top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Power electronics handbook / editor in chief Muhammad H. Rashid
Power electronics handbook / editor in chief Muhammad H. Rashid
Pubbl/distr/stampa San Diego [etc.], : Academic Press, c2001
Descrizione fisica XVI, 895 p. : ill. ; 29 cm.
Disciplina 621.31
621.317
Collana Academic press series in engineering
Soggetto topico Elettronica
ISBN 0125816502
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-RMS0137192
San Diego [etc.], : Academic Press, c2001
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Power Electronics in Renewable Energy Systems and Smart Grid : Technology and Applications / / edited by Bimal K. Bose
Power Electronics in Renewable Energy Systems and Smart Grid : Technology and Applications / / edited by Bimal K. Bose
Autore Bose Bimal K.
Pubbl/distr/stampa Piscataway, New Jersey : , : Wiley-IEEE Press, , [2019]
Descrizione fisica 1 online resource (744 pages) : illustrations (some color), charts
Disciplina 621.317
Collana IEEE Press series on power engineering
Soggetto topico Power electronics
Renewable energy sources
ISBN 1-119-51565-3
1-119-51566-1
1-119-51564-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- About the editor xix -- About the contributors xxi -- List of abbreviations xxxiii -- Chapter 1 Energy, Environment, Power Electronics, Renewable Energy Systems, and Smart Grid 1 /Bimal K. Bose and Fei (Fred) Wang -- 1.1 Introduction 1 -- 1.2 Energy 1 -- 1.3 Environment 4 -- 1.3.1 Environmental Pollution by Fossil Fuels 4 -- 1.3.2 Climate Change or Global Warming Problems 7 -- 1.3.3 Several Beneficial Effects of Climate Change 11 -- 1.3.4 The Kyoto Protocol and Carbon Emission Control 12 -- 1.3.5 How Can We Solve or Mitigate Climate Change Problems? 13 -- 1.4 Power Electronics 14 -- 1.4.1 The Role of Power Electronics in Renewable Energy Systems and Grids 14 -- 1.4.2 Fundamentals of Power Electronics 16 -- 1.4.3 Power Electronics Applications 35 -- 1.5 Renewable Energy Systems 48 -- 1.5.1 Wind Energy Systems 50 -- 1.5.2 PV Systems 52 -- 1.5.3 Grid Energy Storage 53 -- 1.6 Smart Grid 54 -- 1.6.1 FACTS Technologies 54 -- 1.6.2 HVDC Technologies 60 -- 1.6.3 DC Grid and Supergrid 66 -- 1.6.4 Power Electronics for Distribution Grids 73 -- 1.7 Summary and Future Trends 76 -- Acknowledgments 78 -- References 78 -- Chapter 2 Power Semiconductor Devices for Smart Grid and Renewable Energy Systems 85 /Alex Q. Huang -- 2.1 Introduction 85 -- 2.2 Power Semiconductor Device Operation in Power Converters 87 -- 2.2.1 Commercially Available Power Semiconductor Devices 87 -- 2.2.2 Modern Power Semiconductor Device Characteristics 90 -- 2.3 State-of-the-Art Power Semiconductors: A Comparison 101 -- 2.3.1 Voltage Rating 102 -- 2.3.2 Current Rating 103 -- 2.3.3 Switching Frequency 108 -- 2.3.4 Maximum Junction Temperature 114 -- 2.4 Recent Innovations in SI Power Devices 117 -- 2.4.1 Silicon Superjunction (SJ) MOSFET 117 -- 2.4.2 Thin Wafer Field Stop IGBT (FS-IGBT) 119 -- 2.4.3 Reverse Conducting IGBT (RC-IGBT) 123 -- 2.4.4 Reverse Blocking IGBT 124 -- 2.4.5 Integrated-Gate-Commutated Thyristor (IGCT) 124 -- 2.5 Recent Innovations in WBG Power Devices 127 -- 2.5.1 SiC and GaN Diodes 128.
2.5.2 SiC MOSFET 131 -- 2.5.3 Ultra High-Voltage SiC Power Devices 135 -- 2.5.4 GaN Heterojunction Field Effect Transistor 137 -- 2.6 Smart Grid and Renewable Energy System Applications 138 -- 2.7 Conclusions 144 -- References 144 -- Chapter 3 Multilevel Converters - Configuration of Circuits and Systems 153 /Hirofumi Akagi -- 3.1 Introduction 153 -- 3.1.1 Historical Review of Multilevel Converters 153 -- 3.1.2 Overview of Chapter 3 155 -- 3.2 Multilevel NPC and NPP Inverters 155 -- 3.2.1 Circuits of Three-Level NPC and NPP Inverters 155 -- 3.2.2 Principles of the Three-Level NPC and NPP Inverters 156 -- 3.2.3 Comparisons Between the Three-Level NPC and NPP Inverters 158 -- 3.2.4 Five-Level NPC Inverters 160 -- 3.3 Multilevel FLC Inverters and Hybrid FLC Inverters 161 -- 3.3.1 Circuits of the Three-Level and Four-Level FLC Inverters 161 -- 3.3.2 Principles of the Three-Level FLC Inverter 162 -- 3.3.3 Hybrid Four-Level and Five-Level FLC Inverters 162 -- 3.4 Modular Multilevel Cascade Converters 164 -- 3.4.1 Terminological Issue and Solution 164 -- 3.4.2 Circuits and Individualities of Six Family Members 167 -- 3.4.3 Topological Discussion on the DSBC and DSCC Converters 168 -- 3.4.4 Comparisons among the Six MMCC Family Members 169 -- 3.4.5 Circulating Current 170 -- 3.5 Practical Applications of SSBC Inverters to Medium-Voltage Motor Drives 171 -- 3.6 Hierarchical Control of an SSBC-Based STATCOM 173 -- 3.6.1 Background and Motivation 173 -- 3.6.2 Hierarchical Control 174 -- 3.7 A Downscaled SSBC-Based STATCOM With Phase-Shifted-Carrier PWM 176 -- 3.7.1 System Configuration 177 -- 3.7.2 Control Technique 179 -- 3.7.3 Experimental Waveforms 181 -- 3.8 Circulating Currents in DSCC Converters 183 -- 3.8.1 Circulating Current in a Cycloconverter 184 -- 3.8.2 Circulating Current in a Single-Leg DSCC Inverter 185 -- 3.8.3 Similarity and Difference in Circulating Current 186 -- 3.9 A Downscaled DSCC-Based BTB System 187 -- 3.9.1 Circuit Configuration 187.
3.9.2 Operating Performance under Transient States 189 -- 3.10 Practical Applications of DSCC Converters to Grid Connections 192 -- 3.11 Applications of DSCC and TSBC Converters to Motor Drives 193 -- 3.11.1 DSCC-based Motor Drive Systems 193 -- 3.11.2 Experimental Motor Drives Using a DSCC Inverter and a TSBC Converter 195 -- 3.11.3 Comparisons in Start-up Performance when the 50 Hz Induction Motor was Driven 198 -- 3.11.4 Operation of the DSCC-Driven 50 Hz Motor and the TSBC-Driven 38 Hz Motor at the Rated Frequency and Torque 202 -- 3.11.5 Four-Quadrant Operation of the TSBC-driven 38 Hz Motor at No Load Torque 204 -- 3.11.6 Discussion of the Two Motor Drives 204 -- 3.12 Distributed Dynamic Braking of a DSCC-FED Induction Motor Drive 204 -- 3.12.1 Background and Motivation 206 -- 3.12.2 Circuit and System Configurations 206 -- 3.12.3 Experimental Verification 210 -- 3.13 Practical Applications of DSCC Inverters to Medium-Voltage Motor Drives 212 -- 3.14 Future Scenarios and Conclusion 213 -- References 214 -- Chapter 4 Multilevel Converters - Control and Operation in Industrial Systems 219 /Jose I. Leon, Sergio Vazquez and Leopoldo G. Franquelo -- 4.1 Introduction 219 -- 4.2 Summary of Multilevel Converter Topologies 221 -- 4.3 Control Structure of Multilevel Power Converters 223 -- 4.3.1 The Outer Control Loop (Stage 1) 225 -- 4.3.2 The Inner Control Loop (Stage 2) 225 -- 4.3.3 The Zero-Sequence Injection (Stage 3) 226 -- 4.3.4 The In-phase Balancing Strategy (Stage 3) 227 -- 4.4 Modulation Methods for Multilevel Power Converters (Stage 4) 227 -- 4.4.1 Carrier-Based Modulation Techniques 228 -- 4.4.2 Space-vector Based Modulation Methods 242 -- 4.4.3 Pseudo-Modulation Techniques and Control Methods with Implicit Modulator 243 -- 4.5 Applications of Multilevel Power Converters 245 -- 4.5.1 Grid-connected Multilevel Converters for the Integration of Renewable Energy Sources 245 -- 4.5.2 Power Quality Applications 248 -- 4.5.3 Motor Drive Applications 250.
4.5.4 HVDC Transmission Systems 251 -- 4.6 Additional Practical Challenges of Multilevel Converters 257 -- 4.7 Future Perspective of Multilevel Converters and Conclusions 258 -- References 259 -- Chapter 5 Flexible Transmission and Resilient Distribution Systems Enabled by Power Electronics 271 /Fang Z. Peng and Jin Wang -- 5.1 Introduction 271 -- 5.2 FACTS Configurations in the Smart Grid 279 -- 5.2.1 Shunt Compensation 281 -- 5.2.2 Series Compensation 284 -- 5.2.3 Shunt-Series Configuration 285 -- 5.2.4 Back-to-Back Configuration 286 -- 5.3 RACDS Configurations in the Smart Grid 287 -- 5.3.1 RACDS: Microgrids 287 -- 5.3.2 RACDS: Controllable Distribution Network 289 -- 5.3.3 RACDS: Meshed Distribution Systems 290 -- 5.4 Evolution of FACTS and RACDS 291 -- 5.4.1 Traditional FACTS and RACDS 291 -- 5.4.2 Modern FACTS and RACDS 293 -- 5.5 FACTS and RACDS Installations 298 -- 5.5.1 Traditional FACTS Installations 298 -- 5.5.2 Modern FACTS Installations 299 -- 5.5.3 RACDS Installations 301 -- 5.6 Future Perspectives 301 -- 5.6.1 Transformerless Unified Power Flow Controller 301 -- 5.6.2 Compact Dynamic Phase-Angle Regulator 303 -- 5.6.3 Distributed FACTS 303 -- 5.6.4 Power Regulator for Parallel Feeders 305 -- 5.6.5 High Power Density CMIs 307 -- 5.7 Conclusion 309 -- Acknowledgments 310 -- References 310 -- Chapter 6 Renewable Energy Systems with Wind Power 315 /Frede Blaabjerg and Ke Ma -- 6.1 Overview of Wind Power Generation and Power Electronics 315 -- 6.2 Technology Challenges and Driving Forces in this Field 318 -- 6.2.1 Low Levelized Cost of Energy (LCOE) 318 -- 6.2.2 Complex Mission Profiles 320 -- 6.2.3 Strict Grid Codes 322 -- 6.2.4 Increasing Reliability Requirements 325 -- 6.3 Wind Turbine Concepts and Power Electronics Converters 326 -- 6.3.1 Wind Turbine Concepts 326 -- 6.3.2 Power Electronics Converters in Wind Power Applications 328 -- 6.4 Control of Wind Turbine Systems 333 -- 6.5 Power Electronics for Multiple Wind Turbines and Wind Farms 336 -- 6.6 Conclusion 340.
References 341 -- Chapter 7 Photovoltaic Energy Systems 347 /Mariusz Malinowski, Jose I. Leon and Haitham Abu-Rub -- 7.1 Introduction 347 -- 7.2 Thermal and PV Solar Energy Systems 351 -- 7.3 The Solar Cell 354 -- 7.4 Solar PV System Costs 357 -- 7.4.1 Incentives for More Investments in PV Systems 361 -- 7.5 General Scheme for a Solar PV System 362 -- 7.6 Grid-Connected PV Systems 363 -- 7.6.1 Utility-scale PV Power Plants 364 -- 7.6.2 Residential and Industrial PV Applications 366 -- 7.6.3 Low-power PV Systems 371 -- 7.7 Control of Grid-Connected PV Systems 372 -- 7.8 Stand-Alone PV Systems 374 -- 7.9 Energy Storage Systems for PV Applications 379 -- 7.10 Operational Issues for PV Systems 381 -- 7.11 Conclusions 385 -- References 386 -- Chapter 8 Ocean and Geothermal Renewable Energy Systems 391 /Annette von Jouanne and Ted K.A. Brekken -- 8.1 Introduction 391 -- 8.2 Wave Energy 392 -- 8.2.1 Resource Characteristics 392 -- 8.2.2 Wave Energy Conversion Technologies and Resource Characterization 394 -- 8.2.3 Power Electronics and Control 397 -- 8.2.4 Autonomous Applications 401 -- 8.2.5 Cost 403 -- 8.2.6 Rotating Machines in Marine Energy Converters 405 -- 8.2.7 Unique Testing Opportunity for Wave Energy Converters 406 -- 8.3 Ocean Thermal Energy Conversion 411 -- 8.3.1 Resource Characteristics 412 -- 8.3.2 OTEC Technologies 413 -- 8.3.3 Open-cycle OTEC 414 -- 8.3.4 Closed-cycle OTEC 415 -- 8.3.5 OTEC Generator Grid Interface 415 -- 8.3.6 Cost 416 -- 8.4 Tidal and Ocean Currents 417 -- 8.4.1 Resource Characteristics 418 -- 8.4.2 Tidal Barrage, Tidal Current, and Ocean Current Technologies 420 -- 8.4.3 Power Electronics and Grid Interface 422 -- 8.4.4 Cost 425 -- 8.5 Geothermal Energy Systems 426 -- 8.5.1 Resource Characteristics 428 -- 8.5.2 Geothermal Power Plant Technologies 429 -- 8.5.3 Dry Steam 431 -- 8.5.4 Flash Steam 431 -- 8.5.5 Binary Cycle 432 -- 8.5.6 Geothermal Generator Grid Interface 432 -- 8.5.7 Cost 433 -- 8.6 Conclusion 434 -- Acknowledgment 435.
References 435 -- Chapter 9 Fuel Cells and Their Applications in Energy Systems 443 /Jih-Sheng (Jason) Lai and Michael W. Ellis -- 9.1 Introduction 443 -- 9.2 Different Fuel Cell Technologies 446 -- 9.2.1 Low-temperature Fuel Cells 447 -- 9.2.2 High-temperature Fuel Cells 453 -- 9.3 Fuel Cell Applications 457 -- 9.3.1 Transportation Applications 457 -- 9.3.2 Stationary Power Generation Applications 460 -- 9.4 Electrical Characteristics 462 -- 9.4.1 Steady-state Operation 462 -- 9.4.2 Dynamic Operation 465 -- 9.4.3 Dynamic Operation with a Paralleled Ultracapacitor 468 -- 9.5 Fuel Cell Power System Architecture 468 -- 9.5.1 Balance-of-Plant 468 -- 9.5.2 Fuel Cell DC Power Systems 469 -- 9.5.3 Grounding Requirement for Fuel Cell AC Power Systems 471 -- 9.6 Power Electronics for Fuel Cell Applications 472 -- 9.6.1 DC-DC Converters 472 -- 9.6.2 DC-AC Inverter 479 -- 9.6.3 Double-Line Frequency Issues 484 -- 9.7 Summary 485 -- References 486 -- Chapter 10 Grid Energy Storage Systems 495 /Marcelo G. Molina -- 10.1 Introduction 495 -- 10.2 Smart Grid Applications of Energy Storage 500 -- 10.3 Energy Storage Technologies 506 -- 10.3.1 Mechanical Energy Storage 507 -- 10.3.2 Electrical Energy Storage 518 -- 10.3.3 Electrochemical Energy Storage 529 -- 10.3.4 Chemical Energy Storage 547 -- 10.3.5 Thermal Energy Storage 552 -- 10.4 Assessment of Energy Storage Technologies 555 -- 10.5 Power Conditioning System for Interfacing Energy Storage Technologies with the Smart Grid 565 -- 10.6 Conclusion 572 -- References 574 -- Chapter 11 Smart Grid Simulations and Control 585 /Aranya Chakrabortty and Anjan Bose -- 11.1 Introduction 585 -- 11.2 Simulation Models 586 -- 11.2.1 Synchronous Generators 588 -- 11.2.2 Models of Renewable Energy Sources 589 -- 11.2.3 Transmission Line Models 591 -- 11.2.4 Load Models 591 -- 11.3 Current Approach for Smart Grid Simulation 592 -- 11.3.1 Power Flow Analysis 592 -- 11.3.2 Dynamic Simulations 593 -- 11.3.3 Economic Dispatch and OPF 593.
11.3.4 Fault Analysis 594 -- 11.3.5 Load Frequency Control 594 -- 11.3.6 Operator Training Simulator 594 -- 11.3.7 Reliability Modeling and Simulation 594 -- 11.3.8 Simulation of Power Markets 595 -- 11.4 Challenges for Grid Simulation 595 -- 11.4.1 Structural Properties 596 -- 11.4.2 Scalability 596 -- 11.4.3 Model Validation 596 -- 11.4.4 Model Aggregation 597 -- 11.4.5 Role of Power Electronics 597 -- 11.4.6 Co-simulation of T&D Models 598 -- 11.4.7 Co-Simulation of Infrastructures 599 -- 11.4.8 Cyber-Physical Modeling and Simulations 601 -- 11.5 Next-Generation Grid Control Systems 605 -- 11.5.1 Wide-area Control 605 -- 11.5.2 Cyber-Physical Challenges for Wide-area Control 608 -- 11.5.3 Scheduling Protocols 612 -- 11.5.4 Co-designing Wide-area Control in Tandem with Communication Protocols 613 -- 11.5.5 Plug-and-play Control of DERs 615 -- 11.5.6 Distributed Load Frequency Control 616 -- 11.5.7 Inner-loop + Outer-loop Hierarchical Control 617 -- 11.6 Experimental Testbeds for Simulations and Control 618 -- 11.7 Conclusions 619 -- References 620 -- Chapter 12 Artificial Intelligence Applications in Renewable Energy Systems and Smart Grid - Some Novel Applications 625 /Bimal K. Bose -- 12.1 Introduction 625 -- 12.2 Expert Systems 627 -- 12.2.1 Expert System Principles 627 -- 12.2.2 Expert System-Based Control of Smart Grid 631 -- 12.3 Fuzzy Logic 636 -- 12.3.1 Fuzzy Inference System Principles 637 -- 12.3.2 Fuzzy Logic Control of a Modern Wind Generation System 644 -- 12.4 Neural Networks 650 -- 12.4.1 Neural Network Principles 650 -- 12.4.2 Neural Network Applications 662 -- 12.5 Conclusion 672 -- Acknowledgment 673 -- References 673 -- Index 677.
Record Nr. UNINA-9910555079903321
Bose Bimal K.  
Piscataway, New Jersey : , : Wiley-IEEE Press, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power Electronics in Renewable Energy Systems and Smart Grid : Technology and Applications / / edited by Bimal K. Bose
Power Electronics in Renewable Energy Systems and Smart Grid : Technology and Applications / / edited by Bimal K. Bose
Autore Bose Bimal K.
Pubbl/distr/stampa Piscataway, New Jersey : , : Wiley-IEEE Press, , [2019]
Descrizione fisica 1 online resource (744 pages) : illustrations (some color), charts
Disciplina 621.317
Collana IEEE Press series on power engineering
Soggetto topico Power electronics
Renewable energy sources
ISBN 1-119-51565-3
1-119-51566-1
1-119-51564-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- About the editor xix -- About the contributors xxi -- List of abbreviations xxxiii -- Chapter 1 Energy, Environment, Power Electronics, Renewable Energy Systems, and Smart Grid 1 /Bimal K. Bose and Fei (Fred) Wang -- 1.1 Introduction 1 -- 1.2 Energy 1 -- 1.3 Environment 4 -- 1.3.1 Environmental Pollution by Fossil Fuels 4 -- 1.3.2 Climate Change or Global Warming Problems 7 -- 1.3.3 Several Beneficial Effects of Climate Change 11 -- 1.3.4 The Kyoto Protocol and Carbon Emission Control 12 -- 1.3.5 How Can We Solve or Mitigate Climate Change Problems? 13 -- 1.4 Power Electronics 14 -- 1.4.1 The Role of Power Electronics in Renewable Energy Systems and Grids 14 -- 1.4.2 Fundamentals of Power Electronics 16 -- 1.4.3 Power Electronics Applications 35 -- 1.5 Renewable Energy Systems 48 -- 1.5.1 Wind Energy Systems 50 -- 1.5.2 PV Systems 52 -- 1.5.3 Grid Energy Storage 53 -- 1.6 Smart Grid 54 -- 1.6.1 FACTS Technologies 54 -- 1.6.2 HVDC Technologies 60 -- 1.6.3 DC Grid and Supergrid 66 -- 1.6.4 Power Electronics for Distribution Grids 73 -- 1.7 Summary and Future Trends 76 -- Acknowledgments 78 -- References 78 -- Chapter 2 Power Semiconductor Devices for Smart Grid and Renewable Energy Systems 85 /Alex Q. Huang -- 2.1 Introduction 85 -- 2.2 Power Semiconductor Device Operation in Power Converters 87 -- 2.2.1 Commercially Available Power Semiconductor Devices 87 -- 2.2.2 Modern Power Semiconductor Device Characteristics 90 -- 2.3 State-of-the-Art Power Semiconductors: A Comparison 101 -- 2.3.1 Voltage Rating 102 -- 2.3.2 Current Rating 103 -- 2.3.3 Switching Frequency 108 -- 2.3.4 Maximum Junction Temperature 114 -- 2.4 Recent Innovations in SI Power Devices 117 -- 2.4.1 Silicon Superjunction (SJ) MOSFET 117 -- 2.4.2 Thin Wafer Field Stop IGBT (FS-IGBT) 119 -- 2.4.3 Reverse Conducting IGBT (RC-IGBT) 123 -- 2.4.4 Reverse Blocking IGBT 124 -- 2.4.5 Integrated-Gate-Commutated Thyristor (IGCT) 124 -- 2.5 Recent Innovations in WBG Power Devices 127 -- 2.5.1 SiC and GaN Diodes 128.
2.5.2 SiC MOSFET 131 -- 2.5.3 Ultra High-Voltage SiC Power Devices 135 -- 2.5.4 GaN Heterojunction Field Effect Transistor 137 -- 2.6 Smart Grid and Renewable Energy System Applications 138 -- 2.7 Conclusions 144 -- References 144 -- Chapter 3 Multilevel Converters - Configuration of Circuits and Systems 153 /Hirofumi Akagi -- 3.1 Introduction 153 -- 3.1.1 Historical Review of Multilevel Converters 153 -- 3.1.2 Overview of Chapter 3 155 -- 3.2 Multilevel NPC and NPP Inverters 155 -- 3.2.1 Circuits of Three-Level NPC and NPP Inverters 155 -- 3.2.2 Principles of the Three-Level NPC and NPP Inverters 156 -- 3.2.3 Comparisons Between the Three-Level NPC and NPP Inverters 158 -- 3.2.4 Five-Level NPC Inverters 160 -- 3.3 Multilevel FLC Inverters and Hybrid FLC Inverters 161 -- 3.3.1 Circuits of the Three-Level and Four-Level FLC Inverters 161 -- 3.3.2 Principles of the Three-Level FLC Inverter 162 -- 3.3.3 Hybrid Four-Level and Five-Level FLC Inverters 162 -- 3.4 Modular Multilevel Cascade Converters 164 -- 3.4.1 Terminological Issue and Solution 164 -- 3.4.2 Circuits and Individualities of Six Family Members 167 -- 3.4.3 Topological Discussion on the DSBC and DSCC Converters 168 -- 3.4.4 Comparisons among the Six MMCC Family Members 169 -- 3.4.5 Circulating Current 170 -- 3.5 Practical Applications of SSBC Inverters to Medium-Voltage Motor Drives 171 -- 3.6 Hierarchical Control of an SSBC-Based STATCOM 173 -- 3.6.1 Background and Motivation 173 -- 3.6.2 Hierarchical Control 174 -- 3.7 A Downscaled SSBC-Based STATCOM With Phase-Shifted-Carrier PWM 176 -- 3.7.1 System Configuration 177 -- 3.7.2 Control Technique 179 -- 3.7.3 Experimental Waveforms 181 -- 3.8 Circulating Currents in DSCC Converters 183 -- 3.8.1 Circulating Current in a Cycloconverter 184 -- 3.8.2 Circulating Current in a Single-Leg DSCC Inverter 185 -- 3.8.3 Similarity and Difference in Circulating Current 186 -- 3.9 A Downscaled DSCC-Based BTB System 187 -- 3.9.1 Circuit Configuration 187.
3.9.2 Operating Performance under Transient States 189 -- 3.10 Practical Applications of DSCC Converters to Grid Connections 192 -- 3.11 Applications of DSCC and TSBC Converters to Motor Drives 193 -- 3.11.1 DSCC-based Motor Drive Systems 193 -- 3.11.2 Experimental Motor Drives Using a DSCC Inverter and a TSBC Converter 195 -- 3.11.3 Comparisons in Start-up Performance when the 50 Hz Induction Motor was Driven 198 -- 3.11.4 Operation of the DSCC-Driven 50 Hz Motor and the TSBC-Driven 38 Hz Motor at the Rated Frequency and Torque 202 -- 3.11.5 Four-Quadrant Operation of the TSBC-driven 38 Hz Motor at No Load Torque 204 -- 3.11.6 Discussion of the Two Motor Drives 204 -- 3.12 Distributed Dynamic Braking of a DSCC-FED Induction Motor Drive 204 -- 3.12.1 Background and Motivation 206 -- 3.12.2 Circuit and System Configurations 206 -- 3.12.3 Experimental Verification 210 -- 3.13 Practical Applications of DSCC Inverters to Medium-Voltage Motor Drives 212 -- 3.14 Future Scenarios and Conclusion 213 -- References 214 -- Chapter 4 Multilevel Converters - Control and Operation in Industrial Systems 219 /Jose I. Leon, Sergio Vazquez and Leopoldo G. Franquelo -- 4.1 Introduction 219 -- 4.2 Summary of Multilevel Converter Topologies 221 -- 4.3 Control Structure of Multilevel Power Converters 223 -- 4.3.1 The Outer Control Loop (Stage 1) 225 -- 4.3.2 The Inner Control Loop (Stage 2) 225 -- 4.3.3 The Zero-Sequence Injection (Stage 3) 226 -- 4.3.4 The In-phase Balancing Strategy (Stage 3) 227 -- 4.4 Modulation Methods for Multilevel Power Converters (Stage 4) 227 -- 4.4.1 Carrier-Based Modulation Techniques 228 -- 4.4.2 Space-vector Based Modulation Methods 242 -- 4.4.3 Pseudo-Modulation Techniques and Control Methods with Implicit Modulator 243 -- 4.5 Applications of Multilevel Power Converters 245 -- 4.5.1 Grid-connected Multilevel Converters for the Integration of Renewable Energy Sources 245 -- 4.5.2 Power Quality Applications 248 -- 4.5.3 Motor Drive Applications 250.
4.5.4 HVDC Transmission Systems 251 -- 4.6 Additional Practical Challenges of Multilevel Converters 257 -- 4.7 Future Perspective of Multilevel Converters and Conclusions 258 -- References 259 -- Chapter 5 Flexible Transmission and Resilient Distribution Systems Enabled by Power Electronics 271 /Fang Z. Peng and Jin Wang -- 5.1 Introduction 271 -- 5.2 FACTS Configurations in the Smart Grid 279 -- 5.2.1 Shunt Compensation 281 -- 5.2.2 Series Compensation 284 -- 5.2.3 Shunt-Series Configuration 285 -- 5.2.4 Back-to-Back Configuration 286 -- 5.3 RACDS Configurations in the Smart Grid 287 -- 5.3.1 RACDS: Microgrids 287 -- 5.3.2 RACDS: Controllable Distribution Network 289 -- 5.3.3 RACDS: Meshed Distribution Systems 290 -- 5.4 Evolution of FACTS and RACDS 291 -- 5.4.1 Traditional FACTS and RACDS 291 -- 5.4.2 Modern FACTS and RACDS 293 -- 5.5 FACTS and RACDS Installations 298 -- 5.5.1 Traditional FACTS Installations 298 -- 5.5.2 Modern FACTS Installations 299 -- 5.5.3 RACDS Installations 301 -- 5.6 Future Perspectives 301 -- 5.6.1 Transformerless Unified Power Flow Controller 301 -- 5.6.2 Compact Dynamic Phase-Angle Regulator 303 -- 5.6.3 Distributed FACTS 303 -- 5.6.4 Power Regulator for Parallel Feeders 305 -- 5.6.5 High Power Density CMIs 307 -- 5.7 Conclusion 309 -- Acknowledgments 310 -- References 310 -- Chapter 6 Renewable Energy Systems with Wind Power 315 /Frede Blaabjerg and Ke Ma -- 6.1 Overview of Wind Power Generation and Power Electronics 315 -- 6.2 Technology Challenges and Driving Forces in this Field 318 -- 6.2.1 Low Levelized Cost of Energy (LCOE) 318 -- 6.2.2 Complex Mission Profiles 320 -- 6.2.3 Strict Grid Codes 322 -- 6.2.4 Increasing Reliability Requirements 325 -- 6.3 Wind Turbine Concepts and Power Electronics Converters 326 -- 6.3.1 Wind Turbine Concepts 326 -- 6.3.2 Power Electronics Converters in Wind Power Applications 328 -- 6.4 Control of Wind Turbine Systems 333 -- 6.5 Power Electronics for Multiple Wind Turbines and Wind Farms 336 -- 6.6 Conclusion 340.
References 341 -- Chapter 7 Photovoltaic Energy Systems 347 /Mariusz Malinowski, Jose I. Leon and Haitham Abu-Rub -- 7.1 Introduction 347 -- 7.2 Thermal and PV Solar Energy Systems 351 -- 7.3 The Solar Cell 354 -- 7.4 Solar PV System Costs 357 -- 7.4.1 Incentives for More Investments in PV Systems 361 -- 7.5 General Scheme for a Solar PV System 362 -- 7.6 Grid-Connected PV Systems 363 -- 7.6.1 Utility-scale PV Power Plants 364 -- 7.6.2 Residential and Industrial PV Applications 366 -- 7.6.3 Low-power PV Systems 371 -- 7.7 Control of Grid-Connected PV Systems 372 -- 7.8 Stand-Alone PV Systems 374 -- 7.9 Energy Storage Systems for PV Applications 379 -- 7.10 Operational Issues for PV Systems 381 -- 7.11 Conclusions 385 -- References 386 -- Chapter 8 Ocean and Geothermal Renewable Energy Systems 391 /Annette von Jouanne and Ted K.A. Brekken -- 8.1 Introduction 391 -- 8.2 Wave Energy 392 -- 8.2.1 Resource Characteristics 392 -- 8.2.2 Wave Energy Conversion Technologies and Resource Characterization 394 -- 8.2.3 Power Electronics and Control 397 -- 8.2.4 Autonomous Applications 401 -- 8.2.5 Cost 403 -- 8.2.6 Rotating Machines in Marine Energy Converters 405 -- 8.2.7 Unique Testing Opportunity for Wave Energy Converters 406 -- 8.3 Ocean Thermal Energy Conversion 411 -- 8.3.1 Resource Characteristics 412 -- 8.3.2 OTEC Technologies 413 -- 8.3.3 Open-cycle OTEC 414 -- 8.3.4 Closed-cycle OTEC 415 -- 8.3.5 OTEC Generator Grid Interface 415 -- 8.3.6 Cost 416 -- 8.4 Tidal and Ocean Currents 417 -- 8.4.1 Resource Characteristics 418 -- 8.4.2 Tidal Barrage, Tidal Current, and Ocean Current Technologies 420 -- 8.4.3 Power Electronics and Grid Interface 422 -- 8.4.4 Cost 425 -- 8.5 Geothermal Energy Systems 426 -- 8.5.1 Resource Characteristics 428 -- 8.5.2 Geothermal Power Plant Technologies 429 -- 8.5.3 Dry Steam 431 -- 8.5.4 Flash Steam 431 -- 8.5.5 Binary Cycle 432 -- 8.5.6 Geothermal Generator Grid Interface 432 -- 8.5.7 Cost 433 -- 8.6 Conclusion 434 -- Acknowledgment 435.
References 435 -- Chapter 9 Fuel Cells and Their Applications in Energy Systems 443 /Jih-Sheng (Jason) Lai and Michael W. Ellis -- 9.1 Introduction 443 -- 9.2 Different Fuel Cell Technologies 446 -- 9.2.1 Low-temperature Fuel Cells 447 -- 9.2.2 High-temperature Fuel Cells 453 -- 9.3 Fuel Cell Applications 457 -- 9.3.1 Transportation Applications 457 -- 9.3.2 Stationary Power Generation Applications 460 -- 9.4 Electrical Characteristics 462 -- 9.4.1 Steady-state Operation 462 -- 9.4.2 Dynamic Operation 465 -- 9.4.3 Dynamic Operation with a Paralleled Ultracapacitor 468 -- 9.5 Fuel Cell Power System Architecture 468 -- 9.5.1 Balance-of-Plant 468 -- 9.5.2 Fuel Cell DC Power Systems 469 -- 9.5.3 Grounding Requirement for Fuel Cell AC Power Systems 471 -- 9.6 Power Electronics for Fuel Cell Applications 472 -- 9.6.1 DC-DC Converters 472 -- 9.6.2 DC-AC Inverter 479 -- 9.6.3 Double-Line Frequency Issues 484 -- 9.7 Summary 485 -- References 486 -- Chapter 10 Grid Energy Storage Systems 495 /Marcelo G. Molina -- 10.1 Introduction 495 -- 10.2 Smart Grid Applications of Energy Storage 500 -- 10.3 Energy Storage Technologies 506 -- 10.3.1 Mechanical Energy Storage 507 -- 10.3.2 Electrical Energy Storage 518 -- 10.3.3 Electrochemical Energy Storage 529 -- 10.3.4 Chemical Energy Storage 547 -- 10.3.5 Thermal Energy Storage 552 -- 10.4 Assessment of Energy Storage Technologies 555 -- 10.5 Power Conditioning System for Interfacing Energy Storage Technologies with the Smart Grid 565 -- 10.6 Conclusion 572 -- References 574 -- Chapter 11 Smart Grid Simulations and Control 585 /Aranya Chakrabortty and Anjan Bose -- 11.1 Introduction 585 -- 11.2 Simulation Models 586 -- 11.2.1 Synchronous Generators 588 -- 11.2.2 Models of Renewable Energy Sources 589 -- 11.2.3 Transmission Line Models 591 -- 11.2.4 Load Models 591 -- 11.3 Current Approach for Smart Grid Simulation 592 -- 11.3.1 Power Flow Analysis 592 -- 11.3.2 Dynamic Simulations 593 -- 11.3.3 Economic Dispatch and OPF 593.
11.3.4 Fault Analysis 594 -- 11.3.5 Load Frequency Control 594 -- 11.3.6 Operator Training Simulator 594 -- 11.3.7 Reliability Modeling and Simulation 594 -- 11.3.8 Simulation of Power Markets 595 -- 11.4 Challenges for Grid Simulation 595 -- 11.4.1 Structural Properties 596 -- 11.4.2 Scalability 596 -- 11.4.3 Model Validation 596 -- 11.4.4 Model Aggregation 597 -- 11.4.5 Role of Power Electronics 597 -- 11.4.6 Co-simulation of T&D Models 598 -- 11.4.7 Co-Simulation of Infrastructures 599 -- 11.4.8 Cyber-Physical Modeling and Simulations 601 -- 11.5 Next-Generation Grid Control Systems 605 -- 11.5.1 Wide-area Control 605 -- 11.5.2 Cyber-Physical Challenges for Wide-area Control 608 -- 11.5.3 Scheduling Protocols 612 -- 11.5.4 Co-designing Wide-area Control in Tandem with Communication Protocols 613 -- 11.5.5 Plug-and-play Control of DERs 615 -- 11.5.6 Distributed Load Frequency Control 616 -- 11.5.7 Inner-loop + Outer-loop Hierarchical Control 617 -- 11.6 Experimental Testbeds for Simulations and Control 618 -- 11.7 Conclusions 619 -- References 620 -- Chapter 12 Artificial Intelligence Applications in Renewable Energy Systems and Smart Grid - Some Novel Applications 625 /Bimal K. Bose -- 12.1 Introduction 625 -- 12.2 Expert Systems 627 -- 12.2.1 Expert System Principles 627 -- 12.2.2 Expert System-Based Control of Smart Grid 631 -- 12.3 Fuzzy Logic 636 -- 12.3.1 Fuzzy Inference System Principles 637 -- 12.3.2 Fuzzy Logic Control of a Modern Wind Generation System 644 -- 12.4 Neural Networks 650 -- 12.4.1 Neural Network Principles 650 -- 12.4.2 Neural Network Applications 662 -- 12.5 Conclusion 672 -- Acknowledgment 673 -- References 673 -- Index 677.
Record Nr. UNINA-9910677095803321
Bose Bimal K.  
Piscataway, New Jersey : , : Wiley-IEEE Press, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power electronics in smart electrical energy networks / Ryszard Strzelecki, Grzegorz Benysek editors
Power electronics in smart electrical energy networks / Ryszard Strzelecki, Grzegorz Benysek editors
Pubbl/distr/stampa Londra, : Springer, ©2008
Descrizione fisica XVIII, 414 p. : ill. ; 24 cm.
Disciplina 621.31
621.317
Collana Power systems
Soggetto topico Reti elettriche
Elettronica
ISBN 9781848003170
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-RMS2463297
Londra, : Springer, ©2008
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Power electronics semiconductor switches / Raymond S. Ramshaw
Power electronics semiconductor switches / Raymond S. Ramshaw
Autore RAMSHAW, Raymond S.
Edizione [2. ed.]
Pubbl/distr/stampa London [etc.], : Chapman & Hall, 1993
Disciplina 621.317
Soggetto topico Circuiti elettrici
Convertitori elettrici
ISBN 0-412-28870-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000167980203316
RAMSHAW, Raymond S.  
London [etc.], : Chapman & Hall, 1993
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Power electronics technology and applications 1993 / Pierre A. Thollot, editor
Power electronics technology and applications 1993 / Pierre A. Thollot, editor
Pubbl/distr/stampa Piscataway (N.J.) : IEEE, copyr. 1992
Disciplina 621.317
Soggetto non controllato circuiti elettronici di potenza
ISBN 0-7803-0880-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000167990203316
Piscataway (N.J.) : IEEE, copyr. 1992
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Power electronics, drives, and advanced applications / / Vinod Kumar [et al.]
Power electronics, drives, and advanced applications / / Vinod Kumar [et al.]
Autore Kumar Vinod (Assistant Professor)
Edizione [First edition.]
Pubbl/distr/stampa Boca Raton, Florida : , : CRC Press LLC, , 2020
Descrizione fisica 1 online resource (xxviii, 762 pages)
Disciplina 621.317
Altri autori (Persone) BeheraRanjan Kumar
JoshiDheeraj
BansalRamesh
Soggetto topico Power electronics
Power transmission
ISBN 1-351-66598-7
1-315-16166-4
1-351-66599-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgment -- Authors -- SECTION I: Power Semiconductor Devices -- Chapter 1: Overview of Power Electronics -- 1.1 Introduction -- 1.2 Power Electronics Systems -- 1.3 Power Semiconductor Devices -- 1.4 Power Electronic Converters -- 1.5 Power Electronic Modules -- 1.6 Applications of Power Electronics -- 1.7 Computer Simulation of Power Electronic Circuits -- 1.7.1 Importance of Simulation -- 1.7.2 Benefits of Computer-Aided Simulation -- 1.7.3 Demerits of Computer-Aided Simulation
1.7.4 Simulation Tools -- Review Questions -- Summary -- References/Further Reading -- Chapter 2: Power Semiconductor Devices -- 2.1 Introduction -- 2.2 Power Diode -- 2.2.1 Working and V-I Characteristics -- 2.2.2 Diode Reverse Recovery Characteristics -- 2.3 DIAC -- 2.4 TRIAC -- 2.5 Characteristics of Power Transistors -- 2.5.1 Bipolar Junction Transistor -- 2.5.1.1 Steady-State Characteristics -- 2.5.1.2 Switching Characteristics of a BJT -- 2.5.2 Power MOSFETs -- 2.5.3 Insulated-Gate Bipolar Transistor -- 2.6 Characteristics of the Thyristor -- 2.6.1 Static V-I Characteristics of a Thyristor
2.6.1.1 Reverse Blocking Mode (RBM) -- 2.6.1.2 Forward Blocking Mode -- 2.6.1.3 Forward Conducting Mode -- 2.6.2 Switching Characteristics of a Thyristor -- 2.6.3 Thyristor Gate Characteristics -- 2.7 Gate Turn-Off (GTO) Thyristor -- 2.7.1 Static V-I Characteristics -- 2.7.2 Switching Characteristics of GTO -- 2.8 Two-Transistor Model of a Thyristor -- Review Questions -- Summary -- References/Further Reading -- Chapter 3: Silicon-Controlled Rectifier -- 3.1 Introduction -- 3.2 SCR Construction -- 3.2.1 Planer Diffused -- 3.2.2 Alloy Diffused -- 3.3 Specifications and Ratings
3.3.1 Voltage Ratings -- 3.3.2 Current Ratings -- 3.4 Methods of Turn On -- 3.4.1 Gate Triggering -- 3.4.2 Forward Voltage Triggering -- 3.4.3 dv/dt Triggering -- 3.4.4 Temperature Triggering -- 3.4.5 Light Triggering -- 3.5 Firing (Triggering) Circuits for SCR -- 3.5.1 Resistance (R) Triggering Circuit -- 3.5.2 Resistance-Capacitance (RC) Triggering Circuit -- 3.5.3 UJT Relaxation Oscillator -- 3.6 Series and Parallel Operation of SCR -- 3.6.1 Series-Connected SCRs -- 3.6.2 Parallel-Connected SCRs -- 3.7 String Efficiency -- 3.8 Protection of SCR -- 3.8.1 Overvoltage Protection
3.8.2 Overcurrent Protection -- 3.8.3 dv/dt Protection -- 3.8.4 di/dt Protection -- 3.8.5 Gate Protection -- 3.9 Solved Problems -- Review Questions and Unsolved Problems -- Summary -- Main Formulas of the Chapter -- References/Further Reading -- SECTION II: Power Electronic Converters -- Chapter 4: Phase-Controlled Rectifiers -- 4.1 Introduction -- 4.2 Classifications -- 4.3 Performance Indices for Line-Commutated Converter -- 4.4 Single-Phase Converters -- 4.4.1 Single-Phase Half-Wave-Controlled Rectifier with R Load -- 4.4.2 Single-Phase Half-Wave-Controlled Rectifier with RL Load
Record Nr. UNINA-9910861054903321
Kumar Vinod (Assistant Professor)  
Boca Raton, Florida : , : CRC Press LLC, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power elettronics / David A. Bradley
Power elettronics / David A. Bradley
Autore Bradley, David A.
Edizione [2nd ed]
Pubbl/distr/stampa London : Chapman and Hall, 1995
Disciplina 621.317
Soggetto non controllato circuiti elettronici
ISBN 0-412-57100-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000167890203316
Bradley, David A.  
London : Chapman and Hall, 1995
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Power quality assurance
Power quality assurance
Pubbl/distr/stampa Ventura : Intertec International
Descrizione fisica v. : ill.
Disciplina 621.317
Soggetto topico Ingegneria elettrica - Periodici
ISSN 1068-4085
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Note periodicità Bimestrale
Record Nr. UNISA-990001047500203316
Ventura : Intertec International
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Power semiconductor devices / B. Jayant Baliga
Power semiconductor devices / B. Jayant Baliga
Autore Baliga, B. Jayant
Pubbl/distr/stampa Boston : PWS publishing company, copyr. 1996
Descrizione fisica XIX, 600 p. : ill. ; 24 cm
Disciplina 621.317
Soggetto non controllato Semiconduttori
ISBN 0-534-94098-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNINA-990000150180403321
Baliga, B. Jayant
Boston : PWS publishing company, copyr. 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui