top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Aufgaben aus der technischen Mechanik / Ferdinand Wittenbauer
Aufgaben aus der technischen Mechanik / Ferdinand Wittenbauer
Autore Wittenbauer, Ferdinand
Pubbl/distr/stampa Berlin : J. Springer, 1907-1911
Descrizione fisica 3 v. ; 21 cm
Disciplina 620.106
Soggetto non controllato Gas - Dinamica
Fluidi - Dinamica
Meccanica applicata
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto 1.: Allgemeiner Teil 2.: Festikkeitslehre 3.: Flussigkeiten und Gase
Record Nr. UNINA-990000217200403321
Wittenbauer, Ferdinand  
Berlin : J. Springer, 1907-1911
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov
Autore Khapalov Alexander Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (177 pages)
Disciplina 620.106
Collana Advances in Mathematical Fluid Mechanics
Soggetto topico Fluid mechanics - Mathematical models
Mecànica de fluids
Models matemàtics
Biomimètica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-85285-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Modeling: Mimicking the Nature -- 1.2 Mathematical Approach to Swimming Modeling -- 1.3 Swimming Controllability -- 1.4 Related Selected Bibliography -- Part I Modeling of Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 2 Bio-Mimetic Fish-Like Swimmers in a 2D Incompressible Fluid: Empiric Modeling -- 2.1 Swimmer's Body as a Collection of Separate Sets -- 2.2 Bio-Mimetic Fish- and Snake-Like Swimmers -- 2.3 Swimmer's Internal Forces -- 2.3.1 Rotational Internal Forces -- 2.3.2 Elastic Internal Forces -- 2.4 Swimmer's Geometric Controls -- 2.5 Internal Forces and Conservation of Momenta -- 2.5.1 About Swimmers with Body Parts Different in Mass -- 2.6 Fluid Equations: Non-stationary Stokes and Navier-Stokes Equations in 2D -- 2.7 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 2.8 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Navier-Stokes Equations -- 3 Bio-Mimetic Aquatic Frog- and Clam-Like Swimmers in a 2D Fluid: Empiric Modeling -- 3.1 A Bio-Mimetic Aquatic Frog-Like Swimmer in a 2D Incompressible Fluid -- 3.2 A Bio-Mimetic Clam-Like Swimmer in a 2D Incompressible Fluid -- 4 Bio-Mimetic Swimmers in a 3D Incompressible Fluid: Empiric Modeling -- 4.1 Rotational Forces in 3D -- 4.2 A Model of a 3D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 4.3 A Bio-Mimetic Frog-Like Swimmer in a 3D Incompressible Fluid -- 4.4 A Bio-Mimetic Clam-Like Swimmer in a 3D Incompressible Fluid -- Part II Well-Posedness of Models for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 5 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers: The Case of Stokes Equations -- 5.1 Notations -- 5.2 Swimmer's Body -- 5.3 Initial- and Boundary-Value Problem Setup -- 5.3.1 Estimates for Internal Forces.
5.4 Main Result: Existence and Uniqueness of Solutions -- 5.5 Proof of Theorem 5.1 -- 5.5.1 Preliminary Results: Decoupled Equation for zi(t)'s -- 5.5.2 Three Decoupled Solution Mappings for (5.3.1) -- 5.5.2.1 Solution Mapping A for zi(t), i = 1, …, n -- 5.5.2.2 Solution Mapping for Decoupled Non-stationary Stokes Equations -- 5.5.2.3 The Force Term -- 5.5.3 Proof of Theorem 5.1 -- 5.5.3.1 Proof of Existence: A Fixed Point Argument -- 5.5.3.2 Proof of Uniqueness -- 6 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers… -- 6.1 Problem Setup and Main Results -- 6.1.1 Problem Setting -- 6.1.2 Main Results -- 6.2 Proofs of the Main Results -- 6.2.1 Solution Mapping for Decoupled Navier-Stokes Equations -- 6.2.2 Preliminary Results -- 6.2.3 Continuity of BNS -- 6.2.4 Proof of Theorems 6.1 and 6.2 -- Part III Micromotions and Local Controllability for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 7 Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations -- 7.1 Definitions of Controllability for Bio-Mimetic Swimmers -- 7.2 Main Results -- 7.2.1 Main Results -- 7.2.2 Main Results in Terms of Projections of Swimmers' Forces on the Fluid Velocity Space -- 7.3 Preliminary Results -- 7.3.1 Implicit Solution Formula -- 7.3.2 Differentiation with Respect to vj's and wk's -- 7.4 Volterra Equations for d zi (τ) d vj's -- 7.5 Auxiliary Estimates -- 7.6 Proof of Theorem 7.2 -- 7.7 Proof of Theorem 7.1 -- 7.7.1 Step 1 -- 7.7.2 Step 2 -- 8 Local Controllability of 2D and 3D Swimmers: The Case of Navier-Stokes Equations -- 8.1 Problem Setting -- 8.2 Main Results -- 8.2.1 Main Results: Micromotions in 2D and 3D -- 8.2.2 Main Results: Local Controllability in 2D -- 8.2.3 Main Results: Local Controllability in 3D -- 8.2.4 Methodology of Controllability Proofs -- 8.3 Derivatives ∂u∂vj |vjs=0 : 2D Case.
8.3.1 Auxiliary Notations -- 8.3.2 Equation for wh and its Well-Posedness -- 8.3.3 Auxiliary Regularity Results for Parabolic Systems from Lad2 -- 8.3.4 Auxiliary System of Linear Equations Systems -- 8.3.5 Derivatives ∂u∂vj |vjs=0 -- 8.4 Derivatives ∂zi∂vj | vjs = 0 as Solutions to Volterra Equations: 2D Case -- 8.4.1 Expression for zi(t -- h) - zi(t -- 0)h -- 8.4.2 Evaluation of the Integrand in the 1st Term on the Right in (8.4.2) -- 8.4.3 Volterra Equations -- 8.5 Proofs of Theorems 8.1 and 8.2 -- 8.5.1 Further Modification of (8.4.12) -- 8.5.2 Proofs of Theorem 8.1 and of Theorem 8.2 in the Case of Local Controllability Near Equilibrium (i.e., When u0 = 0) -- 8.5.2.1 Step 1 -- 8.5.2.2 Step 2 -- 8.5.2.3 Step 3: Proof of Theorem 8.1 when u0 = 0 -- 8.5.2.4 Step 4 -- 8.5.3 Proof of Theorems 8.2 and 8.1 -- 8.5.3.1 Step 1 -- 8.5.3.2 Step 2 -- 8.6 Proofs of Theorems 8.1 and 8.4 -- 8.6.1 Adjustments in Sects.8.3 and 8.4 -- 8.6.2 Adjustments in Sect.8.5 -- 8.6.2.1 Section 8.5.2.4, Step 4 in the 3D Case -- 8.6.2.2 Section 8.5.3 in the 3D Case -- Part IV Transformations of Swimmers' Internal Forces Acting in 2D and 3D Incompressible Fluids -- 9 Transformation of Swimmers' Forces Acting in a 2D Incompressible Fluid -- 9.1 Main Results -- 9.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 2D Fluid -- 9.1.2 Transformations of Forces Acting Upon Small Rectangles in an Incompressible 2D Fluid -- 9.1.3 Transformations of Forces Acting Upon Small Discs in an Incompressible 2D Fluid -- 9.1.4 Interpretation of Theorems 9.3 and 9.4: What Shape of S Is Better for Locomotion? -- 9.2 Proof of Theorem 9.1 -- 9.2.1 Step 1 -- 9.2.2 Step 2: Green's Formula -- 9.2.3 Step 3: Evaluation of the Integral of the Gradient of the 1-st Terms on the Right in (9.2.7) Over A.
9.2.4 Step 4: Evaluation of the Integral of the Gradient of the 2-nd Term in (9.2.7) Over A -- 9.3 Proof of Theorem 9.2 -- 9.3.1 Step 1 -- 9.3.2 Step 2 -- 9.3.3 Step 3 -- 9.3.4 Step 4 -- 9.4 Proofs of Theorems 9.3 and 9.4 -- 9.4.1 Proof of Theorem 9.3 -- 9.4.2 Step 1 -- 9.4.3 Step 2 -- 9.4.4 Step 3 -- 9.4.5 Step 4 -- 9.4.6 Step 5 -- 9.4.7 Step 6 -- 9.4.8 Step 7 -- 9.4.9 Step 8 -- 9.4.10 Step 9 -- 9.4.11 Proof of Theorem 9.4: Forces Acting Upon Small Discs in a Fluid -- 10 Transformation of Swimmers' Forces Acting in a 3D Incompressible Fluid -- 10.1 Main Results -- 10.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 3D Fluid -- 10.1.2 A General Formula for 1meas{S}S(PH bξ)(x)dx -- 10.1.3 The Case of Parallelepipeds -- 10.1.4 Spheres in 3D -- 10.1.5 Instrumental Observations in Relation to Controlled Steering -- 10.2 Proofs of Theorems 10.1 and 10.2 -- 10.2.1 Proof of Theorem 10.1 -- 10.2.1.1 Step 1 -- 10.2.1.2 Step 2: Green's Formula -- 10.2.1.3 Step 3: Evaluation of the First Term on the Right in (10.2.7)over A -- 10.2.1.4 Step 4 -- 10.2.1.5 Step 5 -- 10.2.2 Proof of Theorem 10.2 -- 10.2.2.1 Step 1 -- 10.2.2.2 Step 2 -- 10.2.2.3 Step 3 -- 10.2.2.4 Step 4: Calculation of the Terms in the Last Line in (10.2.26) -- 10.3 Proofs of Main Results -- 10.3.1 Proofs of Theorems 10.3-10.5 -- 10.3.1.1 Auxiliary Formulas -- 10.3.1.2 Proof of Theorem 10.3 -- 10.3.1.3 Proof of Theorem 10.4 -- 10.3.1.4 Proof of Theorem 10.5 -- Part V Global Steering for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 11 Swimming Capabilities of Swimmers in 2D and 3D Incompressible Fluids: Force Controllability -- 11.1 Discussion of Concepts for Global Swimming Locomotion -- 11.2 An Instrumental Observation -- 11.3 Illustrating Examples in 2D: A Snake- or Fish-Like and Breaststroke Locomotions.
11.3.1 Fish- or Snake-Like Locomotion to the Left -- 11.3.2 Turning Motion of One Rectangle, While the Other Two Retain Their Position -- 11.3.3 Breaststroke Locomotion for a Swimmer Consisting of 3 Rectangles: A Bio-Mimetic Clam (Scallop) -- 11.3.4 Breaststroke Locomotion for a Swimmer Consisting of 5 Rectangles: A Bio-Mimetic Aquatic Frog -- 11.4 Breaststroke Pattern for a Swimmer Consisting of 3 Discs -- 11.5 Illustrating Examples in 3D -- 11.6 Breaststroke Locomotion of a Swimmer Consisting of 3 Balls in 3D -- References.
Record Nr. UNISA-996466398103316
Khapalov Alexander Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov
Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov
Autore Khapalov Alexander Y.
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (177 pages)
Disciplina 620.106
Collana Advances in Mathematical Fluid Mechanics
Soggetto topico Fluid mechanics - Mathematical models
Mecànica de fluids
Models matemàtics
Biomimètica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-85285-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Modeling: Mimicking the Nature -- 1.2 Mathematical Approach to Swimming Modeling -- 1.3 Swimming Controllability -- 1.4 Related Selected Bibliography -- Part I Modeling of Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 2 Bio-Mimetic Fish-Like Swimmers in a 2D Incompressible Fluid: Empiric Modeling -- 2.1 Swimmer's Body as a Collection of Separate Sets -- 2.2 Bio-Mimetic Fish- and Snake-Like Swimmers -- 2.3 Swimmer's Internal Forces -- 2.3.1 Rotational Internal Forces -- 2.3.2 Elastic Internal Forces -- 2.4 Swimmer's Geometric Controls -- 2.5 Internal Forces and Conservation of Momenta -- 2.5.1 About Swimmers with Body Parts Different in Mass -- 2.6 Fluid Equations: Non-stationary Stokes and Navier-Stokes Equations in 2D -- 2.7 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 2.8 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Navier-Stokes Equations -- 3 Bio-Mimetic Aquatic Frog- and Clam-Like Swimmers in a 2D Fluid: Empiric Modeling -- 3.1 A Bio-Mimetic Aquatic Frog-Like Swimmer in a 2D Incompressible Fluid -- 3.2 A Bio-Mimetic Clam-Like Swimmer in a 2D Incompressible Fluid -- 4 Bio-Mimetic Swimmers in a 3D Incompressible Fluid: Empiric Modeling -- 4.1 Rotational Forces in 3D -- 4.2 A Model of a 3D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 4.3 A Bio-Mimetic Frog-Like Swimmer in a 3D Incompressible Fluid -- 4.4 A Bio-Mimetic Clam-Like Swimmer in a 3D Incompressible Fluid -- Part II Well-Posedness of Models for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 5 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers: The Case of Stokes Equations -- 5.1 Notations -- 5.2 Swimmer's Body -- 5.3 Initial- and Boundary-Value Problem Setup -- 5.3.1 Estimates for Internal Forces.
5.4 Main Result: Existence and Uniqueness of Solutions -- 5.5 Proof of Theorem 5.1 -- 5.5.1 Preliminary Results: Decoupled Equation for zi(t)'s -- 5.5.2 Three Decoupled Solution Mappings for (5.3.1) -- 5.5.2.1 Solution Mapping A for zi(t), i = 1, …, n -- 5.5.2.2 Solution Mapping for Decoupled Non-stationary Stokes Equations -- 5.5.2.3 The Force Term -- 5.5.3 Proof of Theorem 5.1 -- 5.5.3.1 Proof of Existence: A Fixed Point Argument -- 5.5.3.2 Proof of Uniqueness -- 6 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers… -- 6.1 Problem Setup and Main Results -- 6.1.1 Problem Setting -- 6.1.2 Main Results -- 6.2 Proofs of the Main Results -- 6.2.1 Solution Mapping for Decoupled Navier-Stokes Equations -- 6.2.2 Preliminary Results -- 6.2.3 Continuity of BNS -- 6.2.4 Proof of Theorems 6.1 and 6.2 -- Part III Micromotions and Local Controllability for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 7 Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations -- 7.1 Definitions of Controllability for Bio-Mimetic Swimmers -- 7.2 Main Results -- 7.2.1 Main Results -- 7.2.2 Main Results in Terms of Projections of Swimmers' Forces on the Fluid Velocity Space -- 7.3 Preliminary Results -- 7.3.1 Implicit Solution Formula -- 7.3.2 Differentiation with Respect to vj's and wk's -- 7.4 Volterra Equations for d zi (τ) d vj's -- 7.5 Auxiliary Estimates -- 7.6 Proof of Theorem 7.2 -- 7.7 Proof of Theorem 7.1 -- 7.7.1 Step 1 -- 7.7.2 Step 2 -- 8 Local Controllability of 2D and 3D Swimmers: The Case of Navier-Stokes Equations -- 8.1 Problem Setting -- 8.2 Main Results -- 8.2.1 Main Results: Micromotions in 2D and 3D -- 8.2.2 Main Results: Local Controllability in 2D -- 8.2.3 Main Results: Local Controllability in 3D -- 8.2.4 Methodology of Controllability Proofs -- 8.3 Derivatives ∂u∂vj |vjs=0 : 2D Case.
8.3.1 Auxiliary Notations -- 8.3.2 Equation for wh and its Well-Posedness -- 8.3.3 Auxiliary Regularity Results for Parabolic Systems from Lad2 -- 8.3.4 Auxiliary System of Linear Equations Systems -- 8.3.5 Derivatives ∂u∂vj |vjs=0 -- 8.4 Derivatives ∂zi∂vj | vjs = 0 as Solutions to Volterra Equations: 2D Case -- 8.4.1 Expression for zi(t -- h) - zi(t -- 0)h -- 8.4.2 Evaluation of the Integrand in the 1st Term on the Right in (8.4.2) -- 8.4.3 Volterra Equations -- 8.5 Proofs of Theorems 8.1 and 8.2 -- 8.5.1 Further Modification of (8.4.12) -- 8.5.2 Proofs of Theorem 8.1 and of Theorem 8.2 in the Case of Local Controllability Near Equilibrium (i.e., When u0 = 0) -- 8.5.2.1 Step 1 -- 8.5.2.2 Step 2 -- 8.5.2.3 Step 3: Proof of Theorem 8.1 when u0 = 0 -- 8.5.2.4 Step 4 -- 8.5.3 Proof of Theorems 8.2 and 8.1 -- 8.5.3.1 Step 1 -- 8.5.3.2 Step 2 -- 8.6 Proofs of Theorems 8.1 and 8.4 -- 8.6.1 Adjustments in Sects.8.3 and 8.4 -- 8.6.2 Adjustments in Sect.8.5 -- 8.6.2.1 Section 8.5.2.4, Step 4 in the 3D Case -- 8.6.2.2 Section 8.5.3 in the 3D Case -- Part IV Transformations of Swimmers' Internal Forces Acting in 2D and 3D Incompressible Fluids -- 9 Transformation of Swimmers' Forces Acting in a 2D Incompressible Fluid -- 9.1 Main Results -- 9.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 2D Fluid -- 9.1.2 Transformations of Forces Acting Upon Small Rectangles in an Incompressible 2D Fluid -- 9.1.3 Transformations of Forces Acting Upon Small Discs in an Incompressible 2D Fluid -- 9.1.4 Interpretation of Theorems 9.3 and 9.4: What Shape of S Is Better for Locomotion? -- 9.2 Proof of Theorem 9.1 -- 9.2.1 Step 1 -- 9.2.2 Step 2: Green's Formula -- 9.2.3 Step 3: Evaluation of the Integral of the Gradient of the 1-st Terms on the Right in (9.2.7) Over A.
9.2.4 Step 4: Evaluation of the Integral of the Gradient of the 2-nd Term in (9.2.7) Over A -- 9.3 Proof of Theorem 9.2 -- 9.3.1 Step 1 -- 9.3.2 Step 2 -- 9.3.3 Step 3 -- 9.3.4 Step 4 -- 9.4 Proofs of Theorems 9.3 and 9.4 -- 9.4.1 Proof of Theorem 9.3 -- 9.4.2 Step 1 -- 9.4.3 Step 2 -- 9.4.4 Step 3 -- 9.4.5 Step 4 -- 9.4.6 Step 5 -- 9.4.7 Step 6 -- 9.4.8 Step 7 -- 9.4.9 Step 8 -- 9.4.10 Step 9 -- 9.4.11 Proof of Theorem 9.4: Forces Acting Upon Small Discs in a Fluid -- 10 Transformation of Swimmers' Forces Acting in a 3D Incompressible Fluid -- 10.1 Main Results -- 10.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 3D Fluid -- 10.1.2 A General Formula for 1meas{S}S(PH bξ)(x)dx -- 10.1.3 The Case of Parallelepipeds -- 10.1.4 Spheres in 3D -- 10.1.5 Instrumental Observations in Relation to Controlled Steering -- 10.2 Proofs of Theorems 10.1 and 10.2 -- 10.2.1 Proof of Theorem 10.1 -- 10.2.1.1 Step 1 -- 10.2.1.2 Step 2: Green's Formula -- 10.2.1.3 Step 3: Evaluation of the First Term on the Right in (10.2.7)over A -- 10.2.1.4 Step 4 -- 10.2.1.5 Step 5 -- 10.2.2 Proof of Theorem 10.2 -- 10.2.2.1 Step 1 -- 10.2.2.2 Step 2 -- 10.2.2.3 Step 3 -- 10.2.2.4 Step 4: Calculation of the Terms in the Last Line in (10.2.26) -- 10.3 Proofs of Main Results -- 10.3.1 Proofs of Theorems 10.3-10.5 -- 10.3.1.1 Auxiliary Formulas -- 10.3.1.2 Proof of Theorem 10.3 -- 10.3.1.3 Proof of Theorem 10.4 -- 10.3.1.4 Proof of Theorem 10.5 -- Part V Global Steering for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 11 Swimming Capabilities of Swimmers in 2D and 3D Incompressible Fluids: Force Controllability -- 11.1 Discussion of Concepts for Global Swimming Locomotion -- 11.2 An Instrumental Observation -- 11.3 Illustrating Examples in 2D: A Snake- or Fish-Like and Breaststroke Locomotions.
11.3.1 Fish- or Snake-Like Locomotion to the Left -- 11.3.2 Turning Motion of One Rectangle, While the Other Two Retain Their Position -- 11.3.3 Breaststroke Locomotion for a Swimmer Consisting of 3 Rectangles: A Bio-Mimetic Clam (Scallop) -- 11.3.4 Breaststroke Locomotion for a Swimmer Consisting of 5 Rectangles: A Bio-Mimetic Aquatic Frog -- 11.4 Breaststroke Pattern for a Swimmer Consisting of 3 Discs -- 11.5 Illustrating Examples in 3D -- 11.6 Breaststroke Locomotion of a Swimmer Consisting of 3 Balls in 3D -- References.
Record Nr. UNINA-9910508447603321
Khapalov Alexander Y.  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cfd simulations of particle laden flows : particle transport and separation / / David Schellander
Cfd simulations of particle laden flows : particle transport and separation / / David Schellander
Autore Schellander David
Pubbl/distr/stampa Hamburg, Germany : , : Anchor Academic Publishing, , 2014
Descrizione fisica 1 online resource (153 p.)
Disciplina 620.106
Soggetto topico Fluid mechanics
Soggetto genere / forma Electronic books.
ISBN 3-95489-671-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CFD simulations of particle laden flows; Preface; Abstract; Contents; Abbreviations; Chapter 1: Introduction and motivation; 1.1 Numerical simulation of particle-laden flow; 1.2 Aim of this work; 1.3 Organization of this book; Chapter 2: Eulerian granular phase modelling; 2.1 Continuity equation; 2.2 Moment balance; 2.3 Granular temperature; 2.4 Radial distribution function; 2.5 Drag coefficient and interphase momentum exchange; 2.6 Solids Stresses; 2.7 Turbulence modelling; 2.8 Boundary Conditions; Chapter 3: Lagrangian discrete phase modelling; 3.1 Force balance and torque balance
3.2 Forces on a particle3.3 Torque; 3.4 Turbulent fluctuations; 3.5 Particle wall collisions; Chapter 4: The hybrid model EUgran+Poly; 4.1 Motivation and overview; 4.2 Coupling and exchange forces; 4.3 Coupling forces on the Eulerian granular phase; 4.4 Coupling forces on the Lagrangian tracer particles; 4.5 Simulation sequence and implementation; Chapter: Agglomeration; 5.1 Simple models; 5.2 Particle population balance equation; 5.3 Bus stop model; 5.4 Volume population balance model; Chapter 6: Validation by lab-scale experiments; 6.1 Dilute poly-dispersed flow in a duct
6.2 Mono-dispersed flow in a medium laden duct6.3 Agglomeration of poly-dispersed particulate flow in a vertical pipe; Chapter 7: Application to cyclone seperation; 7.2 Hybrid Model; 7.2 Agglomeration; Chapter 8: Conclusion and Outlook; A: Restitution coefficients are no constants; B: Computation of Lagrangian particle-wall collision; C: UDF Structure of hybrid model; D: Cyclone dimensions based on Muschelknautz theory; E: Nomenclature; List of Figures; List of Tables; Bibliography
Record Nr. UNINA-9910464059603321
Schellander David  
Hamburg, Germany : , : Anchor Academic Publishing, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cfd simulations of particle laden flows : particle transport and separation / / David Schellander
Cfd simulations of particle laden flows : particle transport and separation / / David Schellander
Autore Schellander David
Pubbl/distr/stampa Hamburg, Germany : , : Anchor Academic Publishing, , 2014
Descrizione fisica 1 online resource (153 p.)
Disciplina 620.106
Soggetto topico Fluid mechanics
ISBN 3-95489-671-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CFD simulations of particle laden flows; Preface; Abstract; Contents; Abbreviations; Chapter 1: Introduction and motivation; 1.1 Numerical simulation of particle-laden flow; 1.2 Aim of this work; 1.3 Organization of this book; Chapter 2: Eulerian granular phase modelling; 2.1 Continuity equation; 2.2 Moment balance; 2.3 Granular temperature; 2.4 Radial distribution function; 2.5 Drag coefficient and interphase momentum exchange; 2.6 Solids Stresses; 2.7 Turbulence modelling; 2.8 Boundary Conditions; Chapter 3: Lagrangian discrete phase modelling; 3.1 Force balance and torque balance
3.2 Forces on a particle3.3 Torque; 3.4 Turbulent fluctuations; 3.5 Particle wall collisions; Chapter 4: The hybrid model EUgran+Poly; 4.1 Motivation and overview; 4.2 Coupling and exchange forces; 4.3 Coupling forces on the Eulerian granular phase; 4.4 Coupling forces on the Lagrangian tracer particles; 4.5 Simulation sequence and implementation; Chapter: Agglomeration; 5.1 Simple models; 5.2 Particle population balance equation; 5.3 Bus stop model; 5.4 Volume population balance model; Chapter 6: Validation by lab-scale experiments; 6.1 Dilute poly-dispersed flow in a duct
6.2 Mono-dispersed flow in a medium laden duct6.3 Agglomeration of poly-dispersed particulate flow in a vertical pipe; Chapter 7: Application to cyclone seperation; 7.2 Hybrid Model; 7.2 Agglomeration; Chapter 8: Conclusion and Outlook; A: Restitution coefficients are no constants; B: Computation of Lagrangian particle-wall collision; C: UDF Structure of hybrid model; D: Cyclone dimensions based on Muschelknautz theory; E: Nomenclature; List of Figures; List of Tables; Bibliography
Record Nr. UNINA-9910787997203321
Schellander David  
Hamburg, Germany : , : Anchor Academic Publishing, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cfd simulations of particle laden flows : particle transport and separation / / David Schellander
Cfd simulations of particle laden flows : particle transport and separation / / David Schellander
Autore Schellander David
Pubbl/distr/stampa Hamburg, Germany : , : Anchor Academic Publishing, , 2014
Descrizione fisica 1 online resource (153 p.)
Disciplina 620.106
Soggetto topico Fluid mechanics
ISBN 3-95489-671-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CFD simulations of particle laden flows; Preface; Abstract; Contents; Abbreviations; Chapter 1: Introduction and motivation; 1.1 Numerical simulation of particle-laden flow; 1.2 Aim of this work; 1.3 Organization of this book; Chapter 2: Eulerian granular phase modelling; 2.1 Continuity equation; 2.2 Moment balance; 2.3 Granular temperature; 2.4 Radial distribution function; 2.5 Drag coefficient and interphase momentum exchange; 2.6 Solids Stresses; 2.7 Turbulence modelling; 2.8 Boundary Conditions; Chapter 3: Lagrangian discrete phase modelling; 3.1 Force balance and torque balance
3.2 Forces on a particle3.3 Torque; 3.4 Turbulent fluctuations; 3.5 Particle wall collisions; Chapter 4: The hybrid model EUgran+Poly; 4.1 Motivation and overview; 4.2 Coupling and exchange forces; 4.3 Coupling forces on the Eulerian granular phase; 4.4 Coupling forces on the Lagrangian tracer particles; 4.5 Simulation sequence and implementation; Chapter: Agglomeration; 5.1 Simple models; 5.2 Particle population balance equation; 5.3 Bus stop model; 5.4 Volume population balance model; Chapter 6: Validation by lab-scale experiments; 6.1 Dilute poly-dispersed flow in a duct
6.2 Mono-dispersed flow in a medium laden duct6.3 Agglomeration of poly-dispersed particulate flow in a vertical pipe; Chapter 7: Application to cyclone seperation; 7.2 Hybrid Model; 7.2 Agglomeration; Chapter 8: Conclusion and Outlook; A: Restitution coefficients are no constants; B: Computation of Lagrangian particle-wall collision; C: UDF Structure of hybrid model; D: Cyclone dimensions based on Muschelknautz theory; E: Nomenclature; List of Figures; List of Tables; Bibliography
Record Nr. UNINA-9910808026803321
Schellander David  
Hamburg, Germany : , : Anchor Academic Publishing, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Classical and modern engineering methods in fluid flow and heat transfer : an introduction for engineers and students / / Abram Dorfman
Classical and modern engineering methods in fluid flow and heat transfer : an introduction for engineers and students / / Abram Dorfman
Autore Dorfman Abram
Pubbl/distr/stampa New York : , : Momentum Press, LLC, , [2013]
Descrizione fisica 1 online resource (428 p.)
Disciplina 620.106
Soggetto topico Fluid mechanics
Heat - Transmission
Soggetto genere / forma Electronic books.
ISBN 1-299-28167-2
1-60650-271-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of figures -- List of examples -- Nomenclature -- Preface -- Acknowledgment -- About the author --
Part I. Classical methods in fluid flow and heat transfer -- 1. Methods in heat transfer of solids -- 1.1 Historical notes -- 1.2 Heat conduction equation and problem formulation -- 1.2.1 Cartesian coordinates -- 1.2.2 Orthogonal curvilinear coordinates -- 1.2.3 Universal function for heat flux on an arbitrary nonisothermal surface -- 1.2.4 Initial, boundary, and conjugate conditions -- Exercises 1.1-1.12 -- 1.3 Solution using error integral -- 1.3.1 An infinite solid or thin, laterally insulated rod -- 1.3.2 A semi-infinite solid or thin, laterally insulated rod -- 1.4 Duhamel's method -- 1.4.1 Duhamel integral derivation -- 1.4.2 Time-dependent surface temperature -- Exercises 1.13-1.27 -- 1.5 Method of separation variables -- 1.5.1 General approach, homogeneous, and inhomogeneous problems -- 1.5.2 One-dimensional unsteady problems -- 1.5.3 Orthogonality of Eigenfunctions -- Exercises 1.28-1.43 -- 1.5.4 Two-dimensional steady problems -- 1.6 Integral transforms -- 1.6.1 Fourier transform -- 1.6.2 Laplace transform -- 1.7 Green's function method -- Exercises 1.44-1.60 --
2. Methods in laminar fluid flow and heat transfer -- 2.1 A brief history -- 2.2 Navier-Stokes, energy, and mass transfer equations -- 2.2.1 Two types of transport mechanism, analogy between transfer processes -- 2.2.2 Different forms of Navier-Stokes, energy, and diffusion equations -- 2.2.2.1 Vector form -- 2.2.2.2 Einstein and other index notation -- 2.2.2.3 Vorticity form of the Navier-Stokes equation -- 2.2.2.4 Stream function form of the Navier-Stokes equation -- 2.2.2.5 Irrotational inviscid two-dimensional flows -- 2.2.2.6 Curvilinear orthogonal coordinates -- Exercises 2.1-2.24 -- 2.3 Initial and boundary conditions -- 2.3.1 Navier-Stokes equations -- 2.3.2 Specific issues of the energy equation -- 2.4 Exact solutions of Navier-Stokes and energy equations -- 2.4.1 Two Stokes problems -- 2.4.2 Solutions of three other unsteady problems -- 2.4.3 Steady flow in channels and in a circular tube -- 2.4.4 Stagnation point flow (Hiemenz flow) -- 2.4.5 Other exact solutions -- 2.4.6 Some exact solutions of the energy equation -- 2.4.6.1 Couette flow in a channel with heated walls -- 2.4.6.2 Adiabatic wall temperature -- 2.4.6.3 Temperature distributions in channels and in a tube -- 2.5 Cases of small and large Reynolds and Peclet numbers -- 2.5.1 Creeping approximation (small Reynolds and Peclet numbers) -- 2.5.1.1 Stokes flow past a sphere -- 2.5.1.2 Oseen's approximation -- 2.5.1.3 Heat transfer from the sphere in the stokes flow -- 2.5.2 Boundary-layer approximation (large Reynolds and Peclet numbers) -- 2.5.2.1 Derivation of boundary-layer equations -- 2.5.2.2 Prandtl-Mises and Görtler transformations -- 2.5.2.3 Theory of similarity and dimensionless numbers -- 2.5.2.4 Boundary-layer equations of higher order -- Exercises 2.25-2.65 -- 2.6 Exact solutions of the boundary-layer equations -- 2.6.1 Flow and heat transfer on an isothermal semi-infinite flat plate (Blasius and Pohlhausen solutions) -- 2.6.2 Self-similar flows in dynamic and thermal boundary layers -- 2.6.3 Solutions in the power series form -- 2.6.4 Flow in the case of potential velocity u(x) = u0 - axn (Howarth flow) -- 2.6.5 Fluid flows interaction -- 2.6.5.1 Flow in the wake of a body -- 2.6.5.2 Two-dimensional jet -- 2.6.5.3 Mixing layer of two parallel streams -- 2.6.6 Flow in straight and convergent channels -- 2.6.7 Solutions of second-order boundary-layer equations -- 2.6.8 Solutions of the thermal boundary-layer equation -- Exercises 2.66-2.88 -- 2.7 Approximate methods in the boundary-layer theory -- 2.7.1 Karman-Pohlhausen integral method -- 2.7.1.1 Friction and heat transfer on a flat plate -- 2.7.1.2 Flows with pressure gradients -- 2.7.2 Linearization of the momentum boundary-layer equation -- 2.7.2.1 Flow at the outer edge of the boundary layer -- 2.7.2.2 Universal function for the skin friction coefficient -- 2.7.3 Thermal boundary-layer equations for limiting Prandtl numbers -- 2.8 Natural convection -- Exercises 2.89-2.17 --
3. Methods in turbulent fluid flow and heat transfer -- 3.1 Transition from laminar to turbulent flow -- 3.1.1 Basic characteristics -- 3.1.2 The problem of laminar flow stability -- 3.2 Reynolds-averaged Navier-Stokes equation -- 3.2.1 Some physical aspects -- 3.2.2 Reynolds averaging -- 3.2.3 Reynolds equations and Reynolds stresses -- 3.3 Algebraic models -- 3.3.1 Prandtl's mixing-length hypothesis -- 3.3.2 Modern structure of velocity profile in turbulent boundary layer -- Exercises 3.1-3.22 -- 3.3.3 Mellor-Gibson model [9, 10, 13, 18] -- 3.3.4 Cebeci-Smith model [13] -- 3.3.5 Baldwin-Lomax model [18] -- 3.3.6 Application of the algebraic models -- 3.3.6.1 The far wake -- 3.3.6.2 The two-dimensional jet -- 3.3.6.3 Mixing layer of two parallel streams -- 3.3.6.4 Flows in channel and pipe -- 3.3.6.5 The boundary-layer flows -- 3.3.6.6 Heat transfer from an isothermal surface -- 3.3.6.7 The effect of the turbulent Prandtl number -- 3.3.7 The 1/2 equation model -- 3.3.8 Applicability of the algebraic models -- Exercises 3.23-3.40 -- 3.4 One-equation and two-equation models -- 3.4.1 Turbulence kinetic energy equation -- 3.4.2 One-equation models -- 3.4.3 Two-equation models -- 3.4.3.1 The k - w model -- 3.4.3.2 The k - e model -- 3.4.3.3 The other turbulence models -- 3.4.4 Applicability of the one-equation and two-equation models -- 3.5 Integral methods -- Exercises 3.41-3.56 --
Part II. Modern conjugate methods in heat transfer and fluid flow -- Introduction -- Concept of conjugation -- Why and when are conjugate methods required? --
4. Conjugate heat transfer problem as a conduction problem -- 4.1 Formulation of conjugate heat transfer problem -- 4.2 Universal function for laminar fluid flow -- 4.2.1 Universal function for heat flux in self-similar flows as an exact solution of a thermal boundary-layer equation -- 4.2.2 Universal function for heat flux in arbitrary pressure gradient flow -- 4.2.3 Integral universal function for heat flux in arbitrary pressure gradient flow -- 4.2.4 Examples of applications of universal functions for heart flux -- Exercises 4.1-4.32 -- 4.2.5 Universal function for a temperature head -- 4.2.6 Universal function for unsteady heat flux in self-similar flow -- 4.2.7 Universal function for heat flux in compressible fluid flow -- 4.2.8 Universal function for heat flux for a moving continuous sheet -- 4.2.9 Universal function for power-law non-Newtonian fluids -- 4.2.10 Universal function for the recovery factor -- 4.2.11 Universal function for an axisymmetric body -- Exercises 4.33-4.50 -- 4.3 Universal functions for turbulent flow -- 4.4 Reducing a conjugate problem to a conduction problem -- 4.4.1 Universal function as a general boundary condition -- 4.4.2 Estimation of errors caused by boundary condition of the third kind -- 4.4.3 Equivalent conduction problem with the combined boundary condition -- 4.4.4 Equivalent conduction problem for unsteady heat transfer -- Exercises 4.51-4.61 --
5. General properties of nonisothermal and conjugate heat transfer -- 5.1 Effect of temperature head distribution: temperature head decreasing-basic reason for low heat transfer rate -- 5.1.1 Effect of the temperature head gradient -- 5.1.2 Effect of flow regime -- 5.1.3 Effect of pressure gradient -- 5.2 Biot number, a measure of problem conjugation -- 5.3 Gradient analogy -- 5.4 Heat flux inversion -- 5.5 Zero heat transfer surfaces -- 5.6 Examples of optimizing heat transfer in flow over bodies -- Exercises 5.1-5.30 --
6. Conjugate heat transfer in flow past plates, charts for solving conjugate heat transfer problems -- 6.1 Temperature singularities on the solid-fluid interface -- 6.1.1 Basic equations -- 6.1.2 Singularity types -- 6.1.2.1. Laminar flow at the stagnation point -- 6.1.2.2. Laminar flow at zero-pressure gradient -- 6.1.2.3. Turbulent flow at zero-pressure gradient -- 6.1.2.4. Laminar gradient flow with power-law free-stream velocity cx m -- 6.1.2.5. Asymmetric laminar-turbulent flow -- 6.2 Charts for solving conjugate heat transfer -- 6.2.1 Charts development -- 6.2.2 Using charts -- Exercises 6.1-6.17 -- 6.3 Applicability of charts and one-dimensional approach -- 6.3.1 Refining and estimating accuracy of the charts data -- 6.3.2 Applicability of thermally thin body assumption -- 6.3.3 Applicability of the one-dimensional approach and two-dimensional effects -- 6.4 Conjugate heat transfer in flow past plates -- Exercises 6.18-6.31 -- Conclusion of heat transfer investigation (chapters 4-6) -- Should any heat transfer problem be considered as a conjugate? --
7. Peristaltic motion as a conjugate problem: motion in channels with flexible walls -- 7.1 What is the peristaltic motion like? -- 7.2 Formulation of the conjugate problem -- 7.3 Early works -- 7.4 Semi-conjugate solutions -- 7.5 Conjugate solutions -- Exercises 7.1-7.24 -- Part III. Numerical methods in fluid flow and heat transfer --
8. Classical numerical methods in fluid flow and heat transfer -- 8.1 Why analytical or numerical methods? -- 8.2 Approximate methods for solving differential equations -- 8.3 Some features of computing flow and heat transfer characteristics -- 8.3.1 Control-volume finite-difference method -- 8.3.1.1 Computing pressure and velocity -- 8.3.1.2 Computing convection-diffusion terms -- 8.3.1.3 False diffusion -- 8.3.2 Control-volume finite-element method -- 8.4 Numerial methods of conjugation -- Exercises 8.1-8.27 --
9. Modern numerical methods in turbulence -- 9.1 Introduction -- 9.2 Direct numerical simulation -- 9.3 Large eddy simulation -- 9.4 Detached eddy simulation -- 9.5 Chaos theory -- 9.6 Concluding remarks -- Exercises 9.1-9.12 --
Part IV. Applications in engineering, biology, and medicine -- 10. Heat transfer in thermal and cooling systems -- 10.1 Heat exchangers and pipes -- 10.1.1 Pipes and channels -- 10.1.2 Heat exchangers and finned surfaces -- 10.2 Cooling systems -- 10.2.1 Electronic packages -- 10.2.2 Turbine blades and rocket -- 10.2.3 Nuclear reactor -- 10.3 Energy systems --
11. Heat and mass transfer in technology processes -- 11.1 Multiphase and phase-changing processes -- 11.2 Manufacturing processes simulation -- 11.3 Draing technology -- 11.4 Food processing --
12. Fluid flow and heat transfer in biology and clinical medicine -- 12.1 Blood flow in normal and pathologic vessels -- 12.2 Peristaltic flow in disordered human organs -- 12.3 Biologic transport processes --
Conclusion -- Appendix -- Cited pioneers, contributors -- Author index -- Index.
Record Nr. UNINA-9910465391903321
Dorfman Abram  
New York : , : Momentum Press, LLC, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Classical and modern engineering methods in fluid flow and heat transfer : an introduction for engineers and students / / Abram Dorfman
Classical and modern engineering methods in fluid flow and heat transfer : an introduction for engineers and students / / Abram Dorfman
Autore Dorfman Abram
Pubbl/distr/stampa New York : , : Momentum Press, LLC, , [2013]
Descrizione fisica 1 online resource (428 p.)
Disciplina 620.106
Soggetto topico Fluid mechanics
Heat - Transmission
ISBN 1-299-28167-2
1-60650-271-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of figures -- List of examples -- Nomenclature -- Preface -- Acknowledgment -- About the author --
Part I. Classical methods in fluid flow and heat transfer -- 1. Methods in heat transfer of solids -- 1.1 Historical notes -- 1.2 Heat conduction equation and problem formulation -- 1.2.1 Cartesian coordinates -- 1.2.2 Orthogonal curvilinear coordinates -- 1.2.3 Universal function for heat flux on an arbitrary nonisothermal surface -- 1.2.4 Initial, boundary, and conjugate conditions -- Exercises 1.1-1.12 -- 1.3 Solution using error integral -- 1.3.1 An infinite solid or thin, laterally insulated rod -- 1.3.2 A semi-infinite solid or thin, laterally insulated rod -- 1.4 Duhamel's method -- 1.4.1 Duhamel integral derivation -- 1.4.2 Time-dependent surface temperature -- Exercises 1.13-1.27 -- 1.5 Method of separation variables -- 1.5.1 General approach, homogeneous, and inhomogeneous problems -- 1.5.2 One-dimensional unsteady problems -- 1.5.3 Orthogonality of Eigenfunctions -- Exercises 1.28-1.43 -- 1.5.4 Two-dimensional steady problems -- 1.6 Integral transforms -- 1.6.1 Fourier transform -- 1.6.2 Laplace transform -- 1.7 Green's function method -- Exercises 1.44-1.60 --
2. Methods in laminar fluid flow and heat transfer -- 2.1 A brief history -- 2.2 Navier-Stokes, energy, and mass transfer equations -- 2.2.1 Two types of transport mechanism, analogy between transfer processes -- 2.2.2 Different forms of Navier-Stokes, energy, and diffusion equations -- 2.2.2.1 Vector form -- 2.2.2.2 Einstein and other index notation -- 2.2.2.3 Vorticity form of the Navier-Stokes equation -- 2.2.2.4 Stream function form of the Navier-Stokes equation -- 2.2.2.5 Irrotational inviscid two-dimensional flows -- 2.2.2.6 Curvilinear orthogonal coordinates -- Exercises 2.1-2.24 -- 2.3 Initial and boundary conditions -- 2.3.1 Navier-Stokes equations -- 2.3.2 Specific issues of the energy equation -- 2.4 Exact solutions of Navier-Stokes and energy equations -- 2.4.1 Two Stokes problems -- 2.4.2 Solutions of three other unsteady problems -- 2.4.3 Steady flow in channels and in a circular tube -- 2.4.4 Stagnation point flow (Hiemenz flow) -- 2.4.5 Other exact solutions -- 2.4.6 Some exact solutions of the energy equation -- 2.4.6.1 Couette flow in a channel with heated walls -- 2.4.6.2 Adiabatic wall temperature -- 2.4.6.3 Temperature distributions in channels and in a tube -- 2.5 Cases of small and large Reynolds and Peclet numbers -- 2.5.1 Creeping approximation (small Reynolds and Peclet numbers) -- 2.5.1.1 Stokes flow past a sphere -- 2.5.1.2 Oseen's approximation -- 2.5.1.3 Heat transfer from the sphere in the stokes flow -- 2.5.2 Boundary-layer approximation (large Reynolds and Peclet numbers) -- 2.5.2.1 Derivation of boundary-layer equations -- 2.5.2.2 Prandtl-Mises and Görtler transformations -- 2.5.2.3 Theory of similarity and dimensionless numbers -- 2.5.2.4 Boundary-layer equations of higher order -- Exercises 2.25-2.65 -- 2.6 Exact solutions of the boundary-layer equations -- 2.6.1 Flow and heat transfer on an isothermal semi-infinite flat plate (Blasius and Pohlhausen solutions) -- 2.6.2 Self-similar flows in dynamic and thermal boundary layers -- 2.6.3 Solutions in the power series form -- 2.6.4 Flow in the case of potential velocity u(x) = u0 - axn (Howarth flow) -- 2.6.5 Fluid flows interaction -- 2.6.5.1 Flow in the wake of a body -- 2.6.5.2 Two-dimensional jet -- 2.6.5.3 Mixing layer of two parallel streams -- 2.6.6 Flow in straight and convergent channels -- 2.6.7 Solutions of second-order boundary-layer equations -- 2.6.8 Solutions of the thermal boundary-layer equation -- Exercises 2.66-2.88 -- 2.7 Approximate methods in the boundary-layer theory -- 2.7.1 Karman-Pohlhausen integral method -- 2.7.1.1 Friction and heat transfer on a flat plate -- 2.7.1.2 Flows with pressure gradients -- 2.7.2 Linearization of the momentum boundary-layer equation -- 2.7.2.1 Flow at the outer edge of the boundary layer -- 2.7.2.2 Universal function for the skin friction coefficient -- 2.7.3 Thermal boundary-layer equations for limiting Prandtl numbers -- 2.8 Natural convection -- Exercises 2.89-2.17 --
3. Methods in turbulent fluid flow and heat transfer -- 3.1 Transition from laminar to turbulent flow -- 3.1.1 Basic characteristics -- 3.1.2 The problem of laminar flow stability -- 3.2 Reynolds-averaged Navier-Stokes equation -- 3.2.1 Some physical aspects -- 3.2.2 Reynolds averaging -- 3.2.3 Reynolds equations and Reynolds stresses -- 3.3 Algebraic models -- 3.3.1 Prandtl's mixing-length hypothesis -- 3.3.2 Modern structure of velocity profile in turbulent boundary layer -- Exercises 3.1-3.22 -- 3.3.3 Mellor-Gibson model [9, 10, 13, 18] -- 3.3.4 Cebeci-Smith model [13] -- 3.3.5 Baldwin-Lomax model [18] -- 3.3.6 Application of the algebraic models -- 3.3.6.1 The far wake -- 3.3.6.2 The two-dimensional jet -- 3.3.6.3 Mixing layer of two parallel streams -- 3.3.6.4 Flows in channel and pipe -- 3.3.6.5 The boundary-layer flows -- 3.3.6.6 Heat transfer from an isothermal surface -- 3.3.6.7 The effect of the turbulent Prandtl number -- 3.3.7 The 1/2 equation model -- 3.3.8 Applicability of the algebraic models -- Exercises 3.23-3.40 -- 3.4 One-equation and two-equation models -- 3.4.1 Turbulence kinetic energy equation -- 3.4.2 One-equation models -- 3.4.3 Two-equation models -- 3.4.3.1 The k - w model -- 3.4.3.2 The k - e model -- 3.4.3.3 The other turbulence models -- 3.4.4 Applicability of the one-equation and two-equation models -- 3.5 Integral methods -- Exercises 3.41-3.56 --
Part II. Modern conjugate methods in heat transfer and fluid flow -- Introduction -- Concept of conjugation -- Why and when are conjugate methods required? --
4. Conjugate heat transfer problem as a conduction problem -- 4.1 Formulation of conjugate heat transfer problem -- 4.2 Universal function for laminar fluid flow -- 4.2.1 Universal function for heat flux in self-similar flows as an exact solution of a thermal boundary-layer equation -- 4.2.2 Universal function for heat flux in arbitrary pressure gradient flow -- 4.2.3 Integral universal function for heat flux in arbitrary pressure gradient flow -- 4.2.4 Examples of applications of universal functions for heart flux -- Exercises 4.1-4.32 -- 4.2.5 Universal function for a temperature head -- 4.2.6 Universal function for unsteady heat flux in self-similar flow -- 4.2.7 Universal function for heat flux in compressible fluid flow -- 4.2.8 Universal function for heat flux for a moving continuous sheet -- 4.2.9 Universal function for power-law non-Newtonian fluids -- 4.2.10 Universal function for the recovery factor -- 4.2.11 Universal function for an axisymmetric body -- Exercises 4.33-4.50 -- 4.3 Universal functions for turbulent flow -- 4.4 Reducing a conjugate problem to a conduction problem -- 4.4.1 Universal function as a general boundary condition -- 4.4.2 Estimation of errors caused by boundary condition of the third kind -- 4.4.3 Equivalent conduction problem with the combined boundary condition -- 4.4.4 Equivalent conduction problem for unsteady heat transfer -- Exercises 4.51-4.61 --
5. General properties of nonisothermal and conjugate heat transfer -- 5.1 Effect of temperature head distribution: temperature head decreasing-basic reason for low heat transfer rate -- 5.1.1 Effect of the temperature head gradient -- 5.1.2 Effect of flow regime -- 5.1.3 Effect of pressure gradient -- 5.2 Biot number, a measure of problem conjugation -- 5.3 Gradient analogy -- 5.4 Heat flux inversion -- 5.5 Zero heat transfer surfaces -- 5.6 Examples of optimizing heat transfer in flow over bodies -- Exercises 5.1-5.30 --
6. Conjugate heat transfer in flow past plates, charts for solving conjugate heat transfer problems -- 6.1 Temperature singularities on the solid-fluid interface -- 6.1.1 Basic equations -- 6.1.2 Singularity types -- 6.1.2.1. Laminar flow at the stagnation point -- 6.1.2.2. Laminar flow at zero-pressure gradient -- 6.1.2.3. Turbulent flow at zero-pressure gradient -- 6.1.2.4. Laminar gradient flow with power-law free-stream velocity cx m -- 6.1.2.5. Asymmetric laminar-turbulent flow -- 6.2 Charts for solving conjugate heat transfer -- 6.2.1 Charts development -- 6.2.2 Using charts -- Exercises 6.1-6.17 -- 6.3 Applicability of charts and one-dimensional approach -- 6.3.1 Refining and estimating accuracy of the charts data -- 6.3.2 Applicability of thermally thin body assumption -- 6.3.3 Applicability of the one-dimensional approach and two-dimensional effects -- 6.4 Conjugate heat transfer in flow past plates -- Exercises 6.18-6.31 -- Conclusion of heat transfer investigation (chapters 4-6) -- Should any heat transfer problem be considered as a conjugate? --
7. Peristaltic motion as a conjugate problem: motion in channels with flexible walls -- 7.1 What is the peristaltic motion like? -- 7.2 Formulation of the conjugate problem -- 7.3 Early works -- 7.4 Semi-conjugate solutions -- 7.5 Conjugate solutions -- Exercises 7.1-7.24 -- Part III. Numerical methods in fluid flow and heat transfer --
8. Classical numerical methods in fluid flow and heat transfer -- 8.1 Why analytical or numerical methods? -- 8.2 Approximate methods for solving differential equations -- 8.3 Some features of computing flow and heat transfer characteristics -- 8.3.1 Control-volume finite-difference method -- 8.3.1.1 Computing pressure and velocity -- 8.3.1.2 Computing convection-diffusion terms -- 8.3.1.3 False diffusion -- 8.3.2 Control-volume finite-element method -- 8.4 Numerial methods of conjugation -- Exercises 8.1-8.27 --
9. Modern numerical methods in turbulence -- 9.1 Introduction -- 9.2 Direct numerical simulation -- 9.3 Large eddy simulation -- 9.4 Detached eddy simulation -- 9.5 Chaos theory -- 9.6 Concluding remarks -- Exercises 9.1-9.12 --
Part IV. Applications in engineering, biology, and medicine -- 10. Heat transfer in thermal and cooling systems -- 10.1 Heat exchangers and pipes -- 10.1.1 Pipes and channels -- 10.1.2 Heat exchangers and finned surfaces -- 10.2 Cooling systems -- 10.2.1 Electronic packages -- 10.2.2 Turbine blades and rocket -- 10.2.3 Nuclear reactor -- 10.3 Energy systems --
11. Heat and mass transfer in technology processes -- 11.1 Multiphase and phase-changing processes -- 11.2 Manufacturing processes simulation -- 11.3 Draing technology -- 11.4 Food processing --
12. Fluid flow and heat transfer in biology and clinical medicine -- 12.1 Blood flow in normal and pathologic vessels -- 12.2 Peristaltic flow in disordered human organs -- 12.3 Biologic transport processes --
Conclusion -- Appendix -- Cited pioneers, contributors -- Author index -- Index.
Record Nr. UNINA-9910792049903321
Dorfman Abram  
New York : , : Momentum Press, LLC, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Classical and modern engineering methods in fluid flow and heat transfer : an introduction for engineers and students / / Abram Dorfman
Classical and modern engineering methods in fluid flow and heat transfer : an introduction for engineers and students / / Abram Dorfman
Autore Dorfman Abram
Pubbl/distr/stampa New York : , : Momentum Press, LLC, , [2013]
Descrizione fisica 1 online resource (428 p.)
Disciplina 620.106
Soggetto topico Fluid mechanics
Heat - Transmission
ISBN 1-299-28167-2
1-60650-271-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of figures -- List of examples -- Nomenclature -- Preface -- Acknowledgment -- About the author --
Part I. Classical methods in fluid flow and heat transfer -- 1. Methods in heat transfer of solids -- 1.1 Historical notes -- 1.2 Heat conduction equation and problem formulation -- 1.2.1 Cartesian coordinates -- 1.2.2 Orthogonal curvilinear coordinates -- 1.2.3 Universal function for heat flux on an arbitrary nonisothermal surface -- 1.2.4 Initial, boundary, and conjugate conditions -- Exercises 1.1-1.12 -- 1.3 Solution using error integral -- 1.3.1 An infinite solid or thin, laterally insulated rod -- 1.3.2 A semi-infinite solid or thin, laterally insulated rod -- 1.4 Duhamel's method -- 1.4.1 Duhamel integral derivation -- 1.4.2 Time-dependent surface temperature -- Exercises 1.13-1.27 -- 1.5 Method of separation variables -- 1.5.1 General approach, homogeneous, and inhomogeneous problems -- 1.5.2 One-dimensional unsteady problems -- 1.5.3 Orthogonality of Eigenfunctions -- Exercises 1.28-1.43 -- 1.5.4 Two-dimensional steady problems -- 1.6 Integral transforms -- 1.6.1 Fourier transform -- 1.6.2 Laplace transform -- 1.7 Green's function method -- Exercises 1.44-1.60 --
2. Methods in laminar fluid flow and heat transfer -- 2.1 A brief history -- 2.2 Navier-Stokes, energy, and mass transfer equations -- 2.2.1 Two types of transport mechanism, analogy between transfer processes -- 2.2.2 Different forms of Navier-Stokes, energy, and diffusion equations -- 2.2.2.1 Vector form -- 2.2.2.2 Einstein and other index notation -- 2.2.2.3 Vorticity form of the Navier-Stokes equation -- 2.2.2.4 Stream function form of the Navier-Stokes equation -- 2.2.2.5 Irrotational inviscid two-dimensional flows -- 2.2.2.6 Curvilinear orthogonal coordinates -- Exercises 2.1-2.24 -- 2.3 Initial and boundary conditions -- 2.3.1 Navier-Stokes equations -- 2.3.2 Specific issues of the energy equation -- 2.4 Exact solutions of Navier-Stokes and energy equations -- 2.4.1 Two Stokes problems -- 2.4.2 Solutions of three other unsteady problems -- 2.4.3 Steady flow in channels and in a circular tube -- 2.4.4 Stagnation point flow (Hiemenz flow) -- 2.4.5 Other exact solutions -- 2.4.6 Some exact solutions of the energy equation -- 2.4.6.1 Couette flow in a channel with heated walls -- 2.4.6.2 Adiabatic wall temperature -- 2.4.6.3 Temperature distributions in channels and in a tube -- 2.5 Cases of small and large Reynolds and Peclet numbers -- 2.5.1 Creeping approximation (small Reynolds and Peclet numbers) -- 2.5.1.1 Stokes flow past a sphere -- 2.5.1.2 Oseen's approximation -- 2.5.1.3 Heat transfer from the sphere in the stokes flow -- 2.5.2 Boundary-layer approximation (large Reynolds and Peclet numbers) -- 2.5.2.1 Derivation of boundary-layer equations -- 2.5.2.2 Prandtl-Mises and Görtler transformations -- 2.5.2.3 Theory of similarity and dimensionless numbers -- 2.5.2.4 Boundary-layer equations of higher order -- Exercises 2.25-2.65 -- 2.6 Exact solutions of the boundary-layer equations -- 2.6.1 Flow and heat transfer on an isothermal semi-infinite flat plate (Blasius and Pohlhausen solutions) -- 2.6.2 Self-similar flows in dynamic and thermal boundary layers -- 2.6.3 Solutions in the power series form -- 2.6.4 Flow in the case of potential velocity u(x) = u0 - axn (Howarth flow) -- 2.6.5 Fluid flows interaction -- 2.6.5.1 Flow in the wake of a body -- 2.6.5.2 Two-dimensional jet -- 2.6.5.3 Mixing layer of two parallel streams -- 2.6.6 Flow in straight and convergent channels -- 2.6.7 Solutions of second-order boundary-layer equations -- 2.6.8 Solutions of the thermal boundary-layer equation -- Exercises 2.66-2.88 -- 2.7 Approximate methods in the boundary-layer theory -- 2.7.1 Karman-Pohlhausen integral method -- 2.7.1.1 Friction and heat transfer on a flat plate -- 2.7.1.2 Flows with pressure gradients -- 2.7.2 Linearization of the momentum boundary-layer equation -- 2.7.2.1 Flow at the outer edge of the boundary layer -- 2.7.2.2 Universal function for the skin friction coefficient -- 2.7.3 Thermal boundary-layer equations for limiting Prandtl numbers -- 2.8 Natural convection -- Exercises 2.89-2.17 --
3. Methods in turbulent fluid flow and heat transfer -- 3.1 Transition from laminar to turbulent flow -- 3.1.1 Basic characteristics -- 3.1.2 The problem of laminar flow stability -- 3.2 Reynolds-averaged Navier-Stokes equation -- 3.2.1 Some physical aspects -- 3.2.2 Reynolds averaging -- 3.2.3 Reynolds equations and Reynolds stresses -- 3.3 Algebraic models -- 3.3.1 Prandtl's mixing-length hypothesis -- 3.3.2 Modern structure of velocity profile in turbulent boundary layer -- Exercises 3.1-3.22 -- 3.3.3 Mellor-Gibson model [9, 10, 13, 18] -- 3.3.4 Cebeci-Smith model [13] -- 3.3.5 Baldwin-Lomax model [18] -- 3.3.6 Application of the algebraic models -- 3.3.6.1 The far wake -- 3.3.6.2 The two-dimensional jet -- 3.3.6.3 Mixing layer of two parallel streams -- 3.3.6.4 Flows in channel and pipe -- 3.3.6.5 The boundary-layer flows -- 3.3.6.6 Heat transfer from an isothermal surface -- 3.3.6.7 The effect of the turbulent Prandtl number -- 3.3.7 The 1/2 equation model -- 3.3.8 Applicability of the algebraic models -- Exercises 3.23-3.40 -- 3.4 One-equation and two-equation models -- 3.4.1 Turbulence kinetic energy equation -- 3.4.2 One-equation models -- 3.4.3 Two-equation models -- 3.4.3.1 The k - w model -- 3.4.3.2 The k - e model -- 3.4.3.3 The other turbulence models -- 3.4.4 Applicability of the one-equation and two-equation models -- 3.5 Integral methods -- Exercises 3.41-3.56 --
Part II. Modern conjugate methods in heat transfer and fluid flow -- Introduction -- Concept of conjugation -- Why and when are conjugate methods required? --
4. Conjugate heat transfer problem as a conduction problem -- 4.1 Formulation of conjugate heat transfer problem -- 4.2 Universal function for laminar fluid flow -- 4.2.1 Universal function for heat flux in self-similar flows as an exact solution of a thermal boundary-layer equation -- 4.2.2 Universal function for heat flux in arbitrary pressure gradient flow -- 4.2.3 Integral universal function for heat flux in arbitrary pressure gradient flow -- 4.2.4 Examples of applications of universal functions for heart flux -- Exercises 4.1-4.32 -- 4.2.5 Universal function for a temperature head -- 4.2.6 Universal function for unsteady heat flux in self-similar flow -- 4.2.7 Universal function for heat flux in compressible fluid flow -- 4.2.8 Universal function for heat flux for a moving continuous sheet -- 4.2.9 Universal function for power-law non-Newtonian fluids -- 4.2.10 Universal function for the recovery factor -- 4.2.11 Universal function for an axisymmetric body -- Exercises 4.33-4.50 -- 4.3 Universal functions for turbulent flow -- 4.4 Reducing a conjugate problem to a conduction problem -- 4.4.1 Universal function as a general boundary condition -- 4.4.2 Estimation of errors caused by boundary condition of the third kind -- 4.4.3 Equivalent conduction problem with the combined boundary condition -- 4.4.4 Equivalent conduction problem for unsteady heat transfer -- Exercises 4.51-4.61 --
5. General properties of nonisothermal and conjugate heat transfer -- 5.1 Effect of temperature head distribution: temperature head decreasing-basic reason for low heat transfer rate -- 5.1.1 Effect of the temperature head gradient -- 5.1.2 Effect of flow regime -- 5.1.3 Effect of pressure gradient -- 5.2 Biot number, a measure of problem conjugation -- 5.3 Gradient analogy -- 5.4 Heat flux inversion -- 5.5 Zero heat transfer surfaces -- 5.6 Examples of optimizing heat transfer in flow over bodies -- Exercises 5.1-5.30 --
6. Conjugate heat transfer in flow past plates, charts for solving conjugate heat transfer problems -- 6.1 Temperature singularities on the solid-fluid interface -- 6.1.1 Basic equations -- 6.1.2 Singularity types -- 6.1.2.1. Laminar flow at the stagnation point -- 6.1.2.2. Laminar flow at zero-pressure gradient -- 6.1.2.3. Turbulent flow at zero-pressure gradient -- 6.1.2.4. Laminar gradient flow with power-law free-stream velocity cx m -- 6.1.2.5. Asymmetric laminar-turbulent flow -- 6.2 Charts for solving conjugate heat transfer -- 6.2.1 Charts development -- 6.2.2 Using charts -- Exercises 6.1-6.17 -- 6.3 Applicability of charts and one-dimensional approach -- 6.3.1 Refining and estimating accuracy of the charts data -- 6.3.2 Applicability of thermally thin body assumption -- 6.3.3 Applicability of the one-dimensional approach and two-dimensional effects -- 6.4 Conjugate heat transfer in flow past plates -- Exercises 6.18-6.31 -- Conclusion of heat transfer investigation (chapters 4-6) -- Should any heat transfer problem be considered as a conjugate? --
7. Peristaltic motion as a conjugate problem: motion in channels with flexible walls -- 7.1 What is the peristaltic motion like? -- 7.2 Formulation of the conjugate problem -- 7.3 Early works -- 7.4 Semi-conjugate solutions -- 7.5 Conjugate solutions -- Exercises 7.1-7.24 -- Part III. Numerical methods in fluid flow and heat transfer --
8. Classical numerical methods in fluid flow and heat transfer -- 8.1 Why analytical or numerical methods? -- 8.2 Approximate methods for solving differential equations -- 8.3 Some features of computing flow and heat transfer characteristics -- 8.3.1 Control-volume finite-difference method -- 8.3.1.1 Computing pressure and velocity -- 8.3.1.2 Computing convection-diffusion terms -- 8.3.1.3 False diffusion -- 8.3.2 Control-volume finite-element method -- 8.4 Numerial methods of conjugation -- Exercises 8.1-8.27 --
9. Modern numerical methods in turbulence -- 9.1 Introduction -- 9.2 Direct numerical simulation -- 9.3 Large eddy simulation -- 9.4 Detached eddy simulation -- 9.5 Chaos theory -- 9.6 Concluding remarks -- Exercises 9.1-9.12 --
Part IV. Applications in engineering, biology, and medicine -- 10. Heat transfer in thermal and cooling systems -- 10.1 Heat exchangers and pipes -- 10.1.1 Pipes and channels -- 10.1.2 Heat exchangers and finned surfaces -- 10.2 Cooling systems -- 10.2.1 Electronic packages -- 10.2.2 Turbine blades and rocket -- 10.2.3 Nuclear reactor -- 10.3 Energy systems --
11. Heat and mass transfer in technology processes -- 11.1 Multiphase and phase-changing processes -- 11.2 Manufacturing processes simulation -- 11.3 Draing technology -- 11.4 Food processing --
12. Fluid flow and heat transfer in biology and clinical medicine -- 12.1 Blood flow in normal and pathologic vessels -- 12.2 Peristaltic flow in disordered human organs -- 12.3 Biologic transport processes --
Conclusion -- Appendix -- Cited pioneers, contributors -- Author index -- Index.
Record Nr. UNINA-9910816671003321
Dorfman Abram  
New York : , : Momentum Press, LLC, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Clinical and biomedical engineering in the human nose : a computational fluid dynamics approach / / Kiao Inthavong [and three others] editors
Clinical and biomedical engineering in the human nose : a computational fluid dynamics approach / / Kiao Inthavong [and three others] editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (XXXIII, 308 p. 148 illus., 112 illus. in color.)
Disciplina 620.106
Collana Biological and Medical Physics, Biomedical Engineering
Soggetto topico Fluid mechanics
Nose - Anatomy
Nose - Physiology
ISBN 981-15-6716-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Clinical Computational Fluid Dynamics -- The Human Nose -- Reconstruction of the Human Airways -- Generation of Computational Models For Simulation -- Models of Flow -- Computational Fluid Dynamics of the Nose -- Clinical CFD 1: Disorders of Nasal Airflow -- Clinical CFD 2: Other Applications -- Frontiers and Future Directions.
Record Nr. UNINA-9910484185003321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...