top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multiphase equilibria of complex reservoir fluids : an equation of state modeling approach / / Huazhou Li
Multiphase equilibria of complex reservoir fluids : an equation of state modeling approach / / Huazhou Li
Autore Li Huazhou
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (220 pages)
Disciplina 620.1064
Collana Petroleum Engineering
Soggetto topico Multiphase flow - Mathematical models
Thermodynamic equilibrium
ISBN 3-030-87440-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Author -- 1 Introduction -- 1.1 First and Second Laws of Thermodynamics -- 1.2 Fundamental Thermodynamic Relations -- 1.3 Phase Stability and Phase Equilibrium Conditions -- 1.4 Fugacity and Fugacity Coefficients -- 1.5 Gibbs Phase Rule -- 1.6 Phase Behavior of Pure Fluids -- 1.7 Phase Behavior of Binary Mixtures -- 1.8 General Phase Behavior of Complex Reservoir Fluids -- 1.9 Example Questions -- References -- 2 Cubic Equation of State -- 2.1 Brief Overview of Most Popular EOSs -- 2.2 vdW EOS -- 2.3 RK EOS -- 2.4 SRK EOS -- 2.5 PR EOS -- 2.6 Volume Translation Models in CEOS -- 2.6.1 Historical Development -- 2.6.2 Impact of Using Volume Translation on Phase Equilibrium Calculations -- 2.6.3 Distance-Function-Based Volume Translation Model for PR EOS and SRK EOS -- 2.6.4 Pressure-Volume Crossover Issue Caused by Temperature-Dependent Volume Translation Models -- 2.7 Huron-Vidal Mixing Rule -- 2.8 Further Readings -- 2.9 Example Questions -- References -- 3 Phase Stability Test -- 3.1 Gibbs Free Energy Analysis of Phase Equilibria -- 3.2 Derivation of the TPD Function -- 3.3 Solution Methods -- 3.3.1 Equation Solving Approach -- 3.3.2 Trust-Region-Based Minimization Approach -- 3.4 Example Questions -- References -- 4 Two-Phase Equilibrium Calculations -- 4.1 Equal Fugacity Condition -- 4.2 Derivation of RR Equation -- 4.3 Other Forms of RR Equation -- 4.4 Numerical Algorithm of Two-Phase Equilibrium Calculations -- 4.5 Example Questions -- References -- 5 Multiphase Equilibrium Calculations -- 5.1 Multiphase Flash Calculation Theories -- 5.1.1 RR Equation for Multiphase Flash -- 5.1.2 Multiphase Flash Approach Proposed by Michelsen (1994) -- 5.1.3 Multiphase Flash Approach Proposed by Leibovici and Nichita (2008) -- 5.1.4 Multiphase Flash Approach Proposed by Okuno et al. (2010).
5.1.5 Multiphase Flash Approach Proposed by Petitfrere and Nichita (2014) and Pan et al. (2021) -- 5.2 General Trust-Region-Based Three-Phase Equilibrium Calculation Algorithm -- 5.3 Vapor-Liquid-Liquid Three-Phase Equilibrium Calculation Algorithms -- 5.4 Vapor-Liquid-Aqueous Three-Phase Equilibrium Calculation Algorithms -- 5.5 Free-Water and Augmented Free-Water Three-Phase Equilibrium Calculation Algorithms -- 5.6 Vapor-Liquid-Asphaltene Three-Phase Equilibrium Calculation Algorithms -- 5.7 Further Discussion -- 5.8 Further Readings -- 5.9 Example Questions -- References.
Record Nr. UNINA-9910523780903321
Li Huazhou  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase flow and fluidization : continuum and kinetic theory descriptions / Dimitri Gidaspow
Multiphase flow and fluidization : continuum and kinetic theory descriptions / Dimitri Gidaspow
Autore GIDASPOW, Dimitri
Pubbl/distr/stampa Harcourt Brace [etc.] : Academic Press, copyr. 1994
Descrizione fisica XX, 467 p. ; 24 cm
Disciplina 620.1064
Soggetto topico Dinamica dei fluidi
ISBN 0-12-282470-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990003113960203316
GIDASPOW, Dimitri  
Harcourt Brace [etc.] : Academic Press, copyr. 1994
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Multiphase flow and fluidization : continuum and kinetic theory descriptions / Dimitri Gidaspow
Multiphase flow and fluidization : continuum and kinetic theory descriptions / Dimitri Gidaspow
Autore Gidaspow, Dimitri <1934- >
Pubbl/distr/stampa Boston [etc.], : Academic press, c1994
Descrizione fisica XX, 467 p. : ill. ; 24 cm.
Disciplina 620.1
620.1064
Soggetto topico Fluidi - Dinamica
ISBN 0122824709
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-UFI0251117
Gidaspow, Dimitri <1934- >  
Boston [etc.], : Academic press, c1994
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Multiphase flow dynamics : a perspective from the Brazilian academy and industry / / Marcio Ferreira Martins, Rogério Ramos and Humberto Belich, editors
Multiphase flow dynamics : a perspective from the Brazilian academy and industry / / Marcio Ferreira Martins, Rogério Ramos and Humberto Belich, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (342 pages)
Disciplina 620.1064
Collana Lecture notes in mechanical engineering
Soggetto topico Multiphase flow
Fluid mechanics
Mechanical engineering
ISBN 3-030-93456-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910558493203321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase Flow Dynamics 1 [[electronic resource] ] : Fundamentals / / by Nikolay Ivanov Kolev
Multiphase Flow Dynamics 1 [[electronic resource] ] : Fundamentals / / by Nikolay Ivanov Kolev
Autore Kolev Nikolay Ivanov
Edizione [5th ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (870 p.)
Disciplina 532
533.62
536.7
620
620.1064
621.4021
Soggetto topico Fluid mechanics
Thermodynamics
Heat engineering
Heat transfer
Mass transfer
Fluids
Engineering Fluid Dynamics
Engineering Thermodynamics, Heat and Mass Transfer
Fluid- and Aerodynamics
ISBN 3-319-15296-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mass Conservation -- Conservation of Momentum -- Derivatives for the Equations of State -- On the Variety of Notations of the Energy Conservation for Single-phase Flow -- First and Second Laws of the Thermodynamics -- Some Simple Applications of Mass and Energy Conservation -- Exergy of  Multi-Phase Multi-Component Systems -- One-Dimensional Three-Fluid Flows -- Detonation Waves Caused by Chemical Reactions or by Melt-Coolant Interactions -- Conservation Equations In General Curvilinear Coordinate Systems -- Type of the System of PDEs -- Numerical Solution Methods for Multi-Phase Flow Problems -- Numerical Methods for Multi-Phase Flow in Curvilinear Coordinate Systems -- Conservation Equations in the Relative Coordinate System -- Visual Demonstration of the Method.
Record Nr. UNINA-9910299835303321
Kolev Nikolay Ivanov  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase Flow Dynamics 5 [[electronic resource] ] : Nuclear Thermal Hydraulics / / by Nikolay Ivanov Kolev
Multiphase Flow Dynamics 5 [[electronic resource] ] : Nuclear Thermal Hydraulics / / by Nikolay Ivanov Kolev
Autore Kolev Nikolay Ivanov
Edizione [3rd ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (911 p.)
Disciplina 532
533.62
536.7
620
620.1064
621.4021
Soggetto topico Fluid mechanics
Thermodynamics
Heat engineering
Heat transfer
Mass transfer
Fluids
Engineering Fluid Dynamics
Engineering Thermodynamics, Heat and Mass Transfer
Fluid- and Aerodynamics
ISBN 3-319-15156-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Heat Release in the Reactor Core -- Temperature Inside the Fuel Elements -- The “Simple” Steady Boiling Flow in A Pipe -- The “Simple” Steady Three-Fluid Boiling Flow in A Pipe -- Core Thermal Hydraulics -- Flow Boiling and Condensation Stability Analysis -- Critical Multiphase Flow -- Steam Generators -- Moisture Separation -- Pipe Networks -- Some Auxiliary Systems -- Emergency Condensers, Reheaters, Moisture Separators and Reheaters -- Core Degradation -- Melt-Coolant Interaction -- Coolability of Layers of Molten Reactor Material -- External Cooling of Reactor Vessels During Severe Accident -- Thermo-Physical Properties for Severe Accident Analysis -- Lead, Bismuth and Lead-Bismuth Eutectic Alloy -- Containment Thermal-Hydraulics.
Record Nr. UNINA-9910299820503321
Kolev Nikolay Ivanov  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase flows for process industries : fundamentals and applications / / edited by Vivek V. Ranade, Ranjeet P. Utikar
Multiphase flows for process industries : fundamentals and applications / / edited by Vivek V. Ranade, Ranjeet P. Utikar
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (695 pages)
Disciplina 620.1064
Soggetto topico Manufacturing processes
Soggetto genere / forma Electronic books.
ISBN 3-527-81206-7
3-527-81204-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Multiphase Flows and Process Industries -- 1.1 The Process Industry -- 1.2 Multiphase Flows -- 1.3 Organization of This Book -- References -- Part II Fundamentals of Multiphase Flows -- Chapter 2 Multiphase Flows: Flow Regimes, Lower Order Models, and Correlations -- 2.1 Introduction -- 2.2 Modeling of Multiphase Flows -- 2.3 Chronological Development of Mathematical Models -- 2.4 Zero‐Dimensional Two‐Equation Model -- 2.5 Homogeneous Equilibrium Model -- 2.6 Drift Flux Model -- 2.7 One‐Dimensional Five‐Equation Models -- 2.8 One‐Dimensional Six‐Equation Two‐Phase Flow Models: Axial Variation of Field Variables -- 2.8.1 Mathematical Formulations -- 2.8.2 Closure -- 2.8.2.1 Regime Maps and Criteria for Transition -- 2.8.2.2 Momentum Closure -- 2.8.2.3 Energy Closure -- 2.8.3 Software (RELAP5) -- 2.8.4 Application and Validation of Various One‐D Models and CFD -- 2.8.4.1 Nodalization for the One‐Dimensional Models -- 2.8.4.2 Model Details -- 2.8.4.3 Comparison Between Three‐, Five‐, and Six‐Equation Model with Experimental Data -- 2.9 One‐Dimensional Six‐Equation Two‐Phase Flow Models: Radial Variation of Field Variables -- 2.9.1 Hydrodynamic Regimes and Criteria for Transition -- 2.9.2 Mathematical Model -- 2.9.3 Stepwise Solution Procedure -- 2.9.3.1 Model Equation -- 2.9.3.2 Model for Eddy Diffusivity -- 2.9.3.3 Solution Procedure -- 2.10 Prediction of Design Parameters Using One‐Dimensional Models -- 2.10.1 Pressure Drop -- 2.10.2 Prediction of Heat Transfer Coefficient -- 2.10.3 Mixing Time and Liquid Phase Dispersion Coefficient -- 2.11 Process Design Using One‐Dimensional Models -- 2.12 The Three‐Dimensional CFD Simulations to Overcome the Limitations of One‐Dimensional Models: The Current Status -- Nomenclature -- Greek Letters -- References.
Chapter 3 Multiscale Modeling of Multiphase Flows -- 3.1 General Introduction to Multiphase Flows -- 3.2 Multiscale Modeling of Multiphase Flows -- 3.3 Euler-Euler Modeling -- 3.3.1 Introduction -- 3.3.2 Governing Equations -- 3.3.3 Numerical Solution Method -- 3.3.4 Results -- 3.3.4.1 Hydrodynamics of a Pseudo Two‐Dimensional Gas‐Fluidized Bed -- 3.3.4.2 Hydrodynamics of a 3D Cylindrical Bed -- 3.3.4.3 Gas‐Fluidized Bed with Heat Production -- 3.3.5 Conclusions and Outlook -- 3.4 Euler-Lagrange Modeling -- 3.4.1 Introduction -- 3.4.2 Discrete Particle Modeling -- 3.4.2.1 Soft Sphere -- 3.4.2.2 Hard Sphere -- 3.4.2.3 Fluid-Particle Coupling -- 3.4.3 Discrete Bubble Model -- 3.4.3.1 Collision, Coalescence, and Break‐up -- 3.4.4 Direct Simulation Monte Carlo -- 3.4.5 Conclusions and Outlook -- 3.5 Immersed Boundary Methods -- 3.5.1 Introduction -- 3.5.2 Methods -- 3.5.2.1 Governing Equations -- 3.5.2.2 Continuous Forcing or Diffuse IBM -- 3.5.2.3 Discrete Forcing or Sharp IBM -- 3.5.2.4 Mass and Heat Transport -- 3.5.3 Recent Results -- 3.5.3.1 Hydrodynamics Using Diffuse IBM -- 3.5.3.2 Hydrodynamics Using Sharp IBM -- 3.5.3.3 Heat and Mass Transport Using Diffuse IBM -- 3.5.3.4 Heat and Mass Transport Using Sharp IBM -- 3.5.4 Discussion and Outlook -- 3.6 Direct Numerical Simulations of Gas-Liquid and Gas-Liquid-Solid Flows -- 3.6.1 Introduction -- 3.6.2 Governing Equations -- 3.6.3 Moving Grid Methods -- 3.6.4 Fixed Grid Methods -- 3.6.4.1 Volume of Fluid Method -- 3.6.4.2 Level‐Set Method -- 3.6.4.3 Front Tracking -- 3.6.5 Results -- 3.6.5.1 Verification -- 3.6.5.2 Validation -- 3.6.5.3 Drag Coefficient of Bubble Swarms -- 3.6.5.4 Droplet-Droplet Interactions -- 3.6.6 Gas-Liquid-Solid Three Phase Flows -- 3.6.7 Discussion and Outlook -- 3.7 Verification, Experimental Validation, and Uncertainty Quantification -- Acknowledgments -- References.
Chapter 4 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Liquid and Gas-Liquid-Solid Processes -- 4.1 Introduction -- 4.2 "Tools" for Process Innovation of Gas-Liquid and Gas-Liquid-Solid Processes -- 4.3 Process Innovations in Multiphase Reactors -- 4.3.1 Stirred Tank Reactors -- 4.3.2 Bubble Column and Slurry Bubble Column Reactors -- 4.3.3 Spinning Disc Reactors -- 4.3.4 Oscillatory Baffled Reactors -- 4.3.5 Cavitation Reactors -- 4.3.5.1 Ultrasound Cavitation Reactors -- 4.3.5.2 Hydrodynamic Cavitation Reactor -- 4.3.6 Monolith Reactors -- 4.3.7 Microreactors -- 4.4 Process Innovations in Multiphase Unit Operations -- 4.4.1 Mixing in Multiphase Systems -- 4.4.2 Multiphase Separation -- 4.4.2.1 HiGee Distillation -- 4.4.2.2 Cyclic Distillation -- 4.5 Summary -- Acknowledgments -- List of Abbreviations -- References -- Part III Enabling Process Innovations via Mastering Multiphase Flows -- Chapter 5 Liquid-Liquid Processes: Mass Transfer Processes and Chemical Reactions -- 5.1 Overview -- 5.2 Liquid-Liquid Thermodynamics and Processes -- 5.2.1 Ternary Systems and Triangle Diagrams -- 5.2.2 Single‐Step Extraction -- 5.2.3 Cross‐Flow Extraction -- 5.2.4 Counter‐current Extraction -- 5.2.5 Solvent Selection Criteria -- 5.3 Mass Transfer in Liquid-Liquid Systems -- 5.3.1 Interface of Droplets -- 5.3.2 Numerical Simulation of Droplet Flow -- 5.3.3 Modeling of Mass Transfer -- 5.3.4 Extraction Processes -- 5.4 Liquid-Liquid Reactions and Applications -- 5.4.1 Mass Transfer and Chemical Reaction at the Liquid-Liquid Interface -- 5.4.2 Interfacial Area and Specific Surface -- 5.4.3 Turbulent Mixing and Dispersion -- 5.4.4 Scale‐Up Considerations -- 5.5 Liquid-Liquid Process Equipment and Typical Applications -- 5.5.1 Overview of Liquid-Liquid Extraction Equipment -- 5.5.2 Liquid-Liquid Extraction Columns -- 5.5.3 Centrifugal Extractors.
5.5.4 Applications of Reactive Extraction -- 5.5.5 Chemical Reactors for Liquid-Liquid Processes -- 5.5.6 Future Development in Liquid-Liquid Process Equipment and Applications -- 5.6 Conclusion -- References -- Chapter 6 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Solid Processes -- 6.1 Introduction -- 6.2 Process Equipment -- 6.3 Gas-Solid Flow Investigation Methods -- 6.4 Case Study 1: FCC Riser -- 6.4.1 Introduction -- 6.4.2 Challenge in CFD Modeling of Gas-Solid Flow in Riser -- 6.4.3 EMMS Approach -- 6.4.4 Verification of EMMS Drag Model -- 6.4.5 Calculation of EMMS Drag -- 6.4.6 CFD of Cold‐Flow FCC Riser -- 6.4.7 CFD of Reactive Flow in FCC Riser -- 6.4.7.1 Effect of Baffles -- 6.4.7.2 Effect of Pulsating Flow -- 6.4.8 Conclusion -- 6.5 Case Study 2: FCC Stripper -- 6.5.1 Introduction -- 6.5.2 Experiments -- 6.5.3 CFD Modeling -- 6.5.4 Results and Discussion -- 6.5.4.1 Experimental Data and Model Validation -- 6.5.4.2 Effect of Packing -- 6.5.5 Conclusion -- 6.6 Case Study 3: Rotary Cement Kiln -- 6.6.1 Introduction -- 6.6.2 Gas-Solid Flow in a Cement Kiln -- 6.6.3 CFD Modeling -- 6.6.3.1 Model for Bed Region -- 6.6.3.2 Model for Freeboard Region -- 6.6.3.3 Radiation Modeling -- 6.6.3.4 Mass Transfer From Bed to Freeboard -- 6.6.4 Coupling Between Two Models -- 6.6.5 Simulations of Rotary Cement Kilns -- 6.6.6 Effect of Burner Operational Parameters -- 6.6.7 Conclusions -- 6.7 Case Study 4: Bubbling Fluidized Bed -- 6.7.1 Introduction -- 6.7.2 CFD‐DEM Model -- 6.7.2.1 Governing Equation of Gas Phase -- 6.7.2.2 Governing Equation of Solid Phase -- 6.7.2.3 Closure Models -- 6.7.3 Gas-Solid Drag Models -- 6.7.4 Simulation Setup -- 6.7.5 Simulation Results for Goldschmidt et al. -- 6.7.6 Simulation Results for NETL Challenge Problem -- 6.7.7 Discussion -- 6.7.8 Conclusion -- 6.8 Summary and Outlook -- References.
Chapter 7 Liquid-Solid Processes -- 7.1 Introduction -- 7.2 Slurry Transportation -- 7.2.1 Hydrodynamics and Flow Regimes -- 7.2.2 Modeling of Slurry Transport System -- 7.2.2.1 Non‐Settling Slurries -- 7.2.2.2 Settling Slurries -- 7.2.3 Applications -- 7.3 Agitation and Mixing in Stirred Vessel -- 7.3.1 Hydrodynamics of Non‐settling Slurries -- 7.3.1.1 Kneading and Muller Mixer -- 7.3.1.2 Vertical/Horizontal Screw Mixer -- 7.3.1.3 High‐Shear and Ultra‐High‐Shear Mixer -- 7.3.1.4 Planetary Mixer -- 7.3.1.5 Triple Shaft Anchor/Helical Mixer -- 7.3.2 Modeling of Non‐settling Slurries -- 7.3.3 Applications -- 7.3.4 Hydrodynamics of Settling Slurries -- 7.3.4.1 Minimum Impeller Speed for Solid Suspension -- 7.3.4.2 Solid Suspension Characterization Using Cloud Height -- 7.3.4.3 Solid Concentration or Homogeneity -- 7.3.5 Modeling of Settling Slurries -- 7.3.6 Applications -- 7.4 Fluidized Bed Reactor -- 7.4.1 Hydrodynamics and Flow Regimes -- 7.4.1.1 Minimum Fluidization Velocity -- 7.4.1.2 Flow Instability in Conventional Fluidization Regime -- 7.4.1.3 Average Solids Holdup -- 7.4.1.4 Radial Solids Holdup and Liquids Velocity -- 7.4.2 Models for Liquid-Solid Fluidized Bed -- 7.4.2.1 Drift Flux Model -- 7.4.2.2 Core‐Annulus Model -- 7.4.2.3 Computational Modeling of Liquid-Solid Fluidized Bed Reactors -- 7.4.3 Applications -- 7.4.3.1 Bioreactor and Bioprocesses -- 7.4.3.2 Reflux Classifier -- 7.4.3.3 Fluidized Bed Crystallizers (FBCs) -- 7.5 Hydrocyclones -- 7.5.1 Flow Fields in Hydrocyclones -- 7.5.1.1 Velocity Components -- 7.5.1.2 Particle Separation -- 7.5.2 Modeling of Hydrocyclones -- 7.5.2.1 Empirical Correlations -- 7.5.3 Applications -- 7.6 Summary and Path Forward -- References -- Chapter 8 Three or More Phase Reactors -- 8.1 Introduction -- 8.2 Selection of Multiphase Reactor -- 8.2.1 Transport Effects on Scale‐Up Relative to Kinetics.
8.2.2 Ease of Operation and Safety at Scale.
Record Nr. UNINA-9910566698503321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase flows for process industries : fundamentals and applications / / edited by Vivek V. Ranade, Ranjeet P. Utikar
Multiphase flows for process industries : fundamentals and applications / / edited by Vivek V. Ranade, Ranjeet P. Utikar
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (695 pages)
Disciplina 620.1064
Soggetto topico Manufacturing processes
ISBN 3-527-81206-7
3-527-81204-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Multiphase Flows and Process Industries -- 1.1 The Process Industry -- 1.2 Multiphase Flows -- 1.3 Organization of This Book -- References -- Part II Fundamentals of Multiphase Flows -- Chapter 2 Multiphase Flows: Flow Regimes, Lower Order Models, and Correlations -- 2.1 Introduction -- 2.2 Modeling of Multiphase Flows -- 2.3 Chronological Development of Mathematical Models -- 2.4 Zero‐Dimensional Two‐Equation Model -- 2.5 Homogeneous Equilibrium Model -- 2.6 Drift Flux Model -- 2.7 One‐Dimensional Five‐Equation Models -- 2.8 One‐Dimensional Six‐Equation Two‐Phase Flow Models: Axial Variation of Field Variables -- 2.8.1 Mathematical Formulations -- 2.8.2 Closure -- 2.8.2.1 Regime Maps and Criteria for Transition -- 2.8.2.2 Momentum Closure -- 2.8.2.3 Energy Closure -- 2.8.3 Software (RELAP5) -- 2.8.4 Application and Validation of Various One‐D Models and CFD -- 2.8.4.1 Nodalization for the One‐Dimensional Models -- 2.8.4.2 Model Details -- 2.8.4.3 Comparison Between Three‐, Five‐, and Six‐Equation Model with Experimental Data -- 2.9 One‐Dimensional Six‐Equation Two‐Phase Flow Models: Radial Variation of Field Variables -- 2.9.1 Hydrodynamic Regimes and Criteria for Transition -- 2.9.2 Mathematical Model -- 2.9.3 Stepwise Solution Procedure -- 2.9.3.1 Model Equation -- 2.9.3.2 Model for Eddy Diffusivity -- 2.9.3.3 Solution Procedure -- 2.10 Prediction of Design Parameters Using One‐Dimensional Models -- 2.10.1 Pressure Drop -- 2.10.2 Prediction of Heat Transfer Coefficient -- 2.10.3 Mixing Time and Liquid Phase Dispersion Coefficient -- 2.11 Process Design Using One‐Dimensional Models -- 2.12 The Three‐Dimensional CFD Simulations to Overcome the Limitations of One‐Dimensional Models: The Current Status -- Nomenclature -- Greek Letters -- References.
Chapter 3 Multiscale Modeling of Multiphase Flows -- 3.1 General Introduction to Multiphase Flows -- 3.2 Multiscale Modeling of Multiphase Flows -- 3.3 Euler-Euler Modeling -- 3.3.1 Introduction -- 3.3.2 Governing Equations -- 3.3.3 Numerical Solution Method -- 3.3.4 Results -- 3.3.4.1 Hydrodynamics of a Pseudo Two‐Dimensional Gas‐Fluidized Bed -- 3.3.4.2 Hydrodynamics of a 3D Cylindrical Bed -- 3.3.4.3 Gas‐Fluidized Bed with Heat Production -- 3.3.5 Conclusions and Outlook -- 3.4 Euler-Lagrange Modeling -- 3.4.1 Introduction -- 3.4.2 Discrete Particle Modeling -- 3.4.2.1 Soft Sphere -- 3.4.2.2 Hard Sphere -- 3.4.2.3 Fluid-Particle Coupling -- 3.4.3 Discrete Bubble Model -- 3.4.3.1 Collision, Coalescence, and Break‐up -- 3.4.4 Direct Simulation Monte Carlo -- 3.4.5 Conclusions and Outlook -- 3.5 Immersed Boundary Methods -- 3.5.1 Introduction -- 3.5.2 Methods -- 3.5.2.1 Governing Equations -- 3.5.2.2 Continuous Forcing or Diffuse IBM -- 3.5.2.3 Discrete Forcing or Sharp IBM -- 3.5.2.4 Mass and Heat Transport -- 3.5.3 Recent Results -- 3.5.3.1 Hydrodynamics Using Diffuse IBM -- 3.5.3.2 Hydrodynamics Using Sharp IBM -- 3.5.3.3 Heat and Mass Transport Using Diffuse IBM -- 3.5.3.4 Heat and Mass Transport Using Sharp IBM -- 3.5.4 Discussion and Outlook -- 3.6 Direct Numerical Simulations of Gas-Liquid and Gas-Liquid-Solid Flows -- 3.6.1 Introduction -- 3.6.2 Governing Equations -- 3.6.3 Moving Grid Methods -- 3.6.4 Fixed Grid Methods -- 3.6.4.1 Volume of Fluid Method -- 3.6.4.2 Level‐Set Method -- 3.6.4.3 Front Tracking -- 3.6.5 Results -- 3.6.5.1 Verification -- 3.6.5.2 Validation -- 3.6.5.3 Drag Coefficient of Bubble Swarms -- 3.6.5.4 Droplet-Droplet Interactions -- 3.6.6 Gas-Liquid-Solid Three Phase Flows -- 3.6.7 Discussion and Outlook -- 3.7 Verification, Experimental Validation, and Uncertainty Quantification -- Acknowledgments -- References.
Chapter 4 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Liquid and Gas-Liquid-Solid Processes -- 4.1 Introduction -- 4.2 "Tools" for Process Innovation of Gas-Liquid and Gas-Liquid-Solid Processes -- 4.3 Process Innovations in Multiphase Reactors -- 4.3.1 Stirred Tank Reactors -- 4.3.2 Bubble Column and Slurry Bubble Column Reactors -- 4.3.3 Spinning Disc Reactors -- 4.3.4 Oscillatory Baffled Reactors -- 4.3.5 Cavitation Reactors -- 4.3.5.1 Ultrasound Cavitation Reactors -- 4.3.5.2 Hydrodynamic Cavitation Reactor -- 4.3.6 Monolith Reactors -- 4.3.7 Microreactors -- 4.4 Process Innovations in Multiphase Unit Operations -- 4.4.1 Mixing in Multiphase Systems -- 4.4.2 Multiphase Separation -- 4.4.2.1 HiGee Distillation -- 4.4.2.2 Cyclic Distillation -- 4.5 Summary -- Acknowledgments -- List of Abbreviations -- References -- Part III Enabling Process Innovations via Mastering Multiphase Flows -- Chapter 5 Liquid-Liquid Processes: Mass Transfer Processes and Chemical Reactions -- 5.1 Overview -- 5.2 Liquid-Liquid Thermodynamics and Processes -- 5.2.1 Ternary Systems and Triangle Diagrams -- 5.2.2 Single‐Step Extraction -- 5.2.3 Cross‐Flow Extraction -- 5.2.4 Counter‐current Extraction -- 5.2.5 Solvent Selection Criteria -- 5.3 Mass Transfer in Liquid-Liquid Systems -- 5.3.1 Interface of Droplets -- 5.3.2 Numerical Simulation of Droplet Flow -- 5.3.3 Modeling of Mass Transfer -- 5.3.4 Extraction Processes -- 5.4 Liquid-Liquid Reactions and Applications -- 5.4.1 Mass Transfer and Chemical Reaction at the Liquid-Liquid Interface -- 5.4.2 Interfacial Area and Specific Surface -- 5.4.3 Turbulent Mixing and Dispersion -- 5.4.4 Scale‐Up Considerations -- 5.5 Liquid-Liquid Process Equipment and Typical Applications -- 5.5.1 Overview of Liquid-Liquid Extraction Equipment -- 5.5.2 Liquid-Liquid Extraction Columns -- 5.5.3 Centrifugal Extractors.
5.5.4 Applications of Reactive Extraction -- 5.5.5 Chemical Reactors for Liquid-Liquid Processes -- 5.5.6 Future Development in Liquid-Liquid Process Equipment and Applications -- 5.6 Conclusion -- References -- Chapter 6 Enabling Process Innovations via Mastering Multiphase Flows: Gas-Solid Processes -- 6.1 Introduction -- 6.2 Process Equipment -- 6.3 Gas-Solid Flow Investigation Methods -- 6.4 Case Study 1: FCC Riser -- 6.4.1 Introduction -- 6.4.2 Challenge in CFD Modeling of Gas-Solid Flow in Riser -- 6.4.3 EMMS Approach -- 6.4.4 Verification of EMMS Drag Model -- 6.4.5 Calculation of EMMS Drag -- 6.4.6 CFD of Cold‐Flow FCC Riser -- 6.4.7 CFD of Reactive Flow in FCC Riser -- 6.4.7.1 Effect of Baffles -- 6.4.7.2 Effect of Pulsating Flow -- 6.4.8 Conclusion -- 6.5 Case Study 2: FCC Stripper -- 6.5.1 Introduction -- 6.5.2 Experiments -- 6.5.3 CFD Modeling -- 6.5.4 Results and Discussion -- 6.5.4.1 Experimental Data and Model Validation -- 6.5.4.2 Effect of Packing -- 6.5.5 Conclusion -- 6.6 Case Study 3: Rotary Cement Kiln -- 6.6.1 Introduction -- 6.6.2 Gas-Solid Flow in a Cement Kiln -- 6.6.3 CFD Modeling -- 6.6.3.1 Model for Bed Region -- 6.6.3.2 Model for Freeboard Region -- 6.6.3.3 Radiation Modeling -- 6.6.3.4 Mass Transfer From Bed to Freeboard -- 6.6.4 Coupling Between Two Models -- 6.6.5 Simulations of Rotary Cement Kilns -- 6.6.6 Effect of Burner Operational Parameters -- 6.6.7 Conclusions -- 6.7 Case Study 4: Bubbling Fluidized Bed -- 6.7.1 Introduction -- 6.7.2 CFD‐DEM Model -- 6.7.2.1 Governing Equation of Gas Phase -- 6.7.2.2 Governing Equation of Solid Phase -- 6.7.2.3 Closure Models -- 6.7.3 Gas-Solid Drag Models -- 6.7.4 Simulation Setup -- 6.7.5 Simulation Results for Goldschmidt et al. -- 6.7.6 Simulation Results for NETL Challenge Problem -- 6.7.7 Discussion -- 6.7.8 Conclusion -- 6.8 Summary and Outlook -- References.
Chapter 7 Liquid-Solid Processes -- 7.1 Introduction -- 7.2 Slurry Transportation -- 7.2.1 Hydrodynamics and Flow Regimes -- 7.2.2 Modeling of Slurry Transport System -- 7.2.2.1 Non‐Settling Slurries -- 7.2.2.2 Settling Slurries -- 7.2.3 Applications -- 7.3 Agitation and Mixing in Stirred Vessel -- 7.3.1 Hydrodynamics of Non‐settling Slurries -- 7.3.1.1 Kneading and Muller Mixer -- 7.3.1.2 Vertical/Horizontal Screw Mixer -- 7.3.1.3 High‐Shear and Ultra‐High‐Shear Mixer -- 7.3.1.4 Planetary Mixer -- 7.3.1.5 Triple Shaft Anchor/Helical Mixer -- 7.3.2 Modeling of Non‐settling Slurries -- 7.3.3 Applications -- 7.3.4 Hydrodynamics of Settling Slurries -- 7.3.4.1 Minimum Impeller Speed for Solid Suspension -- 7.3.4.2 Solid Suspension Characterization Using Cloud Height -- 7.3.4.3 Solid Concentration or Homogeneity -- 7.3.5 Modeling of Settling Slurries -- 7.3.6 Applications -- 7.4 Fluidized Bed Reactor -- 7.4.1 Hydrodynamics and Flow Regimes -- 7.4.1.1 Minimum Fluidization Velocity -- 7.4.1.2 Flow Instability in Conventional Fluidization Regime -- 7.4.1.3 Average Solids Holdup -- 7.4.1.4 Radial Solids Holdup and Liquids Velocity -- 7.4.2 Models for Liquid-Solid Fluidized Bed -- 7.4.2.1 Drift Flux Model -- 7.4.2.2 Core‐Annulus Model -- 7.4.2.3 Computational Modeling of Liquid-Solid Fluidized Bed Reactors -- 7.4.3 Applications -- 7.4.3.1 Bioreactor and Bioprocesses -- 7.4.3.2 Reflux Classifier -- 7.4.3.3 Fluidized Bed Crystallizers (FBCs) -- 7.5 Hydrocyclones -- 7.5.1 Flow Fields in Hydrocyclones -- 7.5.1.1 Velocity Components -- 7.5.1.2 Particle Separation -- 7.5.2 Modeling of Hydrocyclones -- 7.5.2.1 Empirical Correlations -- 7.5.3 Applications -- 7.6 Summary and Path Forward -- References -- Chapter 8 Three or More Phase Reactors -- 8.1 Introduction -- 8.2 Selection of Multiphase Reactor -- 8.2.1 Transport Effects on Scale‐Up Relative to Kinetics.
8.2.2 Ease of Operation and Safety at Scale.
Record Nr. UNINA-9910830264603321
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiphase flows with droplets and particles / Clayton Crowe, Martin Sommerfeld, Yutaka Tsuji
Multiphase flows with droplets and particles / Clayton Crowe, Martin Sommerfeld, Yutaka Tsuji
Autore CROWE, Clayton
Pubbl/distr/stampa Boca Raton [etc.] : CRC Press, c1998
Descrizione fisica 471 p. ; 24 cm
Disciplina 620.1064
Altri autori (Persone) SOMMERFELD, Martin
TSUJI, Yutaka
Soggetto topico Fuidi - Dinamica
ISBN 0-8493-9469-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000305390203316
CROWE, Clayton  
Boca Raton [etc.] : CRC Press, c1998
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Multiphase flows with droplets and particles / Clayton Crowe, Martin Sommerfeld, Yutaka Tsuji
Multiphase flows with droplets and particles / Clayton Crowe, Martin Sommerfeld, Yutaka Tsuji
Autore Crowe, C. T. (Clayton T.)
Pubbl/distr/stampa Boca Raton, Fla. : CRC Press, c1998
Descrizione fisica 471 p. : ill. ; 25 cm
Disciplina 620.1064
Altri autori (Persone) Sommerfeld, Martinauthor
Tsuji, Yutaka, 1943-author
Soggetto topico Multiphase flow
Drops
Particles
ISBN 0849394694
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000746319707536
Crowe, C. T. (Clayton T.)  
Boca Raton, Fla. : CRC Press, c1998
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...