top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Lithium ion rechargeable batteries / / edited by Kazunori Ozawa
Lithium ion rechargeable batteries / / edited by Kazunori Ozawa
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2009
Descrizione fisica 1 online resource (634 p.)
Disciplina 621.31242
621.312424
Soggetto topico Lithium cells
Storage batteries
ISBN 3-527-62903-3
3-527-62902-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Related title; Title; Copyright page; Preface; List of Contributors; 1: General Concepts; 1.1 Brief Outline of Batteries; 1.2 Early Development of Lithium-Ion Batteries; 1.3 Toward a Realistic Goal; References; 2: Lithium Insertion Materials Having Spinel-Framework Structure for Advanced Batteries; 2.1 Introduction; 2.2 Structural Description of Spinel; 2.3 Derivatives of Spinel-Framework Structure; 2.4 Electrochemistry of Lithium Insertion Materials Having Spinel-Framework Structure
4.4 3D Olivine-Type Phosphate Cathode4.5 3D Calcite-Type Borate Cathode; 4.6 3D Perovskite-Type Fluoride Cathode; 4.7 Summary; References; 5: Thermodynamics of Electrode Materials for Lithium-Ion Batteries; 5.1 Introduction; 5.2 Experimental; 5.3 Results; 5.4 Conclusion; References; 6: Raman Investigation of Cathode Materials for Lithium Batteries; 6.1 Introduction; 6.2 Raman Microspectrometry: Principle and Instrumentation; 6.3 Transition Metal-Oxide-Based Compounds; 6.4 Phospho-Olivine LiMPO4 Compounds; 6.5 General Conclusion; References
7: Development of Lithium-Ion Batteries: From the Viewpoint of Importance of the Electrolytes7.1 Introduction; 7.2 General Design to Find Additives for Improving the Performance of LIB; 7.3 A Series of Developing Processes to Find Novel Additives; 7.4 Cathodic and the Other Additives for LIBs; 7.5 Conditioning; References; 8: Inorganic Additives and Electrode Interface; 8.1 Introduction; 8.2 Transition Metal Ions and Cathode Dissolution; 8.3 How to Suppress the Mn(II) Degradation; 8.4 Alkali Metal Ions; 8.5 Alkali Salt Coating; 8.6 Summary; References
11: Research and Development Work on Advanced Lithium-Ion Batteries for High-Performance Environmental Vehicles
Record Nr. UNINA-9910830904903321
Weinheim, Germany : , : Wiley-VCH, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lithium-ion batteries [[electronic resource] ] : solid-electrolyte interphase / / editors Perla B. Balbuena, Yixuan Wang
Lithium-ion batteries [[electronic resource] ] : solid-electrolyte interphase / / editors Perla B. Balbuena, Yixuan Wang
Pubbl/distr/stampa London, : Imperial College Press, c2004
Descrizione fisica 1 online resource (424 p.)
Disciplina 621.31242
Altri autori (Persone) BalbuenaPerla B
WangYixuan
Soggetto topico Electrolytes - Conductivity
Lithium cells
Electrochemistry
Soggetto genere / forma Electronic books.
ISBN 1-281-86664-4
9786611866648
1-86094-644-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Preface; Chapter 1. SEI on lithium, graphite, disordered carbons and tin-based alloys Emanuel Peled and Diana Golodnitsky; Chapter 2. Identification of surface films on electrodes in non-aqueous electrolyte solutions: spectroscopic, electronic and morphological studies Doron Aurbach and Yaron S. Cohen; Chapter 3. Spectroscopy studies of solid-electrolyte interphase on positive and negative electrodes for lithium ion batteries Zhaoxiang Wang, Xuejie Huang and Liquan Chen
Chapter 4. Scanning probe microscopy analysis of the SEI formation on graphite anodes Minoru Inaba and Zempachi Ogumi Chapter 5. Theoretical insights into the SEI composition and formation mechanism: density functional theory studies Yixuan Wang and Perla B. Balbuena; Chapter 6. Continuum and statistical mechanics-based models for solid-electrolyte interphases in lithium-ion batteries Harry J. Ploehn, Premanand Ramadass, Ralph E. White, Diego Altomare and Perla B.
Chapter 7. Development of new anodes for rechargeable lithium batteries and their SEI characterization by Raman and NEXAFS spectroscopy Giselle Sandi Chapter 8. The cathode-electrolyte interface in a Li-ion battery Kristina Edstrom, Torbjorn Gustafsson and Josh Thomas; Chapter 9. Theoretical studies on the solvent structure and association properties, and on the Li-ion solvation: implications for SEI layer phenomena Yixuan Wang and Perla B. Balbuena; Index
Record Nr. UNINA-9910449847803321
London, : Imperial College Press, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lithium-ion batteries [[electronic resource] ] : solid-electrolyte interphase / / editors Perla B. Balbuena, Yixuan Wang
Lithium-ion batteries [[electronic resource] ] : solid-electrolyte interphase / / editors Perla B. Balbuena, Yixuan Wang
Pubbl/distr/stampa London, : Imperial College Press, c2004
Descrizione fisica 1 online resource (424 p.)
Disciplina 621.31242
Altri autori (Persone) BalbuenaPerla B
WangYixuan
Soggetto topico Electrolytes - Conductivity
Lithium cells
Electrochemistry
ISBN 1-281-86664-4
9786611866648
1-86094-644-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Preface; Chapter 1. SEI on lithium, graphite, disordered carbons and tin-based alloys Emanuel Peled and Diana Golodnitsky; Chapter 2. Identification of surface films on electrodes in non-aqueous electrolyte solutions: spectroscopic, electronic and morphological studies Doron Aurbach and Yaron S. Cohen; Chapter 3. Spectroscopy studies of solid-electrolyte interphase on positive and negative electrodes for lithium ion batteries Zhaoxiang Wang, Xuejie Huang and Liquan Chen
Chapter 4. Scanning probe microscopy analysis of the SEI formation on graphite anodes Minoru Inaba and Zempachi Ogumi Chapter 5. Theoretical insights into the SEI composition and formation mechanism: density functional theory studies Yixuan Wang and Perla B. Balbuena; Chapter 6. Continuum and statistical mechanics-based models for solid-electrolyte interphases in lithium-ion batteries Harry J. Ploehn, Premanand Ramadass, Ralph E. White, Diego Altomare and Perla B.
Chapter 7. Development of new anodes for rechargeable lithium batteries and their SEI characterization by Raman and NEXAFS spectroscopy Giselle Sandi Chapter 8. The cathode-electrolyte interface in a Li-ion battery Kristina Edstrom, Torbjorn Gustafsson and Josh Thomas; Chapter 9. Theoretical studies on the solvent structure and association properties, and on the Li-ion solvation: implications for SEI layer phenomena Yixuan Wang and Perla B. Balbuena; Index
Record Nr. UNINA-9910783407103321
London, : Imperial College Press, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lithium-ion batteries [[electronic resource] ] : solid-electrolyte interphase / / editors Perla B. Balbuena, Yixuan Wang
Lithium-ion batteries [[electronic resource] ] : solid-electrolyte interphase / / editors Perla B. Balbuena, Yixuan Wang
Edizione [1st ed.]
Pubbl/distr/stampa London, : Imperial College Press, c2004
Descrizione fisica 1 online resource (424 p.)
Disciplina 621.31242
Altri autori (Persone) BalbuenaPerla B
WangYixuan
Soggetto topico Electrolytes - Conductivity
Lithium cells
Electrochemistry
ISBN 1-281-86664-4
9786611866648
1-86094-644-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONTENTS; Preface; Chapter 1. SEI on lithium, graphite, disordered carbons and tin-based alloys Emanuel Peled and Diana Golodnitsky; Chapter 2. Identification of surface films on electrodes in non-aqueous electrolyte solutions: spectroscopic, electronic and morphological studies Doron Aurbach and Yaron S. Cohen; Chapter 3. Spectroscopy studies of solid-electrolyte interphase on positive and negative electrodes for lithium ion batteries Zhaoxiang Wang, Xuejie Huang and Liquan Chen
Chapter 4. Scanning probe microscopy analysis of the SEI formation on graphite anodes Minoru Inaba and Zempachi Ogumi Chapter 5. Theoretical insights into the SEI composition and formation mechanism: density functional theory studies Yixuan Wang and Perla B. Balbuena; Chapter 6. Continuum and statistical mechanics-based models for solid-electrolyte interphases in lithium-ion batteries Harry J. Ploehn, Premanand Ramadass, Ralph E. White, Diego Altomare and Perla B.
Chapter 7. Development of new anodes for rechargeable lithium batteries and their SEI characterization by Raman and NEXAFS spectroscopy Giselle Sandi Chapter 8. The cathode-electrolyte interface in a Li-ion battery Kristina Edstrom, Torbjorn Gustafsson and Josh Thomas; Chapter 9. Theoretical studies on the solvent structure and association properties, and on the Li-ion solvation: implications for SEI layer phenomena Yixuan Wang and Perla B. Balbuena; Index
Record Nr. UNINA-9910808966403321
London, : Imperial College Press, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal-air batteries : fundamentals and applications / / edited by Xin-Bo Zhang
Metal-air batteries : fundamentals and applications / / edited by Xin-Bo Zhang
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2018]
Descrizione fisica 1 online resource (434 pages)
Disciplina 621.31242
Soggetto topico Electric batteries
Soggetto genere / forma Electronic books.
ISBN 3-527-80765-9
3-527-80763-2
3-527-80766-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555289803321
Weinheim, Germany : , : Wiley-VCH, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal-air batteries : fundamentals and applications / / edited by Xin-Bo Zhang
Metal-air batteries : fundamentals and applications / / edited by Xin-Bo Zhang
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2018]
Descrizione fisica 1 online resource (434 pages)
Disciplina 621.31242
Soggetto topico Electric batteries
ISBN 3-527-80765-9
3-527-80763-2
3-527-80766-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910676524003321
Weinheim, Germany : , : Wiley-VCH, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling solid oxide fuel cells : methods, procedures and techniques / R. Bove, S. Ubertini, editors.
Modeling solid oxide fuel cells : methods, procedures and techniques / R. Bove, S. Ubertini, editors.
Pubbl/distr/stampa [Berlin] : Springer, c 2008
Descrizione fisica XIV, 395 p. : ill. ; 25 cm + 1 CD-ROM
Disciplina 621.31242
Collana Fuel cells and hydrogen energy
Soggetto non controllato Batterie di accumulatoriElettrochimicaApplicazioni
ISBN 978-1-4020-6994-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNIPARTHENOPE-000019922
[Berlin] : Springer, c 2008
Materiale a stampa
Lo trovi qui: Univ. Parthenope
Opac: Controlla la disponibilità qui
Multiscale Simulation Approach for Battery Production Systems [[electronic resource] /] / by Malte Schönemann
Multiscale Simulation Approach for Battery Production Systems [[electronic resource] /] / by Malte Schönemann
Autore Schönemann Malte
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XVI, 176 p. 89 illus., 3 illus. in color.)
Disciplina 621.31242
Collana Sustainable Production, Life Cycle Engineering and Management
Soggetto topico Renewable energy resources
Manufactures
Management
Industrial management
Renewable and Green Energy
Manufacturing, Machines, Tools, Processes
Innovation/Technology Management
ISBN 9783319493671
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Battery production and simulation -- State of research for multiscale simulation of production systems -- Multiscale simulation modeling concept for battery production systems -- Implementation of a multiscale core model -- Exemplary application -- Summary and outlook.
Record Nr. UNINA-9910158704103321
Schönemann Malte  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Na-ion batteries / / edited by Laure Monconduit, Laurence Croguennec
Na-ion batteries / / edited by Laure Monconduit, Laurence Croguennec
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020]
Descrizione fisica 1 online resource (375 pages) : illustrations
Disciplina 621.31242
Soggetto topico Sodium ion batteries
Soggetto genere / forma Electronic books.
ISBN 1-5231-4364-9
1-119-81804-4
1-119-81805-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- I.1. Why Na-ion batteries? -- I.2. From the electrodes to the electrolyte for NIBs -- I.2.1. Positive electrodes -- I.2.2. Negative electrodes -- I.2.3. Electrolytes and the solid electrolyte interphase -- I.3. Future commercialization of NIBs -- I.4. References -- 1. Layered NaMO2 for the Positive Electrode -- 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 -- 1.2. Crystal structures of layered materials -- 1.2.1. Crystal structures of synthesizable NaxMO2 -- 1.2.2. Structural changes of O3-NaMO2 by Na extraction -- 1.2.3. Structural changes of P2-NaxMO2 by Na extraction -- 1.3. O3-type layered materials -- 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) -- 1.3.2. O3-Na[M,M']O2 (M, M' = transition metals) -- 1.3.3. Moist air stability of O3-NaMO2 and surface coating -- 1.4. P2-type layered materials -- 1.4.1. Practical issues of P2-type materials for Na-ion batteries -- 1.4.2. P2-Na2/3[Mn,Co,M]O2 -- 1.4.3. P2-Na2/3[Mn,Fe,M]O2 -- 1.4.4. P2-Na2/3[Ni,Mn,M]O2 -- 1.5. Summary and prospects -- 1.6. Acknowledgments -- 1.7. References -- 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries -- 2.1. Introduction -- 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries -- 2.1.2. NASICONs and Na3V2(PO4)2F3 -- 2.2. NASICON structures as model frameworks in sodium-ion battery applications -- 2.2.1. Compositional diversity from solid electrolytes to electrodes -- 2.2.2. NASICON-typed materials as electrodes for Na batteries -- 2.2.3. Na3V2(PO4)3 (NVP) -- 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications -- 2.3.1. Structural description and compositional diversity.
2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs -- 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases -- 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance -- 2.4. Conclusion and perspectives -- 2.5. References -- 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism -- 3.1. Introduction -- 3.2. What is a hard carbon? -- 3.3. Hard carbon synthesis and microstructure -- 3.3.1. Synthetic precursors-based hard carbon synthesis -- 3.3.2. Bio-polymers derived hard carbon synthesis -- 3.3.3. Biomass-based hard carbon synthesis -- 3.4. Hard carbon characteristics -- 3.4.1. Hard carbon structure -- 3.4.2. Hard carbon porosity -- 3.4.3. Hard carbon surface chemistry -- 3.4.4. Hard carbon structural defects -- 3.5. Electrochemical performance -- 3.5.1. Materials performance -- 3.5.2. Full Na-ion system performance -- 3.5.3. Sodium insertion mechanisms in hard carbon -- 3.6. Conclusion -- 3.7. References -- 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries -- 4.1. Introduction -- 4.2. Insertion materials -- 4.2.1. Insertion anodes based on titanium oxide and titanates -- 4.2.2. Insertion anodes based on transition metal chalcogenides -- 4.2.3. Insertion MXene-based anodes -- 4.2.4. Insertion organic anodes -- 4.3. Negative electrode materials based on electrochemical alloying with sodium -- 4.3.1. Silicon and germanium -- 4.3.2. Tin -- 4.3.3. Phosphorus -- 4.3.4. Antimony -- 4.3.5. Other post-transition metal elements -- 4.4. Negative electrode materials based on conversion reactions -- 4.4.1. Reaction mechanisms of CM -- 4.4.2. Approaches toward efficient anode CM for NIB -- 4.5. Conclusion -- 4.6. References -- 5. Electrolytes for Sodium Batteries -- 5.1. Introduction.
5.2. Liquid and solid electrolytes for sodium batteries -- 5.2.1. Organic liquid electrolytes -- 5.2.2. IL-based electrolytes -- 5.2.3. Hybrid electrolytes -- 5.2.4. Effects of additives and impurities -- 5.2.5. Solid-state electrolytes -- 5.3. Properties of IL-based electrolytes for Na batteries -- 5.3.1. Physical properties -- 5.3.2. Thermal stability -- 5.3.3. Electrochemical stability -- 5.4. Modeling IL-based electrolytes -- 5.5. Conclusion and future perspectives -- 5.6. Abbreviations -- 5.7. References -- 6. Solid Electrolyte Interphase in Na-ion batteries -- 6.1. Introduction -- 6.1.1. The solid electrolyte interphase -- 6.1.2. Characterization of the SEI -- 6.2. Physical properties of the Na-ion SEI -- 6.2.1. Electrochemical stability -- 6.2.2. Mechanical properties -- 6.2.3. Dissolution of SEI components -- 6.3. Comparisons of SEI in sodium- and lithium-based electrolytes -- 6.3.1. Formation and composition -- 6.3.2. Resistance -- 6.4. Conclusion -- 6.5. References -- 7. Batteries Containing Prussian Blue Analogue Electrodes -- 7.1. Introduction -- 7.1.1. Chapter introduction -- 7.1.2. History of Prussian blue -- 7.1.3. Physical characteristics: structure, composition and morphology -- 7.1.4. Synthetic methods -- 7.2. Electrochemistry of PBAs -- 7.2.1. Mechanism and resulting characteristics -- 7.2.2. Reaction potentials -- 7.2.3. PBA cathodes -- 7.2.4. PBA anodes -- 7.3. Prussian blue batteries -- 7.3.1. Cells containing two PBA electrodes -- 7.3.2. Cells containing one PBA electrode -- 7.3.3. Challenges for PBA batteries -- 7.4. Conclusion and future outlook -- 7.5. References -- 8. The Design, Performance and Commercialization of Faradion's Non-aqueous Na-ion Battery Technology -- 8.1. Introduction -- 8.2. Experimental -- 8.2.1. Active materials -- 8.2.2. Electrode fabrication -- 8.2.3. Pouch cell fabrication.
8.2.4. Faradion electrolyte -- 8.3. Cell performance -- 8.3.1. Half-cell cycling -- 8.3.2. Full Na-ion cell cycling: curves and stability -- 8.3.3. Rate capability -- 8.3.4. Temperature studies -- 8.3.5. Three-electrode cell studies -- 8.4. Safety and zero energy storage and transportation -- 8.5. Scale-up and prototyping -- 8.6. Demonstrators: stacks and packs -- 8.7. Business and IP strategy -- 8.8. Cost analysis -- 8.9. Future developments -- 8.10. Conclusion -- 8.11. Acknowledgments -- 8.12. References -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910554883403321
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Na-ion batteries / / edited by Laure Monconduit, Laurence Croguennec
Na-ion batteries / / edited by Laure Monconduit, Laurence Croguennec
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020]
Descrizione fisica 1 online resource (375 pages) : illustrations
Disciplina 621.31242
Soggetto topico Sodium ion batteries
ISBN 1-5231-4364-9
1-119-81804-4
1-119-81805-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- I.1. Why Na-ion batteries? -- I.2. From the electrodes to the electrolyte for NIBs -- I.2.1. Positive electrodes -- I.2.2. Negative electrodes -- I.2.3. Electrolytes and the solid electrolyte interphase -- I.3. Future commercialization of NIBs -- I.4. References -- 1. Layered NaMO2 for the Positive Electrode -- 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 -- 1.2. Crystal structures of layered materials -- 1.2.1. Crystal structures of synthesizable NaxMO2 -- 1.2.2. Structural changes of O3-NaMO2 by Na extraction -- 1.2.3. Structural changes of P2-NaxMO2 by Na extraction -- 1.3. O3-type layered materials -- 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) -- 1.3.2. O3-Na[M,M']O2 (M, M' = transition metals) -- 1.3.3. Moist air stability of O3-NaMO2 and surface coating -- 1.4. P2-type layered materials -- 1.4.1. Practical issues of P2-type materials for Na-ion batteries -- 1.4.2. P2-Na2/3[Mn,Co,M]O2 -- 1.4.3. P2-Na2/3[Mn,Fe,M]O2 -- 1.4.4. P2-Na2/3[Ni,Mn,M]O2 -- 1.5. Summary and prospects -- 1.6. Acknowledgments -- 1.7. References -- 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries -- 2.1. Introduction -- 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries -- 2.1.2. NASICONs and Na3V2(PO4)2F3 -- 2.2. NASICON structures as model frameworks in sodium-ion battery applications -- 2.2.1. Compositional diversity from solid electrolytes to electrodes -- 2.2.2. NASICON-typed materials as electrodes for Na batteries -- 2.2.3. Na3V2(PO4)3 (NVP) -- 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications -- 2.3.1. Structural description and compositional diversity.
2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs -- 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases -- 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance -- 2.4. Conclusion and perspectives -- 2.5. References -- 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism -- 3.1. Introduction -- 3.2. What is a hard carbon? -- 3.3. Hard carbon synthesis and microstructure -- 3.3.1. Synthetic precursors-based hard carbon synthesis -- 3.3.2. Bio-polymers derived hard carbon synthesis -- 3.3.3. Biomass-based hard carbon synthesis -- 3.4. Hard carbon characteristics -- 3.4.1. Hard carbon structure -- 3.4.2. Hard carbon porosity -- 3.4.3. Hard carbon surface chemistry -- 3.4.4. Hard carbon structural defects -- 3.5. Electrochemical performance -- 3.5.1. Materials performance -- 3.5.2. Full Na-ion system performance -- 3.5.3. Sodium insertion mechanisms in hard carbon -- 3.6. Conclusion -- 3.7. References -- 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries -- 4.1. Introduction -- 4.2. Insertion materials -- 4.2.1. Insertion anodes based on titanium oxide and titanates -- 4.2.2. Insertion anodes based on transition metal chalcogenides -- 4.2.3. Insertion MXene-based anodes -- 4.2.4. Insertion organic anodes -- 4.3. Negative electrode materials based on electrochemical alloying with sodium -- 4.3.1. Silicon and germanium -- 4.3.2. Tin -- 4.3.3. Phosphorus -- 4.3.4. Antimony -- 4.3.5. Other post-transition metal elements -- 4.4. Negative electrode materials based on conversion reactions -- 4.4.1. Reaction mechanisms of CM -- 4.4.2. Approaches toward efficient anode CM for NIB -- 4.5. Conclusion -- 4.6. References -- 5. Electrolytes for Sodium Batteries -- 5.1. Introduction.
5.2. Liquid and solid electrolytes for sodium batteries -- 5.2.1. Organic liquid electrolytes -- 5.2.2. IL-based electrolytes -- 5.2.3. Hybrid electrolytes -- 5.2.4. Effects of additives and impurities -- 5.2.5. Solid-state electrolytes -- 5.3. Properties of IL-based electrolytes for Na batteries -- 5.3.1. Physical properties -- 5.3.2. Thermal stability -- 5.3.3. Electrochemical stability -- 5.4. Modeling IL-based electrolytes -- 5.5. Conclusion and future perspectives -- 5.6. Abbreviations -- 5.7. References -- 6. Solid Electrolyte Interphase in Na-ion batteries -- 6.1. Introduction -- 6.1.1. The solid electrolyte interphase -- 6.1.2. Characterization of the SEI -- 6.2. Physical properties of the Na-ion SEI -- 6.2.1. Electrochemical stability -- 6.2.2. Mechanical properties -- 6.2.3. Dissolution of SEI components -- 6.3. Comparisons of SEI in sodium- and lithium-based electrolytes -- 6.3.1. Formation and composition -- 6.3.2. Resistance -- 6.4. Conclusion -- 6.5. References -- 7. Batteries Containing Prussian Blue Analogue Electrodes -- 7.1. Introduction -- 7.1.1. Chapter introduction -- 7.1.2. History of Prussian blue -- 7.1.3. Physical characteristics: structure, composition and morphology -- 7.1.4. Synthetic methods -- 7.2. Electrochemistry of PBAs -- 7.2.1. Mechanism and resulting characteristics -- 7.2.2. Reaction potentials -- 7.2.3. PBA cathodes -- 7.2.4. PBA anodes -- 7.3. Prussian blue batteries -- 7.3.1. Cells containing two PBA electrodes -- 7.3.2. Cells containing one PBA electrode -- 7.3.3. Challenges for PBA batteries -- 7.4. Conclusion and future outlook -- 7.5. References -- 8. The Design, Performance and Commercialization of Faradion's Non-aqueous Na-ion Battery Technology -- 8.1. Introduction -- 8.2. Experimental -- 8.2.1. Active materials -- 8.2.2. Electrode fabrication -- 8.2.3. Pouch cell fabrication.
8.2.4. Faradion electrolyte -- 8.3. Cell performance -- 8.3.1. Half-cell cycling -- 8.3.2. Full Na-ion cell cycling: curves and stability -- 8.3.3. Rate capability -- 8.3.4. Temperature studies -- 8.3.5. Three-electrode cell studies -- 8.4. Safety and zero energy storage and transportation -- 8.5. Scale-up and prototyping -- 8.6. Demonstrators: stacks and packs -- 8.7. Business and IP strategy -- 8.8. Cost analysis -- 8.9. Future developments -- 8.10. Conclusion -- 8.11. Acknowledgments -- 8.12. References -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910830484903321
London, England ; ; Hoboken, New Jersey : , : ISTE Ltd. : , : John Wiley & Sons, Incorporated, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui