top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Particles in the dark universe : a student's guide to particle physics and cosmology / / Yann Mambrini
Particles in the dark universe : a student's guide to particle physics and cosmology / / Yann Mambrini
Autore Mambrini Yann
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (518 pages)
Disciplina 539.721
Soggetto topico Particles (Nuclear physics)
ISBN 3-030-78139-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgements -- Contents -- About the Author -- 1 Introduction -- 1.1 The First Dark Matter Paper -- Prehistory -- The Galactic Scale -- Stabilization of the Structures -- 1.2 Local Dark Matter -- 1.3 Anomalies in Rotation Curves of Galaxies -- 1.4 Cluster Dark Matter -- 1.5 Gravitational Lensing -- 1.6 Bullet Cluster -- 1.7 Comparison of Three Matter Abundance -- 1.8 Cosmic Microwave Background (CMB) -- 1.9 Alternatives -- References -- Part I The Primordial Universe -- 2 Inflation and Reheating [MP TRH] -- 2.1 The Context -- 2.1.1 The Hubble Law -- 2.1.2 The Friedmann Equations in a Dust Universe -- 2.1.2.1 The Hubble Parameter -- 2.1.2.2 The Continuity Equation -- 2.1.3 The Friedmann Equations in a Radiative Universe -- 2.1.4 The Friedmann-Lemaitre-Robertson-Walker (FLRW) Metric -- 2.1.4.1 Generalities -- 2.1.4.2 Geometry of the Universe -- 2.1.4.3 Redshift -- 2.1.4.4 The Hubble Law -- 2.1.4.5 Measuring the Size of the Universe -- 2.1.5 Friedmann's Equation in General Relativity -- 2.1.5.1 The Friedmann Equations -- 2.1.5.2 The Deceleration Equation -- 2.1.5.3 The Cosmological Constant Case -- 2.1.6 Another Look on the Hubble Expansion -- 2.1.7 The Comoving Distance or Codistance -- 2.1.7.1 Generalities -- 2.1.7.2 The Size of the Universe (bis) -- 2.2 Inflation [10-43-10-37s] -- 2.2.1 The Horizon Problem -- 2.2.2 The Flatness Problem -- 2.2.3 The Inflaton -- 2.2.4 The Equation of Motion -- 2.2.5 The Equation of Motion (Generalization) -- 2.2.6 The Slow-Roll Regime -- 2.2.6.1 The Context -- 2.2.6.2 The V = 12m2ϕ2 Case -- 2.2.7 The Coherent Oscillation Regime -- 2.2.8 The General Case, V(ϕ) -- 2.2.9 Constraint from Perturbations -- 2.2.9.1 Generalities -- 2.2.9.2 In an Expanding Universe -- 2.2.10 Preheating and Dark Matter -- 2.2.10.1 Parametric Resonance.
2.2.10.2 Narrow Resonance Interpreted as Bose Condensates -- 2.2.10.3 Production of Dark Matter in the Preheating Era -- 2.3 Reheating: Non-thermal Phase [10-37 - 10-30s] -- 2.3.1 The Context -- 2.3.1.1 The Boltzmann Equation for the Dust (Inflaton or Non-relativistic Fields) -- 2.3.1.2 The Boltzmann Equation for the Radiation (Relativistic Fields) -- 2.3.1.3 The Influence of the Nature of the Inflaton -- 2.3.2 The (Non-thermal) Distribution Function -- 2.3.2.1 Time Evolution of the Densities -- 2.3.2.2 The Matter -- 2.3.2.3 The Radiation -- 2.3.2.4 The Scale Factor -- 2.3.2.5 Summary -- 2.3.2.6 The Distribution Function -- 2.3.3 End of the Thermalization Process: Transition Toward a Thermal Bath -- 2.3.3.1 Understanding the Process -- 2.3.3.2 Computing the End of Thermalization Process -- 2.3.4 Dark Matter Production During the Non-thermal Phase of the Reheating -- 2.3.4.1 The Context -- 2.3.4.2 Direct production by inflaton decay -- 2.3.4.3 Production by Scattering -- 2.4 Reheating: Thermal Phase [10-30-10-28s] -- 2.4.1 Understanding the Reheating -- 2.4.2 Non-instantaneous Reheating -- 2.4.2.1 Evolution of the Temperature During Reheating -- 2.4.2.2 A Closer Look on the Hubble Constant* -- 2.4.3 Producing Dark Matter During the Reheating Phase -- 2.4.3.1 The Context -- 2.4.3.2 Production from Inflaton Decay -- 2.4.3.3 Production by Scattering -- 2.5 The Thermal Era [10-28-mχ] -- 2.5.1 Instantaneous Reheating and Instantaneous Thermalization -- 2.5.1.1 Radiation Dominated Universe -- 2.5.1.2 Matter Dominated Universe -- References -- 3 A Thermal Universe [TRH TCMB] -- 3.1 Thermodynamics -- 3.1.1 A Brief Thermal History of the Universe in Some Dates and Numbers -- 3.1.2 Statistics of Gas, Pressure, and Radiation: The Classic Case -- 3.1.3 Statistics of Gas, Pressure, and Radiation: The Quantum Case.
3.1.3.1 Distribution Functions and Thermodynamics Quantities -- 3.1.4 In the Primordial Plasma -- 3.1.5 Degrees of Freedom -- 3.1.5.1 Computation of gρ(T) -- 3.1.5.2 QCD (Quark-Hadrons) Phase Transition -- 3.1.5.3 A Little History of gρ(T): Summary -- 3.1.6 Time and Temperature -- 3.1.7 The Entropy -- 3.1.8 The Meaning of Decoupling -- 3.2 Chemical Decoupling or Kinetic/Thermal Decoupling? -- 3.2.1 The Main Idea -- 3.2.2 Approximate Solution -- 3.2.3 What Is Happening After the Decoupling? -- 3.2.4 Transfer of Energy and Thermalization -- 3.2.4.1 Generalities -- 3.2.4.2 A Specific Case: Exchanged of a Massless Gauge Boson* -- 3.2.4.3 Thermalization -- 3.2.4.4 γ' Entering in the Dance -- 3.3 The Case of Light Species -- 3.3.1 The Neutrino Decoupling -- 3.3.2 The Tremaine-Gunn Bound -- 3.3.3 Dark Radiation -- 3.3.3.1 Generalities -- 3.3.3.2 One Example to Increase Neff* -- 3.3.3.3 Another Example: The Case of the Mirror Dark Matter* -- 3.3.4 The Recombination: Decoupling of the Photons -- 3.3.4.1 The Recombination -- 3.3.4.2 The Last Scattering Surface -- 3.3.5 The Dark Ages, or Re-Ionization -- 3.4 The Big Bang Nucleosynthesis -- 3.4.1 The Context -- 3.4.2 Overview -- 3.4.3 The Deuterium Formation -- 3.4.4 The Lithium Problem -- 3.5 Producing Dark Matter in Thermal Equilibrium -- 3.5.1 The Boltzmann Equation -- 3.5.2 Overview -- 3.5.3 Solving the Equation -- 3.5.3.1 s-wave -- 3.5.3.2 General Solution -- 3.5.3.3 Hot Dark Matter -- 3.5.3.4 Another Approach to Average the Annihilation Cross Section -- 3.5.4 The Lee-Weinberg Bound -- 3.5.5 Two Exceptions to the Boltzmann Equation -- 3.5.5.1 The Pole Region -- 3.5.5.2 Kinematic Threshold -- 3.6 Non-thermal Production of Dark Matter -- 3.6.1 The Idea -- 3.6.1.1 Case A: Heavy Mediator: MH TRH -- 3.6.1.2 Case B: Light Mediator: MH s, Weak-Like coupling: α' αEW.
3.6.1.3 Case C: Light Mediator: MH s, Feebly Like Coupling: α' αEW -- 3.6.2 Axion as a Dark Matter Candidate -- 3.6.2.1 The Thermal Production -- 3.6.2.2 The Misalignment Mechanism -- 3.6.2.3 QCD-Axion Dark Matter -- 3.6.3 The Special Case of the Gravitino -- 3.6.3.1 What Is a Gravitino -- 3.6.3.2 MSUSY < -- TRH -- 3.6.4 Non-thermal Production Through Decays -- 3.6.4.1 Generalities -- 3.6.4.2 An Example: Decay of the Gravitino to Populate Dark Matter** -- 3.7 Extracting Information from the CMB Spectrum -- 3.7.1 Generalities -- 3.7.2 To Find the Components of the Universe -- 3.7.2.1 Influence of the Matter, Ωm -- 3.7.2.2 Influence of the Curvature, Ωk -- 3.7.2.3 Influence of the Cosmological Constant, Ω -- 3.7.2.4 Influence of the Baryons, Ωb -- References -- Part II Modern Times [TCMB T0] -- 4 Direct Detection [T0] -- 4.1 Generality -- 4.2 Velocity Distribution of Dark Matter: f(v) -- 4.3 Measuring a Differential Rate: d σd |q|2 -- 4.3.1 Kinematics -- 4.3.2 Differential Rate -- 4.4 Structure Function of the Nucleus: F(q) -- 4.5 Computing a Rate -- 4.6 Being More Realistic -- 4.6.1 Taking into Account the Earth Velocity -- 4.6.2 Annual Modulation of the Signal -- 4.7 Influence of the Structure of the Nucleons -- 4.8 Spinorial Effect -- 4.9 More About the Effective Approach -- 4.9.1 Validity of the Approach -- 4.9.2 Effective Operators -- 4.9.2.1 Generalities -- 4.9.2.2 Scalar Coefficient: Generalities -- 4.9.2.3 Scalar Coefficient: Application -- 4.9.2.4 Vector Coefficient: Generalities -- 4.9.2.5 Vector Coefficient: Application -- 4.9.2.6 Majorana Case -- 4.9.3 Gluons and Heavy Quarks Contributions -- References -- 5 In the Galaxies [T0] -- 5.1 The Anatomy of the Milky Way -- 5.1.1 Internal Characteristics -- 5.1.2 The Color of the Sky: The Diffuse Gamma Ray Background -- 5.1.2.1 X-Ray Diffuse Background -- 5.1.2.2 Gamma-Ray Diffuse Background.
5.1.3 Galactic Coordinates, Velocity of the Sunand of the Earth -- 5.2 Computation of a Flux -- 5.3 Example of the Isothermal Profile -- 5.4 Radiative Processes in Astrophysics Part I: The Non-Relativistic Case -- 5.4.1 Maxwell Equations -- 5.4.2 Loss of Energy of a Moving Charged Particle -- 5.4.2.1 Larmor's Formula -- 5.4.2.2 Case of a Rotating Particle -- 5.4.3 Coulomb and Ionization Losses -- 5.4.4 Thomson Scattering -- 5.4.5 Cyclotron Radiation -- 5.4.6 Bremsstrahlung Radiation -- 5.5 Notions of Relativity -- 5.5.1 Main Idea -- 5.5.2 Lorentz Transformations -- 5.5.3 Relativistic Larmor's Formula -- 5.5.4 Doppler Effect -- 5.5.5 Transformations on the Energies -- 5.5.6 Fizeau Experiment -- 5.6 Radiative Processes in Astrophysics Part II:The Relativistic Case -- 5.6.1 Relativistic Coulomb Scattering or Ionization Losses -- 5.6.1.1 Ionization Loss -- 5.6.1.2 Coulomb Scattering -- 5.6.2 Inverse Compton Scattering -- 5.6.3 Synchrotron Radiation -- 5.6.3.1 From the Observer Point of View -- 5.6.3.2 From the Particle Point of View -- 5.6.4 Relativistic Bremsstrahlung -- 5.6.5 Energy Losses: Summary -- 5.7 Ultra-High Energetic (UHE) Processes -- 5.7.1 Cosmic Rays Case -- 5.7.2 Photons and Neutrinos Cases -- 5.8 Indirect Detection of Gamma Ray -- 5.8.1 The Principle -- 5.8.2 Galactic Halo -- 5.8.3 Adiabatic Compression Mechanism -- 5.9 The Tricky Case of the Galactic Center -- 5.9.1 The Idea -- 5.9.2 Dark Matter Density Profiles -- 5.9.3 Gamma-Ray Flux from Dark Matter Annihilation -- 5.9.3.1 Prompt Gamma Rays -- 5.9.3.2 Gamma Rays from Inverse Compton Scattering -- 5.10 Dark Matter and Synchrotron Radiation -- 5.10.1 Neglecting Diffusion -- 5.10.2 Synchrotron Loss of Energy -- 5.10.3 Taking into Account Spatial Diffusion -- 5.10.4 General Astrophysical Setup* -- 5.10.4.1 Astrophysical Uncertainties.
5.10.4.2 Synchrotron Signal for Different Choices of DM Density Profile.
Record Nr. UNINA-9910497084303321
Mambrini Yann  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration [[electronic resource] /] / edited by Jean-Pierre Minier, Jacek Pozorski
Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration [[electronic resource] /] / edited by Jean-Pierre Minier, Jacek Pozorski
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (VII, 261 p. 176 illus., 25 illus. in color.)
Disciplina 539.721
Collana CISM International Centre for Mechanical Sciences, Courses and Lectures
Soggetto topico Fluid mechanics
Physics
Engineering Fluid Dynamics
Applied and Technical Physics
ISBN 3-319-41567-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A general introduction to particle deposition -- Flow measurement and visualisation -- Physics of particle-laden turbulent flow -- Models of turbulent flows and particle dynamics -- Particle deposition and fouling.
Record Nr. UNINA-9910254168103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Perspectives in quantum Hall effects [[electronic resource] ] : novel quantum liquids in low-dimensional semiconductor structures / / edited by Sankar Das Sarma, Aron Pinczuk
Perspectives in quantum Hall effects [[electronic resource] ] : novel quantum liquids in low-dimensional semiconductor structures / / edited by Sankar Das Sarma, Aron Pinczuk
Pubbl/distr/stampa New York, : Wiley, c1997
Descrizione fisica 1 online resource (446 p.)
Disciplina 537.6226
539.721
Altri autori (Persone) SarmaSankar Das <1953->
PinczukAron
Soggetto topico Quantum Hall effect
Hall effect devices
Soggetto genere / forma Electronic books.
ISBN 1-281-76433-7
9786611764333
3-527-61725-6
3-527-61726-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PERSPECTIVES IN QUANTUM HALL EFFECTS; CONTENTS; Contributors; Preface; 1 Localization, Metal-Insulator Transitions, and Quantum Hall Effect; 1.1. Introduction; 1.1.1. Background; 1.1.2. Overview; 1.1.3. Prospectus; 1.2. Two-Dimensional Localization: Concepts; 1.2.1. Two-Dimensional Scaling Localization; 1.2.2. Strong-Field Situation; 1.2.3. Quantum Hall Effect and Extended States; 1.2.4. Scaling Theory for the Plateau Transition; 1.2.5. Disorder-Tuned Field-Induced Metal-Insulator Transition; 1.3. Strong-Field Localization: Phenomenology; 1.3.1. Plateau Transitions: Integer Effect
1.3.2. Plateau Transitions: Fractional Effect1.3.3. Spin Effects; 1.3.4. Frequency-Domain Experiments; 1.3.5. Magnetic-Field-Induced Metal-Insulator Transitions; 1.4. Related Topics; 1.4.1. Universality; 1.4.2. Random Flux Localization; References; 2 Experimental Studies of Multicomponent Quantum Hall Systems; 2.1. Introduction; 2.2. Spin and the FQHE; 2.2.1. Tilted Field Technique; 2.2.2. Phase Transition at v = 8/5; 2.2.3. The v = 5/2 Enigma; 2.3. FQHE in Double-Layer 2D Systems; 2.3.1. Double-Layer Samples; 2.3.2. The v = 1/2 FQHE; 2.3.3. Collapse of the Odd Integers
2.3.4. Many-Body v = 1 State2.4. Summary; References; 3 Properties of the Electron Solid; 3.1. Introduction; 3.1.1. Realizations of the Wigner Crystal; 3.1.2. Wigner Crystal in a Magnetic Field; 3.2. Some Intriguing Experiments; 3.2.1. Early Experiments: Fractional Quantum Hall Effects; 3.2.2. Insulating State at Low Filling Factors: A Wigner Crystal?; 3.2.3. Photoluminescence Experiments; 3.3. Disorder Effects on the Electron Solid: Classical Studies; 3.3.1. Defects and the State of the Solid; 3.3.2. Molecular Dynamics Simulations; 3.3.3. Continuum Elasticity Theory Analysis
3.3.4. Effect of Finite Temperatures3.4. Quantum Effects on Interstitial Electrons; 3.4.1. Correlation Effects on Interstitials: A Trial Wavefunction; 3.4.2. Interstitials and the Hall Effect; 3.5. Photoluminescence as a Probe of the Wigner Crystal; 3.5.1. Formalism; 3.5.2. Mean-Field Theory; 3.5.3. Beyond Mean-Field Theory: Shakeup Effects; 3.5.4. Hofstadter Spectrum: Can It Be Seen?; 3.6. Conclusion: Some Open Questions; References; 4 Edge-State Transport; 4.1 Introduction; 4.2. Edge States; 4.2.1. IQHE; 4.2.2. FQHE; 4.3. Randomness and Hierarchical Edge States; 4.3.1. The v = 2 Random Edge
4.3.2. Fractional Quantum Hall Random Edge4.3.3. Finite-Temperature Effects; 4.4. Tunneling as a Probe of Edge-State Structure; 4.4.1. Tunneling at a Point Contact; 4.4.2. Resonant Tunneling; 4.4.3. Generalization to Hierarchical States; 4.4.4. Shot Noise; 4.5. Summary; Appendix: Renormalization Group Analysis; References; 5 Multicomponent Quantum Hall Systems: The Sum of Their Parts and More; 5.1. Introduction; 5.2 Multicomponent Wavefunctions; 5.3. Chern-Simons Effective Field Theory; 5.4. Fractional Charges in Double-Layer Systems; 5.5. Collective Modes in Double-Layer Quantum Hall Systems
5.6. Broken Symmetries
Record Nr. UNINA-9910144734303321
New York, : Wiley, c1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Perspectives in quantum Hall effects [[electronic resource] ] : novel quantum liquids in low-dimensional semiconductor structures / / edited by Sankar Das Sarma, Aron Pinczuk
Perspectives in quantum Hall effects [[electronic resource] ] : novel quantum liquids in low-dimensional semiconductor structures / / edited by Sankar Das Sarma, Aron Pinczuk
Pubbl/distr/stampa New York, : Wiley, c1997
Descrizione fisica 1 online resource (446 p.)
Disciplina 537.6226
539.721
Altri autori (Persone) SarmaSankar Das <1953->
PinczukAron
Soggetto topico Quantum Hall effect
Hall effect devices
ISBN 1-281-76433-7
9786611764333
3-527-61725-6
3-527-61726-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PERSPECTIVES IN QUANTUM HALL EFFECTS; CONTENTS; Contributors; Preface; 1 Localization, Metal-Insulator Transitions, and Quantum Hall Effect; 1.1. Introduction; 1.1.1. Background; 1.1.2. Overview; 1.1.3. Prospectus; 1.2. Two-Dimensional Localization: Concepts; 1.2.1. Two-Dimensional Scaling Localization; 1.2.2. Strong-Field Situation; 1.2.3. Quantum Hall Effect and Extended States; 1.2.4. Scaling Theory for the Plateau Transition; 1.2.5. Disorder-Tuned Field-Induced Metal-Insulator Transition; 1.3. Strong-Field Localization: Phenomenology; 1.3.1. Plateau Transitions: Integer Effect
1.3.2. Plateau Transitions: Fractional Effect1.3.3. Spin Effects; 1.3.4. Frequency-Domain Experiments; 1.3.5. Magnetic-Field-Induced Metal-Insulator Transitions; 1.4. Related Topics; 1.4.1. Universality; 1.4.2. Random Flux Localization; References; 2 Experimental Studies of Multicomponent Quantum Hall Systems; 2.1. Introduction; 2.2. Spin and the FQHE; 2.2.1. Tilted Field Technique; 2.2.2. Phase Transition at v = 8/5; 2.2.3. The v = 5/2 Enigma; 2.3. FQHE in Double-Layer 2D Systems; 2.3.1. Double-Layer Samples; 2.3.2. The v = 1/2 FQHE; 2.3.3. Collapse of the Odd Integers
2.3.4. Many-Body v = 1 State2.4. Summary; References; 3 Properties of the Electron Solid; 3.1. Introduction; 3.1.1. Realizations of the Wigner Crystal; 3.1.2. Wigner Crystal in a Magnetic Field; 3.2. Some Intriguing Experiments; 3.2.1. Early Experiments: Fractional Quantum Hall Effects; 3.2.2. Insulating State at Low Filling Factors: A Wigner Crystal?; 3.2.3. Photoluminescence Experiments; 3.3. Disorder Effects on the Electron Solid: Classical Studies; 3.3.1. Defects and the State of the Solid; 3.3.2. Molecular Dynamics Simulations; 3.3.3. Continuum Elasticity Theory Analysis
3.3.4. Effect of Finite Temperatures3.4. Quantum Effects on Interstitial Electrons; 3.4.1. Correlation Effects on Interstitials: A Trial Wavefunction; 3.4.2. Interstitials and the Hall Effect; 3.5. Photoluminescence as a Probe of the Wigner Crystal; 3.5.1. Formalism; 3.5.2. Mean-Field Theory; 3.5.3. Beyond Mean-Field Theory: Shakeup Effects; 3.5.4. Hofstadter Spectrum: Can It Be Seen?; 3.6. Conclusion: Some Open Questions; References; 4 Edge-State Transport; 4.1 Introduction; 4.2. Edge States; 4.2.1. IQHE; 4.2.2. FQHE; 4.3. Randomness and Hierarchical Edge States; 4.3.1. The v = 2 Random Edge
4.3.2. Fractional Quantum Hall Random Edge4.3.3. Finite-Temperature Effects; 4.4. Tunneling as a Probe of Edge-State Structure; 4.4.1. Tunneling at a Point Contact; 4.4.2. Resonant Tunneling; 4.4.3. Generalization to Hierarchical States; 4.4.4. Shot Noise; 4.5. Summary; Appendix: Renormalization Group Analysis; References; 5 Multicomponent Quantum Hall Systems: The Sum of Their Parts and More; 5.1. Introduction; 5.2 Multicomponent Wavefunctions; 5.3. Chern-Simons Effective Field Theory; 5.4. Fractional Charges in Double-Layer Systems; 5.5. Collective Modes in Double-Layer Quantum Hall Systems
5.6. Broken Symmetries
Record Nr. UNINA-9910829942403321
New York, : Wiley, c1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Perspectives in quantum Hall effects [[electronic resource] ] : novel quantum liquids in low-dimensional semiconductor structures / / edited by Sankar Das Sarma, Aron Pinczuk
Perspectives in quantum Hall effects [[electronic resource] ] : novel quantum liquids in low-dimensional semiconductor structures / / edited by Sankar Das Sarma, Aron Pinczuk
Pubbl/distr/stampa New York, : Wiley, c1997
Descrizione fisica 1 online resource (446 p.)
Disciplina 537.6226
539.721
Altri autori (Persone) SarmaSankar Das <1953->
PinczukAron
Soggetto topico Quantum Hall effect
Hall effect devices
ISBN 1-281-76433-7
9786611764333
3-527-61725-6
3-527-61726-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PERSPECTIVES IN QUANTUM HALL EFFECTS; CONTENTS; Contributors; Preface; 1 Localization, Metal-Insulator Transitions, and Quantum Hall Effect; 1.1. Introduction; 1.1.1. Background; 1.1.2. Overview; 1.1.3. Prospectus; 1.2. Two-Dimensional Localization: Concepts; 1.2.1. Two-Dimensional Scaling Localization; 1.2.2. Strong-Field Situation; 1.2.3. Quantum Hall Effect and Extended States; 1.2.4. Scaling Theory for the Plateau Transition; 1.2.5. Disorder-Tuned Field-Induced Metal-Insulator Transition; 1.3. Strong-Field Localization: Phenomenology; 1.3.1. Plateau Transitions: Integer Effect
1.3.2. Plateau Transitions: Fractional Effect1.3.3. Spin Effects; 1.3.4. Frequency-Domain Experiments; 1.3.5. Magnetic-Field-Induced Metal-Insulator Transitions; 1.4. Related Topics; 1.4.1. Universality; 1.4.2. Random Flux Localization; References; 2 Experimental Studies of Multicomponent Quantum Hall Systems; 2.1. Introduction; 2.2. Spin and the FQHE; 2.2.1. Tilted Field Technique; 2.2.2. Phase Transition at v = 8/5; 2.2.3. The v = 5/2 Enigma; 2.3. FQHE in Double-Layer 2D Systems; 2.3.1. Double-Layer Samples; 2.3.2. The v = 1/2 FQHE; 2.3.3. Collapse of the Odd Integers
2.3.4. Many-Body v = 1 State2.4. Summary; References; 3 Properties of the Electron Solid; 3.1. Introduction; 3.1.1. Realizations of the Wigner Crystal; 3.1.2. Wigner Crystal in a Magnetic Field; 3.2. Some Intriguing Experiments; 3.2.1. Early Experiments: Fractional Quantum Hall Effects; 3.2.2. Insulating State at Low Filling Factors: A Wigner Crystal?; 3.2.3. Photoluminescence Experiments; 3.3. Disorder Effects on the Electron Solid: Classical Studies; 3.3.1. Defects and the State of the Solid; 3.3.2. Molecular Dynamics Simulations; 3.3.3. Continuum Elasticity Theory Analysis
3.3.4. Effect of Finite Temperatures3.4. Quantum Effects on Interstitial Electrons; 3.4.1. Correlation Effects on Interstitials: A Trial Wavefunction; 3.4.2. Interstitials and the Hall Effect; 3.5. Photoluminescence as a Probe of the Wigner Crystal; 3.5.1. Formalism; 3.5.2. Mean-Field Theory; 3.5.3. Beyond Mean-Field Theory: Shakeup Effects; 3.5.4. Hofstadter Spectrum: Can It Be Seen?; 3.6. Conclusion: Some Open Questions; References; 4 Edge-State Transport; 4.1 Introduction; 4.2. Edge States; 4.2.1. IQHE; 4.2.2. FQHE; 4.3. Randomness and Hierarchical Edge States; 4.3.1. The v = 2 Random Edge
4.3.2. Fractional Quantum Hall Random Edge4.3.3. Finite-Temperature Effects; 4.4. Tunneling as a Probe of Edge-State Structure; 4.4.1. Tunneling at a Point Contact; 4.4.2. Resonant Tunneling; 4.4.3. Generalization to Hierarchical States; 4.4.4. Shot Noise; 4.5. Summary; Appendix: Renormalization Group Analysis; References; 5 Multicomponent Quantum Hall Systems: The Sum of Their Parts and More; 5.1. Introduction; 5.2 Multicomponent Wavefunctions; 5.3. Chern-Simons Effective Field Theory; 5.4. Fractional Charges in Double-Layer Systems; 5.5. Collective Modes in Double-Layer Quantum Hall Systems
5.6. Broken Symmetries
Record Nr. UNINA-9910840575403321
New York, : Wiley, c1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The physics of the dark photon : a primer / / Marco Fabbrichesi, Emidio Gabrielli, Gaia Lanfranchi
The physics of the dark photon : a primer / / Marco Fabbrichesi, Emidio Gabrielli, Gaia Lanfranchi
Autore Fabbrichesi Marco
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (X, 78 p. 19 illus., 17 illus. in color.)
Disciplina 539.721
Collana SpringerBriefs in Physics
Soggetto topico Photons
Dark matter (Astronomy)
Bosons
ISBN 3-030-62519-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Phenomenology of the Massless Dark Photon -- Phenomenology of the Massive Dark Photon -- Concluding Remarks.
Record Nr. UNISA-996466730303316
Fabbrichesi Marco  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
The physics of the dark photon : a primer / / Marco Fabbrichesi, Emidio Gabrielli, Gaia Lanfranchi
The physics of the dark photon : a primer / / Marco Fabbrichesi, Emidio Gabrielli, Gaia Lanfranchi
Autore Fabbrichesi Marco
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (X, 78 p. 19 illus., 17 illus. in color.)
Disciplina 539.721
Collana SpringerBriefs in Physics
Soggetto topico Photons
Dark matter (Astronomy)
Bosons
ISBN 3-030-62519-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Phenomenology of the Massless Dark Photon -- Phenomenology of the Massive Dark Photon -- Concluding Remarks.
Record Nr. UNINA-9910739474703321
Fabbrichesi Marco  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The physics of the Z and W bosons [[electronic resource] /] / Roberto Tenchini, Claudio Verzegnassi
The physics of the Z and W bosons [[electronic resource] /] / Roberto Tenchini, Claudio Verzegnassi
Autore Tenchini Roberto
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (436 p.)
Disciplina 539.7
539.721
Altri autori (Persone) VerzegnassiClaudio
Soggetto topico Z bosons
W bosons
Weak interactions (Nuclear physics)
Soggetto genere / forma Electronic books.
ISBN 1-281-93820-3
9786611938208
981-277-990-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. The Standard Model of Electroweak Interactions; 1.1 Weak interactions in the original Fermi approach; 1.2 Weak interactions and the intermediate vector bosons; 1.3 The Higgs mechanism in the local SU(2) gauge symmetry case; 1.4 Unification of weak and electromagnetic interactions in the Standard Model; 1.4.1 The SU(2) U(1) description of electroweak interactions; 1.4.2 Gauge boson masses in the SU(2)L U(1)YL scheme; 1.4.3 The (W; Z) mass relationship and the 0 parameter; 1.4.4 Electroweak unification and weak neutral currents
1.4.5 Numerical prediction for the gauge boson masses in the Minimal Standard Model 1.5 Z physics as a test of the MSM; 1.5.1 The Higgs scalar mass in the MSM; 1.5.2 A more complete formulation of the MSM; 1.5.2.1 Inclusion of strong interactions; 1.5.2.2 Masses of leptons and quarks; 1.5.2.3 Family replication; 1.5.3 Tests of the MSM at LEP1/SLC; 1.5.4 Universality of weak interactions and number of fermion families; 2. Z Physics at Tree Level; 2.1 Conventions, spinors and basic cross sections; 2.2 Chiral fermions and polarized cross sections in the one-photon exchange
2.3 Interaction involving a Z boson 2.4 Computation of Z partial widths; 2.5 Angular and polarization asymmetries; 2.6 Asymmetries in the vicinity of the Z pole; 3. Z Physics at One Loop for Final Leptonic States; 3.1 Definition of physical input parameters and removal of infinities at one loop in e+e annihilationon Z resonance; 3.1.1 The theoretical description at tree level; 3.1.2 Renormalizability and gauge transformations in the MSM; 3.1.3 Treatment of formally divergent quantities in e+e; 3.1.4 The dimensional regularization method
3.1.5 Definition of physical parameters: renormalization of mWmZ; 3.1.6 Charge renormalization and definition in the MSM; 3.1.7 The `running'' of QED in the MSM; 3.2 Theoretical description of the Z physics observables at one loop in the MSM; 3.2.1 Choice of the most convenient input parameters: definition of the physical GF; 3.2.2 Derivation of Sirlin''s equation: introduction and definition of the fundamental parameter r; 3.2.3 Calculation of r(f): identification of four classes of physical effects; 3.2.4 Numerical estimate of (m2 Z)(f)
3.2.5 Determination of rW and calculation of the W mass 3.2.5.1 Numerical estimate of 1(0); 3.2.5.2 Numerical estimate of 3(m2 Z); 3.2.5.3 Numerical estimate of 2; 3.2.5.4 Calculation of the W mass; 3.3 Formulation of Z physics at one loop: introduction of the effective weak parameter sin2 W; eff; 3.3.1 Operative definition of the electroweak mixing angle: the longitudinal polarization asymmetry; 3.3.2 Calculation of sin2 W; eff at one loop: fermion pairs contributions to self-energies; 3.3.3 Relationship between sin2 (f) and mZ
3.3.4 The Z leptonic width at one loop in the `fermion pairs'' approximation
Record Nr. UNINA-9910458659503321
Tenchini Roberto  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The physics of the Z and W bosons [[electronic resource] /] / Roberto Tenchini, Claudio Verzegnassi
The physics of the Z and W bosons [[electronic resource] /] / Roberto Tenchini, Claudio Verzegnassi
Autore Tenchini Roberto
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (436 p.)
Disciplina 539.7
539.721
Altri autori (Persone) VerzegnassiClaudio
Soggetto topico Z bosons
W bosons
Weak interactions (Nuclear physics)
ISBN 1-281-93820-3
9786611938208
981-277-990-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. The Standard Model of Electroweak Interactions; 1.1 Weak interactions in the original Fermi approach; 1.2 Weak interactions and the intermediate vector bosons; 1.3 The Higgs mechanism in the local SU(2) gauge symmetry case; 1.4 Unification of weak and electromagnetic interactions in the Standard Model; 1.4.1 The SU(2) U(1) description of electroweak interactions; 1.4.2 Gauge boson masses in the SU(2)L U(1)YL scheme; 1.4.3 The (W; Z) mass relationship and the 0 parameter; 1.4.4 Electroweak unification and weak neutral currents
1.4.5 Numerical prediction for the gauge boson masses in the Minimal Standard Model 1.5 Z physics as a test of the MSM; 1.5.1 The Higgs scalar mass in the MSM; 1.5.2 A more complete formulation of the MSM; 1.5.2.1 Inclusion of strong interactions; 1.5.2.2 Masses of leptons and quarks; 1.5.2.3 Family replication; 1.5.3 Tests of the MSM at LEP1/SLC; 1.5.4 Universality of weak interactions and number of fermion families; 2. Z Physics at Tree Level; 2.1 Conventions, spinors and basic cross sections; 2.2 Chiral fermions and polarized cross sections in the one-photon exchange
2.3 Interaction involving a Z boson 2.4 Computation of Z partial widths; 2.5 Angular and polarization asymmetries; 2.6 Asymmetries in the vicinity of the Z pole; 3. Z Physics at One Loop for Final Leptonic States; 3.1 Definition of physical input parameters and removal of infinities at one loop in e+e annihilationon Z resonance; 3.1.1 The theoretical description at tree level; 3.1.2 Renormalizability and gauge transformations in the MSM; 3.1.3 Treatment of formally divergent quantities in e+e; 3.1.4 The dimensional regularization method
3.1.5 Definition of physical parameters: renormalization of mWmZ; 3.1.6 Charge renormalization and definition in the MSM; 3.1.7 The `running'' of QED in the MSM; 3.2 Theoretical description of the Z physics observables at one loop in the MSM; 3.2.1 Choice of the most convenient input parameters: definition of the physical GF; 3.2.2 Derivation of Sirlin''s equation: introduction and definition of the fundamental parameter r; 3.2.3 Calculation of r(f): identification of four classes of physical effects; 3.2.4 Numerical estimate of (m2 Z)(f)
3.2.5 Determination of rW and calculation of the W mass 3.2.5.1 Numerical estimate of 1(0); 3.2.5.2 Numerical estimate of 3(m2 Z); 3.2.5.3 Numerical estimate of 2; 3.2.5.4 Calculation of the W mass; 3.3 Formulation of Z physics at one loop: introduction of the effective weak parameter sin2 W; eff; 3.3.1 Operative definition of the electroweak mixing angle: the longitudinal polarization asymmetry; 3.3.2 Calculation of sin2 W; eff at one loop: fermion pairs contributions to self-energies; 3.3.3 Relationship between sin2 (f) and mZ
3.3.4 The Z leptonic width at one loop in the `fermion pairs'' approximation
Record Nr. UNINA-9910784881603321
Tenchini Roberto  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The physics of the Z and W bosons [[electronic resource] /] / Roberto Tenchini, Claudio Verzegnassi
The physics of the Z and W bosons [[electronic resource] /] / Roberto Tenchini, Claudio Verzegnassi
Autore Tenchini Roberto
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (436 p.)
Disciplina 539.7
539.721
Altri autori (Persone) VerzegnassiClaudio
Soggetto topico Z bosons
W bosons
Weak interactions (Nuclear physics)
ISBN 1-281-93820-3
9786611938208
981-277-990-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. The Standard Model of Electroweak Interactions; 1.1 Weak interactions in the original Fermi approach; 1.2 Weak interactions and the intermediate vector bosons; 1.3 The Higgs mechanism in the local SU(2) gauge symmetry case; 1.4 Unification of weak and electromagnetic interactions in the Standard Model; 1.4.1 The SU(2) U(1) description of electroweak interactions; 1.4.2 Gauge boson masses in the SU(2)L U(1)YL scheme; 1.4.3 The (W; Z) mass relationship and the 0 parameter; 1.4.4 Electroweak unification and weak neutral currents
1.4.5 Numerical prediction for the gauge boson masses in the Minimal Standard Model 1.5 Z physics as a test of the MSM; 1.5.1 The Higgs scalar mass in the MSM; 1.5.2 A more complete formulation of the MSM; 1.5.2.1 Inclusion of strong interactions; 1.5.2.2 Masses of leptons and quarks; 1.5.2.3 Family replication; 1.5.3 Tests of the MSM at LEP1/SLC; 1.5.4 Universality of weak interactions and number of fermion families; 2. Z Physics at Tree Level; 2.1 Conventions, spinors and basic cross sections; 2.2 Chiral fermions and polarized cross sections in the one-photon exchange
2.3 Interaction involving a Z boson 2.4 Computation of Z partial widths; 2.5 Angular and polarization asymmetries; 2.6 Asymmetries in the vicinity of the Z pole; 3. Z Physics at One Loop for Final Leptonic States; 3.1 Definition of physical input parameters and removal of infinities at one loop in e+e annihilationon Z resonance; 3.1.1 The theoretical description at tree level; 3.1.2 Renormalizability and gauge transformations in the MSM; 3.1.3 Treatment of formally divergent quantities in e+e; 3.1.4 The dimensional regularization method
3.1.5 Definition of physical parameters: renormalization of mWmZ; 3.1.6 Charge renormalization and definition in the MSM; 3.1.7 The `running'' of QED in the MSM; 3.2 Theoretical description of the Z physics observables at one loop in the MSM; 3.2.1 Choice of the most convenient input parameters: definition of the physical GF; 3.2.2 Derivation of Sirlin''s equation: introduction and definition of the fundamental parameter r; 3.2.3 Calculation of r(f): identification of four classes of physical effects; 3.2.4 Numerical estimate of (m2 Z)(f)
3.2.5 Determination of rW and calculation of the W mass 3.2.5.1 Numerical estimate of 1(0); 3.2.5.2 Numerical estimate of 3(m2 Z); 3.2.5.3 Numerical estimate of 2; 3.2.5.4 Calculation of the W mass; 3.3 Formulation of Z physics at one loop: introduction of the effective weak parameter sin2 W; eff; 3.3.1 Operative definition of the electroweak mixing angle: the longitudinal polarization asymmetry; 3.3.2 Calculation of sin2 W; eff at one loop: fermion pairs contributions to self-energies; 3.3.3 Relationship between sin2 (f) and mZ
3.3.4 The Z leptonic width at one loop in the `fermion pairs'' approximation
Record Nr. UNINA-9910816624103321
Tenchini Roberto  
Singapore ; ; Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...