top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries / / von Stephan Kramer-Eis
A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries / / von Stephan Kramer-Eis
Autore Kramer-Eis Stephan
Edizione [1. Auflage.]
Pubbl/distr/stampa Gottingen, [Germany] : , : Cuvillier Verlag, , 2017
Descrizione fisica 1 online resource (129 pages) : illustrations (some color), tables
Disciplina 620.1064
Soggetto topico Computational fluid dynamics
Galerkin methods
ISBN 3-7369-8635-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910796511903321
Kramer-Eis Stephan  
Gottingen, [Germany] : , : Cuvillier Verlag, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries / / von Stephan Kramer-Eis
A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries / / von Stephan Kramer-Eis
Autore Kramer-Eis Stephan
Edizione [1. Auflage.]
Pubbl/distr/stampa Gottingen, [Germany] : , : Cuvillier Verlag, , 2017
Descrizione fisica 1 online resource (129 pages) : illustrations (some color), tables
Disciplina 620.1064
Soggetto topico Computational fluid dynamics
Galerkin methods
ISBN 3-7369-8635-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910827165903321
Kramer-Eis Stephan  
Gottingen, [Germany] : , : Cuvillier Verlag, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hydrodynamic cavitation : devices, design, and applications / / Vivek V. Ranade [and four others]
Hydrodynamic cavitation : devices, design, and applications / / Vivek V. Ranade [and four others]
Autore Ranade Vivek V.
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2023]
Descrizione fisica 1 online resource (355 pages)
Disciplina 620.1064
Soggetto topico Cavitation
Hydrodynamics
Sewage - Purification
ISBN 3-527-34644-9
3-527-82287-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Hydrodynamic Cavitation -- 1.1 Hydrodynamic Cavitation -- 1.2 Hydrodynamic Cavitation Devices -- 1.3 Applications of Hydrodynamic Cavitation -- 1.4 Organization of the Book -- References -- Part II Hydrodynamic Cavitation Devices -- Chapter 2 Hydrodynamic Cavitation Devices Based on Axial/Linear Flow -- 2.1 Introduction -- 2.2 Orifice‐Based Devices -- 2.3 Venturi‐Based Devices -- 2.4 Enhancing Performance of Orifice/Venturi‐Based Hydrodynamic Cavitation Devices -- 2.5 Summary and Outlook -- References -- Chapter 3 Hydrodynamic Cavitation Devices Based on Rotational/Swirling Flows -- 3.1 Rotor‐Stator Hydrodynamic Cavitation Devices -- 3.2 Vortex‐Based Cavitation Devices -- 3.2.1 Vortex Cavitation -- 3.2.2 Vortex Models -- 3.2.3 Vortex Cavitation Devices -- 3.3 Devices Based on Combinations of Linear and Swirling Flows -- 3.4 Summary and Outlook -- References -- Part III Characterizing and Modeling of Cavitation Devices -- Chapter 4 Experimental Characterization of Hydrodynamic Cavitation Devices -- 4.1 Experimental Set‐up for Characterization of Hydrodynamic Cavitation Devices -- 4.1.1 Holding Tank -- 4.1.2 Pump -- 4.1.3 Hydrodynamic Cavitation Device -- 4.1.4 Piping Arrangements/Fittings -- 4.1.5 In‐line Sensors -- 4.2 Identification of Inception of Hydrodynamic Cavitation -- 4.3 Characterizing Overall Process Performance -- 4.4 Conclusions -- References -- Chapter 5 Modeling of Hydrodynamic Cavitation‐Based Processes -- 5.1 Introduction -- 5.2 Empirical Models -- 5.2.1 Pseudo‐reaction Kinetics Model -- 5.2.2 Per‐pass Performance Model -- 5.2.3 Data‐Driven Models -- 5.3 Physics‐Based Models -- 5.3.1 Cavity Dynamics Models -- 5.3.1.1 Model Equations Governing Single‐Bubble Dynamics -- 5.3.1.2 Estimation of Generation of Hydroxyl Radicals.
5.3.1.3 Estimation of Hammer Pressure/Jet Velocity Due to Collapse -- 5.3.1.4 Illustrative Results from Cavity Dynamics Models -- 5.3.2 Multi‐scale/Multi‐layer Models for Simulating Performance of Cavitation Processes -- 5.4 Modeling of Heterogeneous Systems Treated with HC -- 5.5 Summary and Outlook -- References -- Part IV Applications of Hydrodynamic Cavitation -- Chapter 6 Disinfection of Water -- 6.1 Introduction -- 6.2 Conventional Methods of Disinfection -- 6.2.1 Major Drawbacks in Continuing the Use of Conventional Methods -- 6.2.2 Emerging Newer Methods of Disinfection -- 6.3 Disinfection of Water by Cavitation -- 6.3.1 Cavitation Process Principle -- 6.3.2 Present Status -- 6.3.3 Hydrodynamic Cavitation and Cavitation Devices/Reactors -- 6.3.4 Kinetics of Disinfection in Hydrodynamic Cavitation -- 6.4 Hybrid Methods of Disinfection Involving Cavitation -- 6.4.1 Process Integration-Conventional -- 6.4.2 Cavitation with Hydrogen Peroxide Addition -- 6.4.3 Cavitation with Ozone Addition -- 6.4.4 Cavitation with Aeration or Oxygen -- 6.5 Hybrid Hydrodynamic Cavitation Technology Using Natural Oils -- 6.5.1 Mechanism of Disinfection in Hydrodynamic Cavitation‐ Conventional vs. Hybrid Processes -- 6.5.2 Effect of Temperature -- 6.6 Process Economics -- 6.6.1 Cost Comparison of Different Processes -- 6.6.2 Typical Cost Calculation for Vortex Diode as Reactor in Hybrid Process Using Natural Oils -- 6.7 New Developments and Future Potential -- 6.7.1 Applications in Drinking Water Treatment -- 6.7.2 Applications in Sewage Water Treatment -- 6.7.3 Applications in Ballast Water Treatment -- 6.8 Summary -- References -- Chapter 7 Wastewater Treatment -- 7.1 Introduction -- 7.2 Hydrodynamic Cavitation for Wastewater Treatment -- 7.3 Performance of Hydrodynamic Cavitation‐based Wastewater Treatment -- 7.3.1 Influence of Device Design.
7.3.2 Influence of Operating Parameters -- 7.3.2.1 Inlet Concentration of Pollutant -- 7.3.2.2 Pressure Drop Across Cavitation Device -- 7.3.2.3 Downstream Pressure -- 7.3.2.4 Operating pH -- 7.3.2.5 Operating Temperature -- 7.3.2.6 Influence of Dissolved Gases/Sparged Gases -- 7.4 Enhancing the per‐pass Performance: Augmentation by Hybrid Processes -- 7.4.1 Coupling of HC with AOPs Using Alternative Energy Sources -- 7.4.1.1 UV‐assisted HC -- 7.4.1.2 Plasma‐based HC -- 7.4.2 Coupling of HC with Chemical‐based AOPs -- 7.4.2.1 Hydrogen Peroxide (H2O2) Treatment -- 7.4.2.2 Ozone (O3) Treatment -- 7.4.2.3 Peroxonation (Hydrogen Peroxide-H2O2 + Ozone-O3) -- 7.4.3 Augmenting Hydrodynamic Cavitation by Catalyst‐based AOPs -- 7.4.3.1 Fenton's Process -- 7.4.3.2 Photocatalysis -- 7.5 Summary and Outlook -- References -- Chapter 8 Pre‐treatment of Biomass for Enhancing Biofuel Yields -- 8.1 Introduction -- 8.2 Hydrodynamic Cavitation for Enhancing Bioethanol Yield -- 8.3 Hydrodynamic Cavitation for Enhancing Biogas Production -- 8.3.1 Wastewater and Sludge -- 8.3.2 Lignocellulosic Biomass (LCB) -- 8.4 Net Energy Gains -- 8.5 Summary and Path Forward -- References -- Chapter 9 Other Applications of Hydrodynamic Cavitation -- 9.1 Introduction -- 9.2 Gas-Liquid Applications -- 9.3 Liquid-Liquid Applications -- 9.3.1 Oxidative Desulfurization -- 9.3.2 Emulsification -- 9.3.3 Microalgal Oil Extraction -- 9.3.4 Transesterification of Oils to Produce Biodiesel -- 9.3.5 Food (Juice and Milk) Sterilization -- 9.4 Solid-Liquid Applications -- 9.4.1 Beer Brewing -- 9.4.2 Bioactive Compound Extraction -- 9.4.3 Particle Size Reduction -- 9.5 Summary, Outlook, and Conclusions -- References -- Part V Status and Path Forward -- Chapter 10 Summary and Outlook -- 10.1 Devices, Experimental Characterization, and Modeling of Hydrodynamic Cavitation.
10.2 Applications of Hydrodynamic Cavitation -- References -- Index -- EULA.
Record Nr. UNINA-9910831023103321
Ranade Vivek V.  
Weinheim, Germany : , : Wiley-VCH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hydrodynamic Cavitation : Devices, Design and Applications
Hydrodynamic Cavitation : Devices, Design and Applications
Autore Ranade Vivek V
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (355 pages)
Disciplina 620.1064
Altri autori (Persone) BhandariVinay M
NagarajanSanjay
SarvothamanVaraha P
SimpsonAlister T
Soggetto genere / forma Electronic books.
ISBN 3-527-34644-9
3-527-82287-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Introduction -- Chapter 1 Hydrodynamic Cavitation -- 1.1 Hydrodynamic Cavitation -- 1.2 Hydrodynamic Cavitation Devices -- 1.3 Applications of Hydrodynamic Cavitation -- 1.4 Organization of the Book -- References -- Part II Hydrodynamic Cavitation Devices -- Chapter 2 Hydrodynamic Cavitation Devices Based on Axial/Linear Flow -- 2.1 Introduction -- 2.2 Orifice‐Based Devices -- 2.3 Venturi‐Based Devices -- 2.4 Enhancing Performance of Orifice/Venturi‐Based Hydrodynamic Cavitation Devices -- 2.5 Summary and Outlook -- References -- Chapter 3 Hydrodynamic Cavitation Devices Based on Rotational/Swirling Flows -- 3.1 Rotor‐Stator Hydrodynamic Cavitation Devices -- 3.2 Vortex‐Based Cavitation Devices -- 3.2.1 Vortex Cavitation -- 3.2.2 Vortex Models -- 3.2.3 Vortex Cavitation Devices -- 3.3 Devices Based on Combinations of Linear and Swirling Flows -- 3.4 Summary and Outlook -- References -- Part III Characterizing and Modeling of Cavitation Devices -- Chapter 4 Experimental Characterization of Hydrodynamic Cavitation Devices -- 4.1 Experimental Set‐up for Characterization of Hydrodynamic Cavitation Devices -- 4.1.1 Holding Tank -- 4.1.2 Pump -- 4.1.3 Hydrodynamic Cavitation Device -- 4.1.4 Piping Arrangements/Fittings -- 4.1.5 In‐line Sensors -- 4.2 Identification of Inception of Hydrodynamic Cavitation -- 4.3 Characterizing Overall Process Performance -- 4.4 Conclusions -- References -- Chapter 5 Modeling of Hydrodynamic Cavitation‐Based Processes -- 5.1 Introduction -- 5.2 Empirical Models -- 5.2.1 Pseudo‐reaction Kinetics Model -- 5.2.2 Per‐pass Performance Model -- 5.2.3 Data‐Driven Models -- 5.3 Physics‐Based Models -- 5.3.1 Cavity Dynamics Models -- 5.3.1.1 Model Equations Governing Single‐Bubble Dynamics -- 5.3.1.2 Estimation of Generation of Hydroxyl Radicals.
5.3.1.3 Estimation of Hammer Pressure/Jet Velocity Due to Collapse -- 5.3.1.4 Illustrative Results from Cavity Dynamics Models -- 5.3.2 Multi‐scale/Multi‐layer Models for Simulating Performance of Cavitation Processes -- 5.4 Modeling of Heterogeneous Systems Treated with HC -- 5.5 Summary and Outlook -- References -- Part IV Applications of Hydrodynamic Cavitation -- Chapter 6 Disinfection of Water -- 6.1 Introduction -- 6.2 Conventional Methods of Disinfection -- 6.2.1 Major Drawbacks in Continuing the Use of Conventional Methods -- 6.2.2 Emerging Newer Methods of Disinfection -- 6.3 Disinfection of Water by Cavitation -- 6.3.1 Cavitation Process Principle -- 6.3.2 Present Status -- 6.3.3 Hydrodynamic Cavitation and Cavitation Devices/Reactors -- 6.3.4 Kinetics of Disinfection in Hydrodynamic Cavitation -- 6.4 Hybrid Methods of Disinfection Involving Cavitation -- 6.4.1 Process Integration-Conventional -- 6.4.2 Cavitation with Hydrogen Peroxide Addition -- 6.4.3 Cavitation with Ozone Addition -- 6.4.4 Cavitation with Aeration or Oxygen -- 6.5 Hybrid Hydrodynamic Cavitation Technology Using Natural Oils -- 6.5.1 Mechanism of Disinfection in Hydrodynamic Cavitation‐ Conventional vs. Hybrid Processes -- 6.5.2 Effect of Temperature -- 6.6 Process Economics -- 6.6.1 Cost Comparison of Different Processes -- 6.6.2 Typical Cost Calculation for Vortex Diode as Reactor in Hybrid Process Using Natural Oils -- 6.7 New Developments and Future Potential -- 6.7.1 Applications in Drinking Water Treatment -- 6.7.2 Applications in Sewage Water Treatment -- 6.7.3 Applications in Ballast Water Treatment -- 6.8 Summary -- References -- Chapter 7 Wastewater Treatment -- 7.1 Introduction -- 7.2 Hydrodynamic Cavitation for Wastewater Treatment -- 7.3 Performance of Hydrodynamic Cavitation‐based Wastewater Treatment -- 7.3.1 Influence of Device Design.
7.3.2 Influence of Operating Parameters -- 7.3.2.1 Inlet Concentration of Pollutant -- 7.3.2.2 Pressure Drop Across Cavitation Device -- 7.3.2.3 Downstream Pressure -- 7.3.2.4 Operating pH -- 7.3.2.5 Operating Temperature -- 7.3.2.6 Influence of Dissolved Gases/Sparged Gases -- 7.4 Enhancing the per‐pass Performance: Augmentation by Hybrid Processes -- 7.4.1 Coupling of HC with AOPs Using Alternative Energy Sources -- 7.4.1.1 UV‐assisted HC -- 7.4.1.2 Plasma‐based HC -- 7.4.2 Coupling of HC with Chemical‐based AOPs -- 7.4.2.1 Hydrogen Peroxide (H2O2) Treatment -- 7.4.2.2 Ozone (O3) Treatment -- 7.4.2.3 Peroxonation (Hydrogen Peroxide-H2O2 + Ozone-O3) -- 7.4.3 Augmenting Hydrodynamic Cavitation by Catalyst‐based AOPs -- 7.4.3.1 Fenton's Process -- 7.4.3.2 Photocatalysis -- 7.5 Summary and Outlook -- References -- Chapter 8 Pre‐treatment of Biomass for Enhancing Biofuel Yields -- 8.1 Introduction -- 8.2 Hydrodynamic Cavitation for Enhancing Bioethanol Yield -- 8.3 Hydrodynamic Cavitation for Enhancing Biogas Production -- 8.3.1 Wastewater and Sludge -- 8.3.2 Lignocellulosic Biomass (LCB) -- 8.4 Net Energy Gains -- 8.5 Summary and Path Forward -- References -- Chapter 9 Other Applications of Hydrodynamic Cavitation -- 9.1 Introduction -- 9.2 Gas-Liquid Applications -- 9.3 Liquid-Liquid Applications -- 9.3.1 Oxidative Desulfurization -- 9.3.2 Emulsification -- 9.3.3 Microalgal Oil Extraction -- 9.3.4 Transesterification of Oils to Produce Biodiesel -- 9.3.5 Food (Juice and Milk) Sterilization -- 9.4 Solid-Liquid Applications -- 9.4.1 Beer Brewing -- 9.4.2 Bioactive Compound Extraction -- 9.4.3 Particle Size Reduction -- 9.5 Summary, Outlook, and Conclusions -- References -- Part V Status and Path Forward -- Chapter 10 Summary and Outlook -- 10.1 Devices, Experimental Characterization, and Modeling of Hydrodynamic Cavitation.
10.2 Applications of Hydrodynamic Cavitation -- References -- Index -- EULA.
Record Nr. UNINA-9910623989203321
Ranade Vivek V  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Iga : non-conforming coupling and shape optimization of complex multipatch structures / / Robin Bouclier and Thibaut Hirschler
Iga : non-conforming coupling and shape optimization of complex multipatch structures / / Robin Bouclier and Thibaut Hirschler
Autore Bouclier Robin
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (254 pages)
Disciplina 620.1064
Soggetto topico Multiphase flow
Adaptive signal processing
ISBN 1-119-98855-1
1-119-98853-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Introduction to IGA: Key Ingredients for the Analysis and Optimization of Complex Structures -- 1.1. Brief introduction -- 1.2. Geometric modeling and simulation with splines -- 1.2.1. Parametric representation of geometries -- 1.2.2. B-spline and NURBS technologies -- 1.2.3. Design features and shape parameterization -- 1.2.4. Spline-based finite element analysis: isogeometric principle -- 1.3. Improved CAD-CAE integration for robust optimization -- 1.3.1. Returning to the original motivations behind IGA -- 1.3.2. An ideal framework for parametric shape optimization -- 1.4. The analysis-suitable model issue -- 1.4.1. The trimming concept -- 1.4.2. Non-conforming multipatch parameterization -- 1.4.3. Imposing shape variation -- 1.5. Computation of non-conforming interfaces: a brief overview of usual weak coupling methods -- 1.5.1. Governing equations -- 1.5.2. Penalty coupling -- 1.5.3. Mortar coupling -- 1.5.4. Nitsche coupling -- Chapter 2. Non-invasive Coupling for Flexible Global/Local IGA -- 2.1. Brief introduction -- 2.2. The standard non-invasive strategy -- 2.2.1. Origin -- 2.2.2. Non-invasive resolution of the coupling problem -- 2.3. Interest in the field of IGA -- 2.3.1. Global/local modeling in IGA -- 2.3.2. Challenges -- 2.4. A robust algorithm for non-conforming global/local IGA -- 2.4.1. Reference formulation: non-symmetric Nitsche coupling -- 2.4.2. A Nitsche-based non-invasive algorithm -- 2.4.3. Validation -- 2.5. Summary and discussion -- Chapter 3. Domain Decomposition Solvers for Efficient Multipatch IGA -- 3.1. Introduction -- 3.2. Benefiting from the additional Lagrange multiplier field for multipatch analysis -- 3.3. Case of multipatch Kirchhoff-Love shell analysis -- 3.3.1. Kirchhoff-Love shell formulation: basics.
3.3.2. Formulation of the coupled problem -- 3.3.3. Preliminary results: monolithic resolution -- 3.4. On the construction of dual domain decomposition solvers -- 3.4.1. Formulation of the interface problem -- 3.4.2. Solving the interface problem -- 3.4.3. Null space and pseudo-inverse -- 3.4.4. Preconditioning -- 3.5. Numerical investigation of the developed algorithms -- 3.5.1. Standard solid elasticity -- 3.5.2. Heterogeneous plate bending -- 3.5.3. Scordelis-Lo roof -- 3.5.4. Stiffened panel -- 3.6. Summary and discussion -- Chapter 4. Isogeometric Shape Optimization of Multipatch and Complex Structures -- 4.1. Introduction -- 4.2. Isogeometric shape optimization framework -- 4.2.1. Optimization -- 4.2.2. Multilevel design -- 4.2.3. Design variables -- 4.2.4. Formulation and resolution -- 4.3. Unify the DD approach and multipatch optimization: towards ultimate efficiency -- 4.3.1. DD computation of the response functions -- 4.3.2. DD computation of the sensitivities -- 4.3.3. Non-design parts -- 4.3.4. Fast re-analysis -- 4.3.5. Optimization algorithm -- 4.4. Innovative design of multipatch structures: focus on aeronautical stiffened panels -- 4.4.1. Geometric modeling: embedded entities -- 4.4.2. Analysis: an embedded Kirchhoff-Love shell element -- 4.4.3. Two preliminary examples to illustrate the designcapabilities -- 4.5. Application to solid structures and first interests -- 4.5.1. Simple extension of the method -- 4.5.2. A test case in 2D -- 4.6. Advanced numerical optimization examples -- 4.6.1. Global shell optimization: stiffened roof -- 4.6.2. Local shell optimization: curved wall -- 4.6.3. Designing an aircraft wing-box -- 4.7. Towards the optimal design of structural details within isogeometric patches -- 4.7.1. A simple but instructive test case.
4.7.2. Unify the non-invasive global/local approach and the optimization of local details -- 4.7.3. Preliminary results and perspectives -- 4.8. Summary and discussion -- References -- Index -- Other titles from iSTE in Numerical Methods in Engineering -- EULA.
Record Nr. UNINA-9910580255603321
Bouclier Robin  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Iga : non-conforming coupling and shape optimization of complex multipatch structures / / Robin Bouclier and Thibaut Hirschler
Iga : non-conforming coupling and shape optimization of complex multipatch structures / / Robin Bouclier and Thibaut Hirschler
Autore Bouclier Robin
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (254 pages)
Disciplina 620.1064
Soggetto topico Multiphase flow
Adaptive signal processing
ISBN 1-119-98854-3
1-119-98855-1
1-119-98853-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Introduction to IGA: Key Ingredients for the Analysis and Optimization of Complex Structures -- 1.1. Brief introduction -- 1.2. Geometric modeling and simulation with splines -- 1.2.1. Parametric representation of geometries -- 1.2.2. B-spline and NURBS technologies -- 1.2.3. Design features and shape parameterization -- 1.2.4. Spline-based finite element analysis: isogeometric principle -- 1.3. Improved CAD-CAE integration for robust optimization -- 1.3.1. Returning to the original motivations behind IGA -- 1.3.2. An ideal framework for parametric shape optimization -- 1.4. The analysis-suitable model issue -- 1.4.1. The trimming concept -- 1.4.2. Non-conforming multipatch parameterization -- 1.4.3. Imposing shape variation -- 1.5. Computation of non-conforming interfaces: a brief overview of usual weak coupling methods -- 1.5.1. Governing equations -- 1.5.2. Penalty coupling -- 1.5.3. Mortar coupling -- 1.5.4. Nitsche coupling -- Chapter 2. Non-invasive Coupling for Flexible Global/Local IGA -- 2.1. Brief introduction -- 2.2. The standard non-invasive strategy -- 2.2.1. Origin -- 2.2.2. Non-invasive resolution of the coupling problem -- 2.3. Interest in the field of IGA -- 2.3.1. Global/local modeling in IGA -- 2.3.2. Challenges -- 2.4. A robust algorithm for non-conforming global/local IGA -- 2.4.1. Reference formulation: non-symmetric Nitsche coupling -- 2.4.2. A Nitsche-based non-invasive algorithm -- 2.4.3. Validation -- 2.5. Summary and discussion -- Chapter 3. Domain Decomposition Solvers for Efficient Multipatch IGA -- 3.1. Introduction -- 3.2. Benefiting from the additional Lagrange multiplier field for multipatch analysis -- 3.3. Case of multipatch Kirchhoff-Love shell analysis -- 3.3.1. Kirchhoff-Love shell formulation: basics.
3.3.2. Formulation of the coupled problem -- 3.3.3. Preliminary results: monolithic resolution -- 3.4. On the construction of dual domain decomposition solvers -- 3.4.1. Formulation of the interface problem -- 3.4.2. Solving the interface problem -- 3.4.3. Null space and pseudo-inverse -- 3.4.4. Preconditioning -- 3.5. Numerical investigation of the developed algorithms -- 3.5.1. Standard solid elasticity -- 3.5.2. Heterogeneous plate bending -- 3.5.3. Scordelis-Lo roof -- 3.5.4. Stiffened panel -- 3.6. Summary and discussion -- Chapter 4. Isogeometric Shape Optimization of Multipatch and Complex Structures -- 4.1. Introduction -- 4.2. Isogeometric shape optimization framework -- 4.2.1. Optimization -- 4.2.2. Multilevel design -- 4.2.3. Design variables -- 4.2.4. Formulation and resolution -- 4.3. Unify the DD approach and multipatch optimization: towards ultimate efficiency -- 4.3.1. DD computation of the response functions -- 4.3.2. DD computation of the sensitivities -- 4.3.3. Non-design parts -- 4.3.4. Fast re-analysis -- 4.3.5. Optimization algorithm -- 4.4. Innovative design of multipatch structures: focus on aeronautical stiffened panels -- 4.4.1. Geometric modeling: embedded entities -- 4.4.2. Analysis: an embedded Kirchhoff-Love shell element -- 4.4.3. Two preliminary examples to illustrate the designcapabilities -- 4.5. Application to solid structures and first interests -- 4.5.1. Simple extension of the method -- 4.5.2. A test case in 2D -- 4.6. Advanced numerical optimization examples -- 4.6.1. Global shell optimization: stiffened roof -- 4.6.2. Local shell optimization: curved wall -- 4.6.3. Designing an aircraft wing-box -- 4.7. Towards the optimal design of structural details within isogeometric patches -- 4.7.1. A simple but instructive test case.
4.7.2. Unify the non-invasive global/local approach and the optimization of local details -- 4.7.3. Preliminary results and perspectives -- 4.8. Summary and discussion -- References -- Index -- Other titles from iSTE in Numerical Methods in Engineering -- EULA.
Record Nr. UNINA-9910830848903321
Bouclier Robin  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Independent Metering Electro-Hydraulic Control System [[electronic resource] /] / by Ruqi Ding, Min Cheng
Independent Metering Electro-Hydraulic Control System [[electronic resource] /] / by Ruqi Ding, Min Cheng
Autore Ding Ruqi
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (159 pages)
Disciplina 620.1064
Altri autori (Persone) ChengMin
Soggetto topico Fluid mechanics
Hydraulic engineering
Control engineering
Engineering Fluid Dynamics
Hydraulic Engineering
Control and Systems Theory
ISBN 981-9963-72-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Hardware layout of independent metering control -- Chapter 3. Multi-mode load control -- Chapter 4. Multi-variable valve control -- Chapter 5. Pump-valve coordination control -- Chapter 6. Safety evaluation and fault-tolerant control -- Chapter 7. Independent metering control valve.
Record Nr. UNINA-9910838283903321
Ding Ruqi  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Les instabilites hydrodynamiques en convection libre, forcée et mixte / edité par Jean-Claude Legros et Jean Karl Plattern
Les instabilites hydrodynamiques en convection libre, forcée et mixte / edité par Jean-Claude Legros et Jean Karl Plattern
Autore Legros, Jean-Claude
Pubbl/distr/stampa Berlin ; Heidelberg : Springer, 1978
Descrizione fisica 202 p. ; 23 cm.
Disciplina 620.1064
Altri autori (Persone) Plattern, Jean Karl
Collana Lecture notes in physics ; 72
Soggetto topico Idrodinamica
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Record Nr. UNISALENTO-991003111449707536
Legros, Jean-Claude  
Berlin ; Heidelberg : Springer, 1978
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Intermittency equation for transitional flow / / Ekachai Juntasaro
Intermittency equation for transitional flow / / Ekachai Juntasaro
Autore Juntasaro Ekachai
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (91 pages) : illustrations (chiefly color)
Disciplina 620.1064
Collana SpringerBriefs in Applied Sciences and Technology
Soggetto topico Transition flow
ISBN 9783031039423
9783031039416
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction --Chapter 2. Derivation of Intermittency Equation --Chapter 3. Modeling Concept and Formulation --Chapter 4. Model Constant Calibration --Chapter 5. Model Validation --Chapter 6. Application Test Case.
Record Nr. UNINA-9910568271903321
Juntasaro Ekachai  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intermittency equation for transitional flow / / Ekachai Juntasaro
Intermittency equation for transitional flow / / Ekachai Juntasaro
Autore Juntasaro Ekachai
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (91 pages) : illustrations (chiefly color)
Disciplina 620.1064
Collana SpringerBriefs in Applied Sciences and Technology
Soggetto topico Transition flow
ISBN 9783031039423
9783031039416
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction --Chapter 2. Derivation of Intermittency Equation --Chapter 3. Modeling Concept and Formulation --Chapter 4. Model Constant Calibration --Chapter 5. Model Validation --Chapter 6. Application Test Case.
Record Nr. UNISA-996475871103316
Juntasaro Ekachai  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...