top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
C62.72a-2020 - IEEE guide for the application of surge-protective devices for use on the load side of service equipment in low-voltage (1000 V or Less, 50 Hz or 60 Hz) ac power circuits--amendment 1: SPD disconnector application considerations and coordination / / IEEE
C62.72a-2020 - IEEE guide for the application of surge-protective devices for use on the load side of service equipment in low-voltage (1000 V or Less, 50 Hz or 60 Hz) ac power circuits--amendment 1: SPD disconnector application considerations and coordination / / IEEE
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2021
Descrizione fisica 1 online resource
Disciplina 621.312424
Soggetto topico Electric power systems
Electric power systems - Reliability
ISBN 1-5044-6808-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti C62.72a-2020 - IEEE Guide for the Application of Surge-Protective Devices for Use on the Load Side of Service Equipment in Low-Voltage
Record Nr. UNINA-9910447059703321
[Place of publication not identified] : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
C62.72a-2020 - IEEE guide for the application of surge-protective devices for use on the load side of service equipment in low-voltage (1000 V or Less, 50 Hz or 60 Hz) ac power circuits--amendment 1: SPD disconnector application considerations and coordination / / IEEE
C62.72a-2020 - IEEE guide for the application of surge-protective devices for use on the load side of service equipment in low-voltage (1000 V or Less, 50 Hz or 60 Hz) ac power circuits--amendment 1: SPD disconnector application considerations and coordination / / IEEE
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2021
Descrizione fisica 1 online resource
Disciplina 621.312424
Soggetto topico Electric power systems
Electric power systems - Reliability
ISBN 1-5044-6808-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti C62.72a-2020 - IEEE Guide for the Application of Surge-Protective Devices for Use on the Load Side of Service Equipment in Low-Voltage
Record Nr. UNISA-996575263603316
[Place of publication not identified] : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Design of Battery Materials
Computational Design of Battery Materials
Autore Hanaor Dorian A. H
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (589 pages)
Disciplina 621.312424
Collana Topics in Applied Physics Series
ISBN 9783031473036
9783031473029
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Contents -- Contributors -- Introduction: Battery Materials: Bringing It All Together for Tomorrow's Energy Storage Needs -- 1 Computational Design of Battery Materials -- 2 Battery Materials as Key Enablers of Contemporary Technosocieties -- 3 Objectives of Battery Materials Design -- 4 Interdisciplinary Aspects of Battery Materials Design -- References -- Atomistic Simulations of Battery Materials and Processes -- 1 Introduction -- 2 Structure and Ionic Diffusion in PEO-LiTFSI Polymer Electrolyte: Effect of Temperature, Molecular Weight, and Ionic Concentration -- 3 Transport Properties of Imidazolium Based Ionic Liquids: Effect of Li-Ion Concentration and Electric Field -- 4 Structural, Dynamic and Diffusion Properties of Lithium Superionic Conductor Li6(PS4)SCl -- 5 Interfacial Instability of the Li6(PS4)SCl Superionic Conductor at Lithium Metal Anode -- 6 SEI Formation in Li/Ionic Liquid Systems -- 7 Summary and Conclusions -- References -- Ab Initio Interfacial Electrochemistry Applied to Understanding, Tuning and Designing Battery Chemistry -- 1 Introduction -- 2 Modeling Electrochemical Interfaces -- 2.1 Introduction to the Grand Canonical Formalism -- 2.2 The Grand Canonical Formalism Applied to a Redox Process -- 2.3 Beyond the Computational Hydrogen Electrode Approach -- 2.4 Introduction to the Ab Initio Grand Canonical Formalism -- 2.5 How to Use Ω( Φ) Curves: The Reduction of a Solvated Magnesium Cation -- 2.6 Impact of the Solvation Model -- 3 Tools for Analyzing the Electrochemical Reactivity -- 3.1 Discriminating Electrochemical Versus Non-electrochemical Processes -- 3.2 Electrochemical Active Center and Fukui Function -- 3.3 Potential Dependent Projected Density of States and Metallicity -- 4 Application in Batteries -- 4.1 Solvent Stability: Application to Mg Batteries.
4.2 Prevention of the Electrolyte Decomposition by Using Additives -- 4.3 Dendrite Formation in Metal-Ion Batteries -- 4.4 Interface Stabilization Through Surface Coatings Design -- 5 Conclusion -- References -- Electrolyte-Electrode Interfaces: A Review of Computer Simulations -- 1 Introduction -- 2 Interface Ionics -- 2.1 Molecular Dynamics Simulations -- 2.2 Classical Electric Double Layer Theories -- 2.3 Structure of the Electric Double Layer -- 2.4 Electrolyte-Electrode Interface (EEI) -- 3 Interface Electronics -- 3.1 Mechanisms of EEI Formation and Redox Reactions -- 3.2 Electron Distribution at and Electron Transport Across the EEI -- 4 Conclusions -- References -- Many-Particle Na-Ion Dynamics in NaMPO4 Olivine Phosphates (M = Mn, Fe) -- 1 Introduction -- 2 Methods and Models -- 3 Results -- 3.1 Plain MD -- 3.2 Application of the Shooter Approach -- 3.3 Shooter Simulations with Na/M Antisite Defects (M = Fe/Mn) -- 4 Discussion -- 5 Conclusions -- Appendix -- Shooter Method -- Shooting Pulse Sequence -- Diffusion Constants -- Optimised Shooter Calculations -- References -- Modeling Ionic Transport and Disorder in Crystalline Electrodes Using Percolation Theory -- 1 Introduction -- 2 Background -- 2.1 Ionic Percolation in Crystalline Solids -- 2.2 Diffusion Mechanism and Diffusion Channels -- 3 Method -- 3.1 Lattice Percolation Theory -- 3.2 Application of Lattice Percolation Theory to Ionic Transport -- 3.3 Detecting Percolation in Simulations -- 3.4 Accessible Sites -- 3.5 Tortuosity -- 3.6 Lattice Percolation Simulations with Dribble -- 4 Examples of Lattice Percolation Simulations -- 4.1 Properties of Fully Disordered Rocksalts -- 4.2 Li Percolation in Orthorhombic LiMnOSubscript 22 -- 5 Discussion -- 6 Conclusions and Final Remarks -- References -- Crystal Structure Prediction for Battery Materials -- 1 Introduction.
2 Computational Property Prediction of Battery Materials -- 2.1 Battery Performance Metrics -- 2.2 Computable Metrics for Battery Materials -- 3 Crystal Structure Prediction -- 3.1 Theoretical Framework -- 3.2 A Survey of Crystal Structure Methods and Packages -- 3.3 Applications in Battery Materials -- 3.4 Hands-On Tutorial to Find the LiCoO2 Cathode -- 4 Conclusions and Outlook -- References -- First-Principles Calculations for Lithium-Sulfur Batteries -- 1 Introduction -- 2 Computational Characterization of LiPSs -- 3 Simulation of the Spectroscopy of LiPSs -- 4 Adsorption Simulation of LiPSs -- 5 Electronic Interaction Between Anchoring Materials and LiPSs -- 6 Simulation of Diffusion of Li/LiPSs -- 7 Understanding of the Redox Reactions of LiPSs -- 8 Kinetic Process of the Redox Reactions of LiPSs -- 9 Descriptors for Catalysis and Binding Effect -- 10 Summary and Outlook -- References -- Nanoscale Modelling of Substitutional Disorder in Battery Materials -- 1 General Concepts on Configurational Thermodynamics -- 2 Disorder Within Rechargeable Battery Materials -- 3 Methods to Model Configurational Space -- 3.1 Symmetry Adapted Methods -- 3.2 Cluster Expansion -- 3.3 Special Quasirandom Structures -- 4 Machine Learning Approaches -- 4.1 Neural Networks -- 4.2 Kernel-Based Methods -- 4.3 Moment Tensor Potentials -- 5 General Conclusions and Perspectives -- References -- Machine Learning Methods for the Design of Battery Manufacturing Processes -- 1 Introduction -- 2 Key Steps for Battery Production -- 3 Machine Learning for Battery Production -- 4 Case 1: Machine Learning to Reveal the Dependency Between Electrode and Cell Characteristics -- 5 Case 2: Battery Capacities Prediction and Coating Parameters Analysis via Interpretable Machine Learning -- 6 Conclusion -- References.
Theoretical Approaches for the Determination of Defect and Transport Properties in Selected Battery Materials -- 1 Introduction -- 2 Computational Protocols to Disclose Relevant Properties of Battery Materials -- 2.1 DFT Methods -- 2.2 Large-Scale Molecular Dynamics Simulations -- 2.3 Nudged Elastic Band -- 3 Examining the Consequences of the Oxygen-Sulfur Exchange on Relevant Properties of Alkali Metal Hexastannates and Hexatitanates Employing Advanced DFT Computations -- 4 Advanced Atomistic Simulations Exploring the Defect Chemistry and Transport Properties of Selected Battery Materials -- 4.1 Large-Scale MD Computations Promoting Li2SiO3 as an Alternative Inorganic Electrolyte for Future Alkali Metal Batteries -- 4.2 NEB Protocol Disclosing the Lithium- and Sodium-Ion Transport Properties in Li2Ti6O13, Na2Ti6O13 and Li2Sn6O13 -- 4.3 Combining DFT and Large Scale MD Protocols to Disclose the Underutilized Capability of Strontium Stannate as an Alternative Anode Material -- 5 Concluding Remarks -- Notes -- References -- Applications of Ab Initio Molecular Dynamics for Modeling Batteries -- 1 Introduction -- 2 Review of AIMD Methodology -- 3 Applications in Batteries -- 3.1 Structure Generation and Stability -- 3.2 Solvation, Transport, and Diffusion -- 3.3 Voltage Calculation -- 3.4 Electrolyte Decomposition -- 4 Outlooks and Conclusions -- References -- Ab Initio Modeling of Layered Oxide High-Energy Cathodes for Na-Ion Batteries -- 1 Introduction -- 1.1 Layered Oxides Offer New Paradigm for High-Energy Devices -- 2 Theoretical Background -- 2.1 DFT+U: Improving Electron Correlation in NaxTMO2 Systems -- 2.2 DFT-D: Including Dispersion Forces in Layered NaxTMO2 -- 2.3 Structural Models -- 2.4 Methodological Approach and Computational Details -- 3 Unfolding Oxygen Redox in Three Case-Study Materials.
3.1 NaxNi1/4Mn3/4O2: What Enables the O2 Release? -- 3.2 NaxFe1/8Ni1/8Mn3/4O2: Enhancing the Reversible O2-/On- Evolution -- 3.3 NaxRu1/8Ni1/8Mn3/4O2: Towards Highly Covalent TM Doping -- 3.4 Oxygen Vacancies: Easy Predictions of TM-O Bond Lability -- 4 Conclusions and Perspectives -- References -- Forming a Chemically-Guided Basis for Cathode Materials with Reduced Biological Impact Using Combined Density Functional Theory and Thermodynamics Modeling -- References -- Oxygen Redox in Battery Cathodes: A Brief Overview -- 1 Introduction -- 2 Anionic Redox in Battery Electrode Materials -- 3 Experimental and Theoretical Investigations -- 3.1 Contribution to Capacity Versus Detrimental O2 Evolution -- 3.2 Computational Perspective and Future Direction -- 4 Oxygen Redox in 3d and 4d Ilmenite-Type NaxTMO3 -- 5 Summary -- References -- Theoretical Investigations of Layered Anode Materials -- 1 Introduction -- 2 Computational Methods -- 2.1 Theoretical Prediction and Stability -- 2.2 Electronic Properties -- 2.3 Adsorption Energy of Lithium Adatom -- 2.4 Activation Energy and Diffusion Coefficient of Lithium-Ion -- 2.5 Voltage Profile and Theoretical Capacity Storage of Lithium -- 2.6 Vander-Waals Interaction -- 3 Theoretical Investigation of Two-Dimensional Materials with a One, Two and Three Atomic Elements as Anode Materials of Lithium Ion Batteries -- 3.1 Graphene-Based Materials -- 3.2 Phosphorene -- 3.3 Silicene -- 3.4 Germanene, Stanene, Arsenene and Antimonene -- 3.5 Two-Dimensional BX (X=N, P, As, Sb) -- 3.6 Metal Transition Dichalcogenides MXSubscript 22 (M=Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W -- X=S, Se, Te) -- 4 Conclusion -- References -- Design of Improved Cathode Materials by Intermixing Transition Metals in Sodium-Iron Sulphate and Sodium Manganate for Sodium-Ion Batteries -- 1 Introduction -- 2 Modeling and Computational Methods.
2.1 Modeling of Intermixing Compounds.
Record Nr. UNINA-9910872195703321
Hanaor Dorian A. H  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design of advanced photocatalytic materials for energy and environmental applications / / Juan M. Coronado [and three others], editors
Design of advanced photocatalytic materials for energy and environmental applications / / Juan M. Coronado [and three others], editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York : , : Springer, , 2013
Descrizione fisica 1 online resource (xii, 348 pages) : illustrations (some color)
Disciplina 541/.395
621.312424
Collana Green Energy and Technology
Soggetto topico Photocatalysis
Materials - Technological innovations
Chemical engineering
ISBN 1-4471-5061-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.A historical introduction to photocatalysis -- 2.Photons, electrons and holes: fundamentals of photocatalysis with semiconductors -- 3.Environmental applications of photocatalysis -- 4.urning sunlight into fuels: photocatalysis for energy -- 5.the keys of success: TiO2 as a benchmark photocatalyst -- 6.Alternative metal oxide photocatalysts -- 7.The new promising semiconductors: metallates and other mixed compounds -- 8.Chalcogenides and other non-oxidic semiconductors -- 9.Single-site photocatalysts: photoactive species dispersed on porous matrixes -- 10.The role of co-catalysts: interaction and synergies with semiconductors -- 11.Shaping photocatalysts: morphological modifications of semiconductors -- 12.Immobilised photocatalysts -- 13.Metal doping of semiconductors for improving photoactivity -- 14.Non-metal doping for band gap engineering -- 15.Heterojunctions: joining different semiconductors -- 16.Sensitizers: dyes and quantum dots -- 17.Future perspectives of photocatalysis.
Record Nr. UNINA-9910741179903321
New York : , : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries [[electronic resource] ] : Next-Generation High Performance Lithium–Sulfur Batteries / / by Guangmin Zhou
Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries [[electronic resource] ] : Next-Generation High Performance Lithium–Sulfur Batteries / / by Guangmin Zhou
Autore Zhou Guangmin
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XX, 115 p. 82 illus.)
Disciplina 621.312424
Collana Springer Theses, Recognizing Outstanding Ph.D. Research
Soggetto topico Electrochemistry
Energy storage
Nanotechnology
Energy Storage
Nanotechnology and Microengineering
ISBN 9789811034053
9789811034060 (e-book)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Revealing Localized Electrochemical Transition of Sulfur in Optimal Sub-nanometer Confinement -- Flexible nanostructured sulfur–carbon nanotube cathode with high rate performance for Li-S batteries -- Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium-Sulfur Batteries -- Long-life Li/polysulfide batteries with high sulfur loading enabled by lightweight three-dimensional nitrogen/sulfur-codoped graphene sponge -- Graphene–Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium–Sulfur Batteries -- Research Challenges and Directions -- Summary and Conclusions.
Record Nr. UNINA-9910164105203321
Zhou Guangmin  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy storage battery systems : fundamentals and applications / / edited by Sajjad Haider [and three others]
Energy storage battery systems : fundamentals and applications / / edited by Sajjad Haider [and three others]
Pubbl/distr/stampa London, England : , : IntechOpen, , [2021]
Descrizione fisica 1 online resource (138 pages)
Disciplina 621.312424
Soggetto topico Storage batteries
ISBN 1-83962-907-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Energy Storage Battery Systems
Record Nr. UNINA-9910586672903321
London, England : , : IntechOpen, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energy Storage Battery Systems : fundamentals and applications / / edited by Sajjad Haider, Adnan Haider, [and 2 others]
Energy Storage Battery Systems : fundamentals and applications / / edited by Sajjad Haider, Adnan Haider, [and 2 others]
Pubbl/distr/stampa London : , : IntechOpen, , 2021
Descrizione fisica 1 online resource (138 pages)
Disciplina 621.312424
Soggetto topico Storage batteries
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Energy Storage Battery Systems
Record Nr. UNINA-9910688475403321
London : , : IntechOpen, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Equalization control for lithium-ion batteries / / Jian Chen, Quan Ouyang, and Zhisheng Wang
Equalization control for lithium-ion batteries / / Jian Chen, Quan Ouyang, and Zhisheng Wang
Autore Chen Jian <1497-1567, >
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Huazhong University of Science and Technology Press, , [2023]
Descrizione fisica 1 online resource (197 pages)
Disciplina 621.312424
Soggetto topico Equalizers (Electronics)
Lithium ion batteries
ISBN 981-9902-20-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto I. Introduction -- II. Cell Equalization Systems: Fundamental Concepts -- III. Overview of Cell Equalization Circuits -- IV. Active Cell Equalization Topology Model Analysis -- V. Active Cell Equalization Topology with Minimum Equalization Time -- VI. Series-Based Cell-to-Cell Equalization Control -- VII. Layer-based Cell-to-Cell Equalization Control -- VIII. Module-based Cell-to-Cell Equalization Control -- IX. Direct Cell-to-Cell Equalization Control -- X. Series-Based Cell-to-Pack Equalization Control -- XI. Module-based Cell-to-Pack Equalization control -- XII. The Future of Cell Equalization Technologies.
Record Nr. UNINA-9910686471903321
Chen Jian <1497-1567, >  
Singapore : , : Huazhong University of Science and Technology Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems [[electronic resource] /] / by Andrew F. Blum, R. Thomas Long Jr
Fire Hazard Assessment of Lithium Ion Battery Energy Storage Systems [[electronic resource] /] / by Andrew F. Blum, R. Thomas Long Jr
Autore Blum Andrew F
Edizione [1st ed. 2016.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XXI, 90 p. 55 illus.)
Disciplina 621.312424
Collana SpringerBriefs in Fire
Soggetto topico Facility management
Energy storage
Quality control
Reliability
Industrial safety
Energy systems
Facility Management
Energy Storage
Quality Control, Reliability, Safety and Risk
Energy Systems
ISBN 1-4939-6556-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Background -- Literature Review and Gap Analysis -- Testing Program Summary -- ESS Description -- Testing Setup -- Test Results -- Key Findings -- Recommendations and Future Work -- Acknowledgements.
Record Nr. UNINA-9910255009803321
Blum Andrew F  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flow batteries : from fundamentals to applications / / edited by Christina Roth, Jens Noack, and Maria Skyllas-Kazacos
Flow batteries : from fundamentals to applications / / edited by Christina Roth, Jens Noack, and Maria Skyllas-Kazacos
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (1281 pages)
Disciplina 621.312424
Soggetto topico Oxidation-reduction reaction
Storage batteries - Recycling
ISBN 3-527-83277-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- About the Editors -- Part I Fundamentals -- Chapter 1 The Need for Stationary Energy Storage -- 1.1 Power Systems -- 1.1.1 The Role of Electricity in Energy Supply -- 1.1.2 The Development of DC and AC Power Systems -- 1.1.3 The Early Use of Energy Storage on Power Systems -- 1.1.4 Centralised and Distributed Generation -- 1.1.5 Power System Infrastructure -- 1.1.6 Other Types of Electricity Generation and System Control -- 1.2 The Need for Electricity Storage -- 1.2.1 Operation of a Modern Power Network - The Requirement for Operational Stability -- 1.2.2 Requirements for Storage and the Use of Alternative Technologies, such as Demand‐Side Response, Interconnectors, and Flexible Generation -- 1.2.3 Optimisation of Power Networks for Technical Performance, Economic Efficiency, and Sustainability - The Energy Trilemma -- 1.3 Changes in Electricity Network Operation: Interconnected Systems, Microgrids, and Standalone Systems -- 1.3.1 The Growth in Renewable Energy Generation -- 1.3.2 The Overlap Between Stationary Storage and Transportable and Mobile Applications -- 1.4 The Parameters for Storage: Short Term, Small Scale to Long Term, Long Duration, and Large‐Scale Storage -- 1.4.1 Stationary Storage Applications -- 1.5 The Need for Longer‐Duration Energy Storage -- 1.5.1 Market Estimates -- 1.6 Energy Storage Types -- 1.6.1 Pumped‐Hydro Energy Storage -- 1.6.2 Alternatives to Pumped‐Hydro Storage -- 1.6.3 Compressed Air Energy Storage -- 1.6.4 The Hydrogen Cycle -- 1.7 Battery Energy Storage Technologies -- 1.7.1 Flow Batteries -- 1.7.2 Flow Battery Ancillary Systems -- 1.7.2.1 Advantages and Benefits -- 1.8 The Deployment of Flow Battery and Energy Storage -- 1.9 A Future Outlook -- References -- Chapter 2 History of Flow Batteries -- 2.1 Early Developments (1884-1963).
2.2 Fe/Cr FBs (1974 - mid‐2010s) -- 2.3 Zinc/Bromine FBs (1977-mid 2010s) -- 2.4 1977-1981 -- 2.5 Vanadium‐Based Flow Batteries (1980s-2010) -- 2.6 Regenesys Polysulphide/Bromide Flow Battery (1984-Early 2000s) -- 2.7 Other Flow‐Battery Chemistries 2000-2020 -- 2.8 Organic Flow Batteries -- 2.9 Advanced Flow‐Battery Concepts -- 2.10 Perspective -- References -- Chapter 3 General Electrochemical Fundamentals of Batteries -- 3.1 Introduction -- 3.2 Thermodynamics -- 3.3 Kinetics -- 3.4 Practical Aspects and Consequences -- Acknowledgments -- References -- Chapter 4 General Aspects and Fundamentals of Flow Batteries -- 4.1 Introduction -- 4.2 The Flow Battery -- 4.3 Main Components of a FB Energy Storage System -- 4.4 Advantages and Environmental Benefits -- 4.5 Types of FB -- 4.6 Fields of Application -- 4.7 Ideal Characteristics of a FB -- 4.8 Engineering Aspects of FBs -- 4.9 Fluid Flow Aspects of FBs -- 4.10 Typical Figures of Merit -- 4.11 Conclusions -- Acknowledgments -- References -- Chapter 5 Redox‐mediated Processes -- 5.1 Fundamental Theory on Redox‐mediated Processes -- 5.2 Redox‐mediated Processes: Various Applications for Flow Batteries -- 5.2.1 Dual‐flow Circuit Flow Battery -- 5.2.2 Solid Boosters -- 5.2.2.1 Thermodynamics of Solid Boosters: Equilibrium -- 5.2.2.2 Kinetics of Solid Boosters -- 5.2.2.3 System Design -- 5.3 Conclusion -- References -- Chapter 6 Membranes for Flow Batteries -- 6.1 Introduction -- 6.2 Membrane Characteristics -- 6.2.1 Ion‐Exchange Capacity (IEC) -- 6.2.2 Water Uptake (WU), Swelling Ratio (SR), and Water Transport -- 6.2.3 Ionic Conductivity (σ) -- 6.2.4 Permselectivity of Chemical Species -- 6.2.5 Chemical Stability -- 6.2.6 Thermal and Mechanical Stability -- 6.2.7 Cost of the IEMs -- 6.3 Classification of Membranes -- 6.3.1 Cation‐Exchange Membranes (CEMs) -- 6.3.1.1 Perfluorinated Membranes.
6.3.1.2 Non‐perfluorinated Membranes -- 6.3.2 Anion‐Exchange Membranes (AEMs) -- 6.3.3 Amphoteric Ion‐Exchange Membranes (AIEMs) -- 6.3.4 Hybrid Membranes (HMs) -- 6.3.4.1 Hybrid Inorganic-Organic IEMs -- 6.3.4.2 Organic Polymer Blends as IEMs -- 6.3.5 Porous Membranes -- 6.4 Conclusions -- References -- Chapter 7 Standards for Flow Batteries -- 7.1 Introduction -- 7.2 A Definition of Flow Batteries -- 7.3 International Standards for Flow Batteries -- 7.3.1 Standards of the International Electrotechnical Commission (IEC) -- 7.3.2 Standards of the Institute of Electrical and Electronics Engineers -- 7.4 Other National and International Standards, as well as Other Documents -- 7.5 Chinese National Standards -- 7.6 Conclusions -- References -- Chapter 8 Safety Considerations of the Vanadium Flow Battery -- 8.1 Regulatory Framework -- 8.2 Thermal Hazards -- 8.3 Chemical Hazards -- 8.4 Electrical Hazards -- 8.5 Other Considerations -- 8.6 Summary & -- Outlook -- References -- Chapter 9 A Student Workshop in Sustainable Energy Technology: The Principles and Practice of a Rechargeable Flow Battery -- 9.1 Introduction -- 9.2 Laboratory Experiment -- 9.2.1 Chemicals -- 9.2.2 Materials for Construction -- 9.3 Results and Discussion -- 9.3.1 Preparation of the Flow Battery -- 9.3.2 Electrochemical Reactions in a Soluble Lead-Acid Flow Battery -- 9.3.3 Effect of Current Density on Cell Voltage -- 9.4 Assessment of Hazards -- 9.5 Teaching Assessment and Learning Outcomes -- 9.6 Conclusions -- Acknowledgments -- Appendix: Supplementary Information for Students -- References -- Part II Characterization of Flow Batteries and Materials -- Chapter 10 Characterization Methods in Flow Batteries: A General Overview -- 10.1 General Overview -- 10.1.1 Physicochemical Methods in General -- 10.1.2 Characterization Techniques for Redox‐Flow Batteries.
10.1.2.1 Physicochemical Characterization -- 10.1.2.2 Electrochemical Characterization -- 10.1.2.3 General Observations -- 10.1.3 Further Outline of Part II -- Acknowledgments -- References -- Chapter 11 Electrochemical Methods -- 11.1 Fundamental Definitions -- 11.2 Cyclic Voltammetry -- 11.2.1 Measuring Cyclic Voltammetry -- 11.2.2 Interpreting CV and LSV at Planar Electrodes - The Randles-Ševčík Relations -- 11.2.3 Strategies for Simulating Cyclic Voltammetry -- 11.2.4 The Diffusion Domain Approximation Approach for Felt Electrodes -- 11.2.5 The Real‐Space Simulation Approach -- 11.2.6 Remarks on Cyclic Voltammetry -- 11.3 Electrochemical Impedance Spectroscopy -- 11.3.1 Principles and Advantages of Electrochemical Impedance Spectroscopy -- 11.3.2 Interpreting Electrochemical Impedance Spectroscopy -- 11.3.3 Impedance of Macrohomogeneous Porous Electrodes - The Paasch Model -- 11.3.4 The Normalization Method -- 11.3.5 The Distribution of Relaxation Times (DRT) Analysis -- 11.3.6 Characteristics of a "Good Impedance" - The Kramers-Kronig Relations -- 11.3.7 Advanced Electroanalytical Techniques -- 11.3.7.1 Hydrodynamic Voltammetry - The Rotating Ring‐Disc Electrode (RRDE) -- 11.3.7.2 Alternating Current Cyclic Voltammetry (ACCV) -- References -- Chapter 12 Radiography and Tomography -- 12.1 Working Principle -- 12.1.1 Morphology of Electrode Materials -- 12.1.2 Visualizing the Flow and Electrolyte Distribution in the Porous Electrode -- 12.1.2.1 Injection of Electrolyte Into the Carbon Electrode (No Potential Control) -- 12.1.2.2 Electrolyte Flow in the Carbon Electrode (Cell Potential Applied) -- 12.2 Outlook -- References -- Chapter 13 Characterization of Carbon Materials -- 13.1 Introduction -- 13.2 Structure of Carbon Materials -- 13.2.1 Raman Spectroscopy -- 13.3 X‐ray Powder Diffraction (XRD) -- 13.4 Surface Chemistry of Carbon Materials.
13.5 Functionalization of Carbons -- 13.5.1 Thermal Methods -- 13.5.1.1 TPD -- 13.5.1.2 TPR/TPO -- 13.5.1.3 TG/TGA -- 13.6 X‐ray Photoelectron Spectroscopy (XPS) -- 13.7 Infrared Spectroscopy -- 13.8 Imaging Techniques -- 13.9 Surface Area Determination and Porosity -- 13.10 Conclusion and Perspectives -- References -- Chapter 14 Characterization of Membranes for Flow Batteries -- 14.1 Introduction -- 14.2 Ex situ Characterization Methods for Membranes -- 14.2.1 Ion‐Exchange Capacity of Ionomer Membranes -- 14.2.2 Ion Conductivity of Ionogenic Groups in Membranes -- 14.2.3 Ion Permeability of the Ion‐Exchange Membranes -- 14.2.4 Membrane Weight Loss -- 14.2.5 Molecular Weight (Degradation) of Ionomers and Ionomer Membranes -- 14.2.6 Determination of the Thermal Stability of the Membranes -- 14.2.7 Spectroscopical Membrane Characterization -- 14.2.8 Determination of Mechanical Membrane Properties -- 14.2.9 Microscopical Membrane Characterization -- 14.2.10 Water Transfer Behavior -- 14.3 In situ Characterization Methods for Membranes -- 14.3.1 Charge/Discharge Cycles -- 14.3.1.1 Current, Voltage, and Energy Efficiency -- 14.3.1.2 Discharge Capacity and Capacity Retention -- 14.3.2 Open‐Circuit Voltage -- 14.3.3 Electrochemical Impedance Spectroscopy (EIS) -- 14.3.4 In situ Membrane Permeability Estimation -- 14.4 Summary -- References -- Part III Modeling and Simulation -- Chapter 15 Quantum Mechanical Modeling of Flow Battery Materials -- 15.1 Introduction -- 15.2 Fundamental Concepts of Molecular Quantum Mechanics -- 15.3 Density Functional Theory -- 15.4 Computational Electrochemistry at the Atomistic Scale -- 15.5 Applications to FB Materials -- References -- Chapter 16 Mesoscale Modeling and Simulation for Flow Batteries -- 16.1 Mesoscale Modeling Introduction -- 16.2 Mesoscale Modeling of Electrochemical Kinetics.
16.2.1 Electron Transfer Process.
Record Nr. UNINA-9910683400303321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui