Dynamics of Pulsating Dissipative Solitons -- 7.1 Introduction -- 7.2 Theory of Pulsating Dissipative Solitons -- 7.2.1 Numerical Analysis of Pulsation Dynamics -- 7.2.2 Semi-Analytical Analysis of Pulsation Dynamics -- 7.3 Transient Behaviors of Pulsating Dissipative Solitons -- 7.3.1 Stationary Soliton -- 7.3.2 Single-Period Pulsating Soliton -- 7.3.3 Double-Period Pulsating Soliton -- 7.3.4 Periodic Soliton Explosion -- 7.3.5 Multi-Soliton Synchronous Pulsation -- 7.3.6 Pulsating Soliton Molecule -- 7.3.7 Multi-Soliton Asynchronous Pulsation -- References -- Chapter 8: Raman Dissipative Solitons -- 8.1 Introduction -- 8.2 Principle of Generation -- 8.3 Simulation -- 8.4 Brief Theory -- 8.5 Applications -- References -- Chapter 9: L-Band Wavelength Tunable Dissipative Soliton Fiber Laser -- 9.1 Introduction -- 9.2 Laser Design -- 9.3 Methods of Wavelength Tuning -- 9.3.1 Wavelength Tuning Based on Spectral Birefringence Filter with 45Tilted Fiber Grating -- 9.3.1.1 Laser Setup and Device Characteristics -- 9.3.1.2 Experimental Results and Discussions.
9.3.2 Wavelength Tuning Based on Tunable Filter with Fiber Taper -- 9.3.2.1 Laser Setup and Device Characteristics -- 9.3.2.2 Experimental Results and Discussions -- 9.3.3 Wavelength Tuning Based on Cavity Loss Control with Commercial Mechanical VOA -- 9.3.3.1 Laser Setup and Device Characteristics -- 9.3.3.2 Experimental Results and Discussions -- 9.3.4 Wavelength Tuning Based on Cavity Loss Control with Taper-Type VOA -- 9.3.4.1 Laser Setup and Device Property -- 9.3.4.2 Experimental Results and Discussions -- 9.3.5 Comparison with Different Wavelength Tuning Methods -- 9.4 Conclusion -- References -- Chapter 10: Multiplexed Dissipative Soliton Fiber Lasers -- 10.1 Introduction -- 10.2 Bidirectional Multiplexed Dissipative Soliton Fiber Lasers -- 10.2.1 SESAM -- 10.2.2 CNT -- 10.2.3 Graphene -- 10.2.4 NPR -- 10.2.5 Hybrid -- 10.3 Wavelength Multiplexed Dissipative Soliton Fiber Lasers -- 10.4 Polarization Multiplexed Dissipative Soliton Fiber Lasers -- 10.5 Conclusion and Outlook -- References -- Chapter 11: Multi-soliton Complex in Nonlinear Cavities -- 11.1 Introduction -- 11.2 Multi-soliton Complex in Mode-Locked Fiber Lasers -- 11.2.1 Multi-soliton States in Mode-Locked Lasers and Their Interaction -- 11.2.1.1 Soliton Molecule -- 11.2.1.2 Pulse Bunching and Harmonic Mode-Locking -- 11.2.1.3 Other States -- 11.2.2 Rapid Measurements of Multi-soliton Dynamics in Mode-Locked Fiber Lasers -- 11.2.2.1 Multi-soliton in Spatiotemporal Mode-Locked Fiber Lasers -- 11.3 Mutli-soliton Complex in Microcavities -- 11.3.1 Basic Principle of Coherently Pumped Solitons -- 11.3.2 Multi-soliton States and Their Interactions in Microcavities -- 11.3.2.1 Dispersive Wave Emission in Microcavities -- 11.3.2.2 From Soliton Molecules to Soliton Crystals in Microcavities -- 11.3.2.3 Multi-soliton State Using Advanced Pumping Schemes -- 11.4 Summary and Discussions.
References -- Chapter 12: Dissipative Solitons in Microresonators -- 12.1 Introduction -- 12.2 Modeling -- 12.2.1 Higher-Order Dispersion -- 12.2.2 Raman Effect -- 12.3 Dispersion Engineered Cavity Dynamics -- 12.3.1 Capabilities of Dispersion Engineering -- 12.3.2 Advanced Control of Dissipative Soliton Dynamics -- 12.3.3 Novel Phenomena in Dispersion-Tailored Microring Resonators -- 12.4 Soliton Comb Generation Schemes -- 12.4.1 Frequency Scanning -- 12.4.2 Power Kicking -- 12.4.3 Thermal Tuning -- 12.4.4 Self-Injection Locking and Laser-Based Configurations -- 12.5 Nonlinear Dynamics of DKS -- 12.6 Applications -- References -- Chapter 13: Vector Vortex Solitons and Soliton Control in Vertical-Cavity Surface-Emitting Lasers -- 13.1 Introduction -- 13.2 Mechanism of Bistability in Lasers with Frequency-Selective Feedback -- 13.3 Vector Vortex Solitons -- 13.3.1 What Are Vector Vortex Beams? -- 13.3.2 Experimental Setup -- 13.3.3 Principle Observations -- 13.3.4 Complex Hysteresis Loops -- 13.3.5 Influencing Polarization Selection by Intra-Cavity Waveplates -- 13.3.6 Interpretation -- 13.4 Flip-Flop Operation of Laser Cavity Solitons -- 13.4.1 Soliton Control in Systems with and Without Holding Beams -- 13.4.2 Experimental Setup -- 13.4.3 Experimental Results -- 13.5 Conclusions and Outlook -- References -- Chapter 14: Discrete Solitons of the Ginzburg-Landau Equation -- 14.1 Introduction -- 14.2 The Model and Linear Dispersion Relation -- 14.3 Dissipative Solitons of the DGLE -- 14.4 Saturable Nonlinearity and MI Analysis -- 14.5 Exact Dissipative Discrete Soliton Solutions -- 14.6 Conclusion -- References -- Chapter 15: Noise-Like Pulses in Mode-Locked Fiber Lasers -- 15.1 Introduction -- 15.2 Examples of NLP Lasers -- 15.3 Mechanisms of NLP Formation -- 15.3.1 Effect of Cavity Birefringence.
15.3.2 Soliton Collapse Due to Reverse Saturable Absorption -- 15.3.3 Raman-Driven NLP -- 15.3.4 NLP Formation in Amplifiers -- 15.4 Dynamics, Coherence and Stability of NLP Lasers -- 15.5 Applications of NLP Lasers -- 15.5.1 Metrology -- 15.5.2 Spectroscopy -- 15.5.3 Spectral Broadening and Supercontinuum Generation -- 15.5.4 Optical Coherence Tomography -- 15.5.5 Nonlinear Microscopy -- 15.6 Summary -- References -- Chapter 16: Dissipative Rogue Waves -- 16.1 Introduction -- 16.1.1 Rogue Waves in the Oceans -- 16.1.2 Introduction of Optical Rogue Waves -- 16.1.3 Real-Time Techniques for Observing Optical Rogue Waves -- 16.1.3.1 Dispersive-Fourier-Transform-Based Ultrafast Spectroscopy -- 16.1.3.2 Time Magnifier -- 16.2 Dissipative Rogue Waves -- 16.2.1 Rogue Waves in Dissipative Systems -- 16.2.2 Dissipative Rogue Waves in Ultrafast Lasers -- 16.2.3 Dissipative Rogue Waves in Microresonators -- 16.2.4 Dissipative Rogue Waves in Extended Systems -- 16.2.5 Optical Polarization Rogue Waves -- 16.3 Generating Mechanisms of Dissipative Rogue Waves -- 16.3.1 Two Interpretations -- 16.3.2 Are the Dissipative Rogue Waves Predictable? -- References.
Record Nr. UNINA-9910595026003321
Ferreira Mário F. S.  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui