top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The ESD control program handbook [[electronic resource] /] / Jeremy M Smallwood, Electrostatic Solutions Ltd, Southampton, Southampton, UK
The ESD control program handbook [[electronic resource] /] / Jeremy M Smallwood, Electrostatic Solutions Ltd, Southampton, Southampton, UK
Autore Smallwood J. M (Jeremy M.)
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2020]
Descrizione fisica 1 online resource (541 pages)
Disciplina 537.52
Collana IEEE
Soggetto topico Electric discharges
ISBN 1-118-69455-4
1-118-69457-0
1-118-69454-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 11.4 Environmental conditions -- 11.5 Summary of the standard test methods and their applications -- 11.6 Measurement equipment -- 11.6.1 Choosing a resistance meter for high resistance measurements -- 11.6.2 Low resistance meter for soldering iron grounding test -- 11.6.3 Resistance measurement electrodes -- 11.6.4 Concentric ring electrodes for packaging surface and volume resistance measurement -- 11.6.5 Two-point probe for packaging surface resistance measurements -- 11.6.6 Footwear test electrode -- 11.6.7 Hand-held electrode -- 11.6.8 Tool test electrode -- 11.6.9 Metal plate electrode for volume resistance measurements -- 11.6.10 Insulating supports -- 11.6.11 ESD ground connectors -- 11.6.12 Electrostatic field meters and voltmeters -- 11.6.13 Charge Plate Monitors (CPM) -- 11.7 Common problems with measurements -- 11.7.1 Humidity -- 11.7.2 Accidental measurement of parallel paths -- 11.8 Standard measurements specified by IEC 61340-5-1 and ANSI/ESD S20.20 -- 11.8.1 Resistance to ground -- 11.8.2 Point to point resistance -- 11.8.3 Personal grounding equipment tests -- 11.8.4 Surface resistance of packaging materials -- 11.8.5 Volume resistance of packaging materials -- 11.8.6 ESD Shielding of bags -- 11.8.7 Evaluation of ESD Shielding of packaging systems -- 11.8.8 Measurement of ioniser decay time and offset voltage -- 11.8.9 Walk test of footwear and flooring -- 11.9 Useful measurements not specified by IEC 61340-5-1 and ESD S20.20 -- 11.9.1 Electrostatic fields and voltages -- 11.9.2 Measurement of electric fields at the position of the ESDS -- 11.9.3 Measurement of surface voltages on large objects using an electrostatic field meter calibrated as a surface voltmeter -- 11.9.4 Measurement of voltage on devices or small conductors -- 11.9.5 Resistance of tools -- 11.9.6 Resistance of soldering irons -- 11.9.7 Resistance of gloves or finger cots -- 11.9.8 Charge decay measurements -- 11.9.9 Faraday pail measurement of charge on an object -- 11.9.10 ESD event detection.
References -- Bibliographý -- 12 ESD Training -- 12.1 Why do we need ESD training? -- 12.2 Training planning -- 12.3 Who needs training? -- 12.4 Training form and content -- 12.4.1 Training goals -- 12.4.2 Initial training -- 12.4.3 Refresher training -- 12.4.4 Training methods -- 12.4.5 Supporting information -- 12.4.6 Training considerations -- 12.4.7 Public tutorials and courses -- 12.4.8 Qualifications and Certification -- 12.4.9 National and International ESD groups and electrostatics interest organisations -- 12.4.10 Conferences -- 12.4.11 Books, articles and online resources -- 12.5 Electrostatic and ESD theory -- 12.5.1 The prós and cońs of theory -- 12.5.2 A technical and non-technical explanation of electrostatic charging -- 12.6 Demonstrations of ESD control related issues -- 12.6.1 The role of demonstrations -- 12.6.2 Demonstrating real ESD damage -- 12.6.3 The cost of ESD damage -- 12.7 Electrostatic demonstrations -- 12.7.1 The value of electrostatic demonstrations -- 12.7.2 The prós and cońs of demonstrations -- 12.7.3 Useful equipment for demonstrations -- 12.7.4 Showing how easy it is to generate electrostatic charge -- 12.7.5 Understanding electrostatic fields -- 12.7.6 Understanding charge and voltage -- 12.7.7 Tribocharging -- 12.7.8 Production of ESD -- 12.7.9 Equipotential bonding and grounding -- 12.7.10 Induction charging -- 12.7.11 ESD on demand ́ the ́perpetual ESD generatoŕ -- 12.7.12 Body voltage and personal grounding -- 12.7.13 Charge generation and electrostatic field shielding of bags -- 12.7.14 Insulators cannot be grounded -- 12.7.15 Neutralising charge - Charge decay and voltage offset of ionisers -- 12.8 Evaluation -- 12.8.1 The need for evaluation -- 12.8.2 Practical test -- 12.8.3 Written tests -- 12.8.4 Pass criteria -- References -- Bibliography -- 13 The future -- 13.1 General trends -- 13.2 ESD withstand voltage trends -- 13.2.1 Integrated circuit ESD withstand voltage trends -- 13.2.2 Other component ESD withstand voltage trends.
13.2.3 Availability of ESD withstand voltage data -- 13.2.4 Device ESD withstand test -- 13.3 ESD control programs and process controls -- 13.3.1 ESD control program development strategies -- 13.3.2 Human body ESD -- 13.3.3 ESD between ESDS and conductive items -- 13.3.4 Charged board, module and cable discharge events -- 13.3.5 Optimisation -- 13.4 Standards -- 13.5 ESD control equipment and materials -- 13.5.1 ESD control materials -- 13.5.2 ESD protective packaging -- 13.6 ESD related measurements -- 13.6.1 ESD protective packaging measurements -- 13.6.2 Voltage measurement on ESDS and ungrounded conductors -- 13.6.3 Measurements related to ESD risk in automated handling equipment -- 13.7 System ESD immunity -- 13.8 Education and training -- References -- Bibliography -- Appendix A. An example draft ESD control program -- A. ESD program plan at XXX LTD -- A.1 Introduction -- A.2 Scope -- A.3 Terms and definitions -- A.4 Personal safety -- A.5 ESD control program -- A.5.1 ESD control program requirements -- A.5.2 ESD Coordinator -- A.5.3 Tailoring ESD control requirements -- A.6 ESD control program technical requirements -- A.6.1 ESD ground -- A.6.2 Personal grounding -- A.6.3 ESD Protected Areas (EPA) -- A.6.4 ESD protective packaging -- A.6.5 Marking of ESD related items -- A.7 Compliance verification plan -- A.8 ESD training plan -- A.8.1 General requirements of the ESD Training Plan -- A.8.2 Training records -- A.8.3 Training content and frequency -- A.9 ESD control product qualification -- A.10 ESD control program references -- References.
Introduction -- Foreword -- Preface -- Acknowledgements -- 1 Definitions and Terminology -- 1.1 Scientific notation and SI unit prefixes -- 1.2 Charge, electrostatic fields and voltage -- 1.2.1 Charge -- 1.2.2 Ions -- 1.2.3 Dissipation and neutralization of electrostatic charge -- 1.2.4 Voltage (potential) -- 1.2.5 Electric or electrostatic field -- 1.2.6 Gausśs Law -- 1.2.7 Electrostatic attraction (ESA) -- 1.2.8 Permittivity -- 1.3 Electric current -- 1.4 Electrostatic discharge (ESD) -- 1.4.1 ESD Models -- 1.4.2 ElectroMagnetic Interference (EMI) -- 1.5 Earthing, grounding and equipotential bonding -- 1.6 Power and Energy -- 1.7 Resistance, resistivity and conductivity -- 1.7.1 Resistance -- 1.7.2 Resistivity and conductivity -- 1.7.2.1 Surface resistivity and surface resistance -- 1.7.2.2 Volume resistance, volume resistivity and conductivity -- 1.7.3 Insulators, conductors, conductive, dissipative and antistatic materials -- 1.7.4 Point to point resistance -- 1.7.5 Resistance to ground -- 1.7.6 Combination of resistances -- 1.8 Capacitance -- 1.9 Shielding -- 1.10 Dielectric breakdown strength -- 1.11 Relative humidity and dew point -- References -- 2 The principles of static electricity and electrostatic discharge (ESD) control -- 2.1 Overview -- 2.2 Contact charge generation (triboelectrification) -- 2.2.1 The polarity and magnitude of charging -- 2.3 Electrostatic charge build-up and dissipation -- 2.3.1 A simple electrical model of electrostatic charge build-up -- 2.3.2 Capacitance is variable -- 2.3.3 Charge decay time -- 2.3.4 Conductors and insulators revisited -- 2.3.5 The effect of relative humidity -- 2.4 Conductors in electrostatic fields -- 2.4.1 Voltage on conducting and insulating bodies and surfaces -- 2.4.2 Electrostatic field in practical situations -- 2.4.3 Faraday cage -- 2.4.4 Induction: An isolated conductive object attains a voltage when in an electric field -- 2.4.1 Induction charging: An object can become charged by grounding it -- 2.4.2 Faraday pail and shielding of charges within a closed object.
2.5 Electrostatic discharges -- 2.5.1 ESD (sparks) between conducting objects -- 2.5.2 ESD from insulating surfaces -- 2.5.3 Corona discharge -- 2.5.4 Other types of discharge -- 2.6 Common electrostatic discharge sources -- 2.6.1 ESD from the human body -- 2.6.2 ESD from charged conductive objects -- 2.6.3 Charged device ESD -- 2.6.4 ESD from a charged board -- 2.6.5 ESD from a charged module -- 2.6.6 ESD from charged cables -- 2.7 Electronic models of ESD -- 2.8 Electrostatic attraction (ESA) -- 2.8.1 ESA and particle contamination -- 2.8.2 Neutralisation of surface voltages by air ions -- 2.8.3 Ionisers -- 2.8.4 Rate of charge neutralisation -- 2.8.5 The region of effective charge neutralisation around an ioniser -- 2.8.6 Ioniser balance and charging of a surface by an unbalanced ioniser -- 2.9 Electromagnetic interference (EMI) -- 2.10 How to avoid ESD damage of components -- 2.10.1 The circumstances leading to ESD damage of a component -- 2.10.2 Risk of ESD damage -- 2.10.3 The principles of ESD control -- References -- Bibliography -- 3 ESD sensitive devices (ESDS) -- 3.1 What are ESD sensitive devices? -- 3.2 Measuring ESD Susceptibility -- 3.2.1 Modelling electrostatic discharges -- 3.2.2 Standard ESD susceptibility tests -- 3.2.3 ESD withstand voltage -- 3.2.4 Human Body Model component susceptibility test -- 3.2.5 System level Human Body ESD susceptibility test -- 3.2.6 Machine Model component susceptibility test -- 3.2.7 Charged Device Model component susceptibility test -- 3.2.8 Comparison of test methods -- 3.2.9 Failure criteria used in ESD susceptibility test -- 3.2.10 Transmission line pulse techniques -- 3.2.11 The relation between ESD withstand voltage and ESD damage -- 3.2.12 Trends in component ESD test -- 3.3 ESD susceptibility of components -- 3.3.1 Introduction -- 3.3.2 Latent failures -- 3.3.3 Built-in on-chip ESD protection and ESD protection targets -- 3.3.4 ESD sensitivity of typical components -- 3.3.5 Discrete devices -- 3.3.6 The effect of scaling.
3.3.7 Package effects -- 3.4 Some common types of ESD damage -- 3.4.1 Failure mechanisms -- 3.4.2 Breakdown of thin dielectric layers -- 3.4.3 MOSFETs -- 3.4.4 Susceptibility to electrostatic fields and breakdown between closely spaced conductors -- 3.4.5 Semiconductor junctions -- 3.4.6 Field effect structures and non-conductive device lids -- 3.4.7 Piezoelectric crystals -- 3.4.8 Light emitting diodes -- 3.4.9 Magnetoresistive heads -- 3.4.10 MicroElectroMechanical Systems (MEMS) -- 3.4.11 Burnout of device conductors or resistors -- 3.4.12 Passive components -- 3.4.13 Printed circuit boards and assemblies -- 3.4.14 Modules and system components -- 3.5 System level ESD -- 3.5.1 Introduction -- 3.5.2 The relationship between system level immunity and component ESD withstand -- 3.5.3 Charged cable ESD (Cable Discharge Events) -- 3.5.4 System-Efficient ESD Design (SEED) -- References -- Bibliography -- 4.1 Why habits? -- 4.2 The basis of ESD protection -- 4.3 What is an ESDS? -- 4.4 Habit 1: Always handle ESD sensitive components within an ESD Protected Area (EPA) -- 4.4.1 What is an EPA? -- 4.4.2 Defining the EPA boundary -- 4.4.3 Marking the EPA boundary -- 4.4.4 What is an insignificant level of ESD risk? -- 4.4.5 What are the sources of ESD risk? -- 4.4.6 What ESD protection measures are needed in the EPA? -- 4.4.7 Who will decide what ESD protection measures are required? -- 4.5 Habit 2: Where possible avoid use of insulators near ESDS -- 4.5.1 What is an insulator? -- 4.5.2 Essential and non-essential insulators -- 4.5.3 Remove non-essential insulators from the vicinity of ESDS -- 4.6 Habit 3: Reduce ESD risks from essential insulators -- 4.6.1 What is an insulator? -- 4.6.1 Insulators cannot be grounded -- 4.6.2 What to do about ESD risk from essential insulators -- 4.6.3 Using ionisers to reduce charge levels on insulators -- 4.7 Habit 4: Ground conductors, especially people -- 4.7.1 What is a conductor? -- 4.7.2 Conductive, dissipative or insulative? -- 4.7.3 Properties of a conductor.
4.7.4 Charge and voltage decay time -- 4.7.5 The importance of material contact resistance in protecting ESDS -- 4.7.6 Safety considerations -- 4.7.7 Elimination of ESD by grounding and equipotential bonding -- 4.7.8 Understanding the grounding (earth) system -- 4.7.9 Grounding personnel handling ESDS -- 4.7.10 Grounding ESD control equipment -- 4.7.11 What if a conductor cannot be grounded? -- 4.8 Habit 5: Protect ESDS using ESD packaging -- 4.8.1 Dońt take ordinary packaging materials into an EPA -- 4.8.2 The basic functions of ESD packaging -- 4.8.3 Only open ESD packaging within an EPA -- 4.8.4 Dońt put papers or other unsuitable material in a package with an ESDS -- 4.9 Habit 6: Train personnel to know how to use ESD control equipment and procedures -- 4.9.1 Why train people? -- 4.9.2 Who needs ESD training? -- 4.9.3 What training do they need? -- 4.9.4 Refresher training -- 4.10 Habit 7: Check and test to make sure everythinǵs working -- 4.10.1 Why do we need to check and test? -- 4.10.2 What needs to be tested? -- 4.10.3 ESD control product qualification -- 4.10.4 ESD control product or system compliance verification -- 4.10.5 Test methods and pass criteria -- 4.10.6 How often should ESD control items be tested? -- 4.11 The seven habits and ESD standards -- 4.12 Handling very sensitive devices -- 4.13 Controlling other ESD sources -- References -- Bibliography -- 5 Automated systems -- 5.1 What makes automated handling and assembly different? -- 5.2 Conductive, static dissipative and insulative materials -- 5.3 Safety and AHE -- 5.4 Understanding ESD sources and risks -- 5.5 A strategy for ESD control -- 5.5.1 General principles of ESD control in AHE -- 5.5.2 The conditions leading to ESD damage -- 5.5.3 Strategies for ESD control in automated equipment -- 5.5.4 Qualification of ESD control measures -- 5.5.5 Compliance verification of ESD control measures -- 5.5.6 ESD training implications -- 5.5.7 Modification of existing AHE -- 5.6 Determination and implementation of ESD control measures in AHE.
5.6.1 Define the critical path of ESDS -- 5.6.2 Examine the critical path and identify ESD risks -- 5.6.3 Determine appropriate ESD control measures -- 5.6.4 Include ESD control in new equipment specification -- 5.6.5 Document the ESD control measures used in the machine -- 5.6.6 Implement maintenance and compliance verification of ESD control measures -- 5.7 Materials, techniques and equipment used for ESD control in AHE -- 5.7.1 Grounding all conductors that make contact with ESDS -- 5.7.2 Isolated conductors -- 5.7.3 Preventing induced voltages on ESDS -- 5.7.4 Reducing tribocharging of ESDS -- 5.7.5 Using resistive contact materials to limit charged device ESD current -- 5.7.6 Anodisation -- 5.7.7 Bearings -- 5.7.8 Conveyor belts -- 5.7.9 Using ionisers to reduce charge levels on ESDS, essential insulators and isolated conductors -- 5.7.10 Vacuum pickers -- 5.8 ESD protective packaging -- 5.9 Measurements in AHE -- 5.9.1 Overview of measurements in AHE -- 5.9.2 Resistance measurements -- 5.9.3 Electrostatic field and voltage measurements -- 5.9.4 Charge measurements -- 5.9.5 Measurement of the voltage decay time and offset voltage due to neutralization by an ionizer -- 5.9.6 ESD current measurements -- 5.9.7 Detection of ESD using EMI detectors -- 5.1 Handling very sensitive components -- References -- Bibliography -- 6 ESD control standards -- 6.1 Introduction -- 6.2 The development of ESD control standards -- 6.3 Who writes the standards? -- 6.4 The IEC and ESDA standards -- 6.4.1 Standards numbering -- 6.4.2 The language of standards -- 6.4.3 Definitions used in standards -- 6.5 Requirements of IEC61340-5-1 and ANSI/ESD S20.20 standards -- 6.5.1 Background -- 6.5.2 Documentation and planning -- 6.5.3 Technical basis of the ESD control program -- 6.5.4 Personal safety -- 6.5.5 ESD Coordinator -- 6.5.6 Tailoring the ESD program -- 6.5.7 The ESD Program Plan -- 6.5.8 Training Plan -- 6.5.9 Product Qualification Plan -- 6.5.10 Compliance Verification Plan -- 6.5.11 Test methods.
6.5.12 ESD Control Program Plan technical requirements -- 6.5.13 ESD Packaging -- 6.5.14 Marking -- References -- Bibliography -- 7 Selection, use, care and maintenance of equipment and materials for ESD control -- 7.1 Introduction -- 7.1.1 Selection and qualification of equipment -- 7.1.2 Use -- 7.1.3 Cleaning, care and maintenance of equipment -- 7.1.4 Compliance verification -- 7.2 ESD control earth (ground) -- 7.2.1 What does the ESD control earth do? -- 7.2.2 Choosing an ESD control earth -- 7.2.3 Qualification of ESD control earth -- 7.2.4 Compliance verification of ESD control earth -- 7.2.5 Common problems with ground connections -- 7.3 The ESD control floor -- 7.3.1 What does an ESD control floor do? -- 7.3.2 Permanent ESD control floor material -- 7.3.3 Semi-permanent or non-permanent ESD control floor materials -- 7.3.4 Selection of floor materials -- 7.3.5 Floor material qualification test -- 7.3.6 Acceptance of a floor installation -- 7.3.7 Use of floor materials -- 7.3.8 Care and maintenance of floors -- 7.3.9 Compliance verification test -- 7.3.10 Common problems -- 7.4 Earth bonding -- 7.4.1 The role of earth bonding points -- 7.4.2 Selection of earth bonding points -- 7.4.3 Qualification of earth bonding points -- 7.4.4 Use of earth bonding points -- 7.4.5 Compliance verification of earth bonding points -- 7.5 Personal grounding -- 7.5.1 What is the purpose of personal grounding? -- 7.5.2 Personal grounding and electrical safety -- 7.5.3 Wrist straps -- 7.5.4 Footwear and flooring grounding -- 7.5.5 Grounding via ESD control seating -- 7.5.1 Personal grounding via an ESD garment -- 7.6 Work surfaces -- 7.6.1 What does a work surface do? -- 7.6.2 Types of work surfaces -- 7.6.3 Selection of a work surface -- 7.6.4 Workstation qualification test -- 7.6.5 Acceptance of work surfaces -- 7.6.6 Cleaning and maintenance of work surfaces -- 7.6.7 Compliance verification test of work surfaces -- 7.6.8 Common problems -- 7.7 Storage racks and shelves -- 7.7.1 Should it be an EPA rack or shelf?.
7.7.2 Selection, care and maintenance of racks and shelves -- 7.7.3 Qualification test of EPA shelves and racks -- 7.7.4 Acceptance of shelves and racks -- 7.7.5 Cleaning and maintenance of shelves and racks -- 7.7.6 Compliance verification test of shelves and racks -- 7.7.7 Common problems -- 7.8 Trolleys, carts and mobile equipment -- 7.8.1 Types of trolleys, carts and mobile equipment -- 7.8.2 Selection, care and maintenance of trolleys, carts and mobile equipment -- 7.8.3 Qualification of trolleys, carts and mobile equipment -- 7.8.4 Compliance verification of trolleys, carts and mobile equipment -- 7.8.5 Common problems -- 7.9 Seats -- 7.9.1 What is an ESD control seat for? -- 7.9.2 Types of ESD seating -- 7.9.3 Selection of seating -- 7.9.4 Qualification test of seating -- 7.9.5 Cleaning and maintenance of seating -- 7.9.6 Compliance verification test of seating -- 7.9.7 Common problems -- 7.9.8 Personal grounding via ESD control seating -- 7.10 Ionisers -- 7.10.1 What does an ioniser do? -- 7.10.2 Ion sources -- 7.10.3 Types of ioniser system -- 7.10.4 Selection of ionisers -- 7.10.5 Qualification test of ionisers -- 7.10.6 Cleaning and maintenance of ionisers -- 7.10.7 Compliance verification test of ionisers -- 7.10.8 Common problems -- 7.11 ESD control garments -- 7.11.1 What does an ESD control garment do? -- 7.11.2 Types of ESD control garments -- 7.11.3 Selection of ESD control garments -- 7.11.4 Qualification test of ESD control garments -- 7.11.5 Use of ESD control garments -- 7.11.6 Cleaning and maintenance of ESD control garments -- 7.11.7 Compliance verification of ESD control garments -- 7.11.8 Personal grounding via an ESD garment -- 7.12 Hand tools -- 7.12.1 Why have ESD hand tools? -- 7.12.2 Types of hand tool -- 7.12.3 Qualification test of hand tools -- 7.12.4 Use of hand tools -- 7.12.5 Compliance verification test of hand tools -- 7.12.6 Common problems with ESD control hand tools -- 7.13 Soldering or desoldering irons -- 7.13.1 ESD control issues with soldering or desoldering irons.
7.13.2 Qualification of soldering irons -- 7.13.3 Compliance verification of soldering irons -- 7.14 Gloves and finger cots -- 7.14.1 Why have gloves and finger cots? -- 7.14.2 Types of gloves and finger cots -- 7.14.3 Selection of gloves or finger cots for ESD control -- 7.14.4 Qualification test of gloves and finger cots -- 7.14.5 Cleaning and maintenance of gloves -- 7.14.6 Compliance verification test of gloves and finger cots -- 7.14.7 Common problems with gloves and finger cots -- 7.15 Marking of ESD control equipment -- References -- Bibliography -- 8 ESD control packaging -- 8.1 Why is packaging important in ESD control? -- 8.2 Packaging functions -- 8.3 ESD control packaging terminology -- 8.3.1 Terminology in general usage -- 8.1 ESD packaging properties -- 8.1.1 Triboelectric charging -- 8.1.2 Surface resistance -- 8.1.3 Volume resistance -- 8.1.4 Electrostatic field shielding -- 8.1.5 ESD shielding -- 8.2 Use of ESD protective packaging -- 8.2.1 The importance of ESD packaging properties -- 8.2.2 Packaging used within the EPA -- 8.2.3 Packaging used to protect ESDS outside the EPA -- 8.2.4 Packaging used for non-ESD susceptible items -- 8.2.5 Avoiding charged cables and modules -- 8.3 Materials and processes used in ESD protective packaging -- 8.3.1 Introduction -- 8.3.2 Antistats, pink polythene and low charging materials -- 8.3.1 Static dissipative and conductive polymers -- 8.3.2 Intrinsically conductive or dissipative polymers -- 8.3.3 Metallised film -- 8.3.4 Anodised aluminium -- 8.3.5 Vacuum forming of filled polymers -- 8.3.6 Injection moulding -- 8.3.7 Embossing -- 8.3.8 Vapour deposition -- 8.3.9 Surface coating -- 8.3.10 Lamination -- 8.4 Types and forms of ESD protective packaging -- 8.4.1 Bags -- 8.4.2 Bubble wrap -- 8.4.3 Foam -- 8.4.4 Boxes, trays and PCB racks -- 8.4.5 Tape and reel -- 8.4.1 Sticks (tubes) -- 8.4.2 Self-adhesive tapes and labels -- 8.5 Packaging standards -- 8.5.1 ESD control and protection packaging standards -- 8.5.2 Moisture barrier packaging standards.
8.5.3 ESD control packaging measurements -- 8.6 How to select an appropriate packaging system -- 8.6.1 Introduction -- 8.6.2 Customer requirements -- 8.6.3 What is the form of the ESDS? -- 8.6.4 ESD threats and ESD susceptibility -- 8.6.5 The intended packaging task -- 8.6.6 Evaluate the operational environment for the packaging -- 8.6.7 Selecting the ESD packaging type and ESD protective functions -- 8.6.8 Testing the packaging system -- 8.7 Marking of ESD protective packaging -- References -- Bibliography -- 9 How to evaluate an ESD Control Program -- 9.1 Introduction -- 9.2 Evaluation of ESD risks -- 9.2.1 Sources of ESD risk -- 9.2.2 Evaluation of ESD susceptibility of components and assemblies 2 -- 9.3 Evaluating process capability based on HBM, MM and CDM data -- 9.3.1 Process capability evaluation -- 9.3.2 Human body ESD and manual handling processes -- 9.3.3 ESD risk due to ungrounded conductors -- 9.3.4 Charged device ESD risks -- 9.3.5 Damage to voltage sensitive structures such as a capacitor or a MOSFET gate -- 9.3.6 Evaluating ESD risk from electrostatic fields -- 9.3.7 Troubleshooting -- 9.4 Evaluating ESD protection needs -- 9.4.1 Standard ESD control precautions do not necessarily address all ESD risks -- 9.4.2 Evaluating return on investment for ESD protection measures -- 9.4.3 What is the maximum acceptable resistance to ground? -- 9.4.4 Should there be a minimum resistance to ground? -- 9.4.5 ESD from charged tools -- 9.4.6 Use of gloves or finger cots -- 9.4.7 Charged cable ESD -- 9.4.8 Charged board ESD -- 9.4.9 Charged module or assembly ESD -- 9.5 Evaluation of cost effectiveness of the ESD control program -- 9.5.1 The cost of an inadequate ESD control program -- 9.5.2 The benefit arising from of the ESD control program -- 9.5.3 Evaluation of the cost of an ESD control program -- 9.5.4 Return on investment (ROI) in ESD control -- 9.5.5 Optimising an ESD control program -- 9.6 Evaluation of compliance of an ESD control program with a standard.
9.6.1 Two steps to compliance evaluation -- 9.6.2 Using checklists to evaluate compliance of documentation with a standard -- 9.6.3 Evaluation of compliance of a facility with the ESD control program -- 9.6.4 Common Problems -- References -- 10 How to develop an ESD control program -- 10.1 What do we need for a successful ESD control program? -- 10.1.1 The ESD control strategy -- 10.1.2 How to develop an ESD control program -- 10.1.3 Safety and ESD control -- 10.2 The EPA -- 10.2.1 Where do I need an EPA? -- 10.2.2 Boundaries and signage -- 10.3 What are the sources of ESD risk in the EPA? -- 10.4 How to determine appropriate ESD measures -- 10.4.1 ESD control principles -- 10.4.2 Select convenient ways of working -- 10.5 Documentation of ESD procedures -- 10.5.1 What should the documentation cover? -- 10.5.2 Writing an ESD Control Program Plan that is compliant with a standard -- 10.5.3 Introduction section -- 10.5.4 Scope -- 10.5.5 Terms and definitions -- 10.5.6 Personal safety -- 10.5.7 ESD Control Program -- 10.5.8 ESD Program Plan -- 10.5.9 ESD Training Plan -- 10.5.10 ESD control product qualification -- 10.5.11 Compliance verification plan -- 10.5.12 ESD Program Technical requirements -- 10.5.13 ESD Protected areas -- 10.5.14 ESD protective packaging -- 10.5.15 Marking of ESD related items -- 10.5.16 References -- 10.6 Evaluating ESD protection needs -- 10.7 Optimising the ESD control program -- 10.7.1 Costs and benefits of ESD control -- 10.7.2 Strategies for optimisation -- 10.8 Considerations for specific areas of the facility -- 10.8.1 The varying ESD control requirements of different areas -- 10.8.2 Goods In and Stores -- 10.8.3 Kitting -- 10.8.4 Despatch -- 10.8.5 Test -- 10.8.6 Research and development -- 10.9 Update and improvement -- 11 ESD Measurements -- 11.1 Introduction -- 11.2 Standard measurements -- 11.3 Product qualification or compliance verification? -- 11.3.1 Measurement methods for Product Qualification -- 11.3.2 Measurement methods for Compliance Verification.
Record Nr. UNINA-9910830354303321
Smallwood J. M (Jeremy M.)  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ESD handbook / / Steven H. Voldman
The ESD handbook / / Steven H. Voldman
Autore Voldman Steven H.
Pubbl/distr/stampa Hoboken, New Jersey ; ; West Sussex, England : , : Wiley, , [2021]
Descrizione fisica 1 online resource (1,574 pages) : illustrations
Disciplina 537.52
Soggetto topico Electric discharges
ISBN 1-119-23310-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Title Page -- Copyright -- Dedication -- About the Author -- Acknowledgements -- 1 ESD, EOS, EMI, EMC, and Latchup -- 1.1 Electrostatic Discharge (ESD) -- 1.2 Human Body Model (HBM) -- 1.3 Machine Model (MM) -- 1.4 Cassette Model -- 1.5 Charged Device Model (CDM) -- 1.6 Transmission Line Pulse (TLP) -- 1.7 Very Fast Transmission Line Pulse (VF-TLP) -- 1.8 Electrical Overstress (EOS) -- 1.9 Electrical Overstress (EOS) -- 1.10 EOS Sources - Lightning -- 1.11 EOS Sources - Electromagnetic Pulse (EMP) -- 1.12 EOS Sources - Machinery -- 1.13 EOS Sources - Power Distribution -- 1.14 EOS Sources - Switches, Relays, and Coils -- 1.15 EOS Design Flow and Product Definition -- 1.16 EOS Sources - Design Issues -- 1.17 Electromagnetic Interference (EMI) -- 1.18 Electromagnetic Compatibility (EMC) -- 1.19 Latchup -- Questions and Answers -- 1.20 Summary and Closing Comments -- References -- 2 ESD in Manufacturing -- 2.1 Flooring -- 2.2 Work Surfaces -- 2.3 Garments -- 2.4 Wrist Straps -- 2.5 Shoes - Footwear -- 2.6 Ionization -- 2.7 Clean Rooms -- 2.8 Carts -- 2.9 Shipping Tubes -- 2.10 Trays -- 2.11 Measurements -- 2.12 Verification -- 2.13 Audit -- 2.14 Triboelectric Charging - How Does it Happen? -- 2.15 Conductors, Semiconductors, and Insulators -- 2.16 Static Dissipative Materials -- 2.17 ESD and Materials -- 2.18 Electrification and Coulomb's Law -- 2.19 Electromagnetism and Electrodynamics -- 2.20 Electrical Breakdown -- 2.21 Electro-Quasistatics and Magnetoquasistatics -- 2.22 Electrodynamics and Maxwell's Equations -- 2.23 Electrostatic Discharge (ESD) -- 2.24 Electromagnetic Compatibility (EMC) -- 2.25 Electromagnetic Interference (EMI) -- 2.26 Fundamentals of Manufacturing and Electrostatics -- 2.27 Materials, Tooling, Human Factors, and Electrostatic Discharge -- 2.28 Materials and Human-induced Electric Fields.
2.29 Manufacturing Environment and Tooling -- 2.30 Manufacturing Equipment and ESD Manufacturing Problems -- 2.31 Manufacturing Materials -- 2.32 Measurement and Test Equipment -- 2.33 Manufacturing Testing for Compliance -- 2.34 Grounding and Bonding Systems -- 2.35 Work Surfaces -- 2.36 Wrist Straps -- 2.37 Constant Monitors -- 2.38 Footwear -- 2.39 Floors -- 2.40 Personnel Grounding with Garments -- 2.41 Garments -- 2.42 Air Ionization -- 2.43 Seating -- 2.44 Packaging and Shipping -- 2.45 Trays -- 2.46 ESD Identification -- 2.47 ESD Program Auditing -- 2.48 ESD On-Chip Protection -- 2.49 ESD, EOS, EMI, EMC, and Latchup -- 2.50 Manufacturing Electrical Overstress (EOS) -- 2.51 EMI -- 2.52 EMC -- 2.53 Summary and Closing Comments -- References -- 3 ESD Standards -- 3.1 Factory - Flooring -- 3.2 Factory - Resistance Measurement of Materials -- 3.3 JEDEC -- 3.4 International Electro-Technical Commission (IEC) -- 3.5 IEEE -- 3.6 Department of Defense (DOD) -- 3.7 Military Standards -- 3.8 SAE -- 3.9 Summary and Closing Comments -- Questions and Answers -- References -- 4 ESD Testing -- 4.1 Electrostatic Discharge (ESD) Testing -- 4.2 ESD Models -- 4.3 HBM Test System -- 4.4 HBM Two-pin Test System -- 4.5 Machine Model (MM) -- 4.6 Small Charge Model (SCM) -- 4.7 Small Charge Model Source -- 4.8 CDM Pulse Waveform -- 4.9 HMM Equivalent Circuit -- 4.10 HMM Test Equipment -- 4.11 HMM Test Configuration -- 4.12 HMM Fixture Board -- 4.13 Transmission Line Pulse (TLP) -- 4.14 TLP Test Systems -- 4.15 IEC 61000-4-2 -- 4.16 Equivalent Circuit -- 4.17 Test Equipment -- 4.18 Cable Discharge Event (CDE) -- 4.19 CDE Pulse Waveform -- 4.20 Equivalent Circuit -- 4.21 Commercial Test Systems -- 4.22 Systems Electromagnetic Interference (EMI) -- 4.23 Electromagnetic Compatibility (EMC) -- 4.24 Electrical Overstress (EOS) -- 4.25 Latchup.
4.26 Electrical Overstress (EOS) -- 4.27 EOS Sources - Lightning -- 4.28 EOS Sources - Electromagnetic Pulse (EMP) -- 4.29 Electromagnetic Compatibility -- 4.30 Summary and Closing Comments -- References -- 5 ESD Device Physics -- 5.1 Electro-thermal Instability -- 5.2 Stable System -- 5.3 Unstable System -- 5.4 Differential Relation of Voltage and Current -- 5.5 Time Constant Hierarchy -- 5.6 Thermal Physics Time Constants -- 5.7 Adiabatic, Thermal Diffusion Time Scale and Steady State -- 5.8 Electro-quasistatic and Magnetoquasistatics -- 5.9 Electrical Instability -- 5.10 Thermal Physics Time Constants -- 5.11 Adiabatic, Thermal Diffusion Time Scale and Steady State -- 5.12 Electrical Instability and Breakdown -- 5.13 Spatial Instability and Electro-thermal Current Constriction -- 5.14 Equipotential Surface -- 5.15 Heat Flow -- 5.16 Conservation of Heat -- 5.17 Electric Potential and Temperature Gradient -- 5.18 Electric Energy, Resistivity, and Thermal Conductivity -- 5.19 Breakdown -- 5.20 Electron Current Continuity Relationship -- 5.21 Air Breakdown and Peak Currents -- 5.22 Electro-thermal Instability -- 5.23 Mathematical Methods - Green's Function and Method of Images -- 5.24 Mathematical Methods - Green's Function and Method of Images -- 5.25 Mathematical Methods - Integral Transforms of the Heat Conduction Equation -- 5.26 Flux Potential Transfer Relations Matrix Methodology -- 5.27 Heat Equation Variable Conductivity -- 5.28 Mathematical Methods - Boltzmann Transformation -- 5.29 Mathematical Methods - The Duhamel Formulation -- 5.30 Spherical Source Tasca Model -- 5.31 Wunsch-Bell Model -- 5.32 The Smith and Littau Model -- 5.33 The Arkihpov-Astvatsaturyan-Godovosyn-Rudenko Model -- 5.34 The Vlasov-Sinkevitch Model -- 5.35 The Dwyer, Franklin and Campbell Model -- 5.36 Negative Differential Resistor and Resistor Ballasting.
5.37 Ash Model - Nonlinear Failure Power Thresholds -- 5.38 Statistical Models for ESD Prediction -- 5.39 Summary and Closing Comments -- References -- 6 ESD Events and Protection Circuits -- 6.1 Human Body Model (HBM) -- 6.2 Machine Model (MM) -- 6.3 Charged Device Model -- 6.4 Human Metal Model (HMM) -- 6.5 IEC 61000-4-2 History -- 6.6 IEC 61000-4-5 -- 6.7 Cable Discharge Event (CDE) -- 6.8 CDM Scope -- References -- 7 ESD Failure Mechanism -- 7.1 Tables of CMOS ESD Failure Mechanisms -- 7.2 LOCOS Isolation-Defined CMOS -- 7.3 LOCOS-bound Thick Oxide MOSFET -- 7.4 LOCOS-Bound Structures -- 7.5 Shallow Trench Isolation (STI) -- 7.6 STI Pull-down ESD Failure Mechanism -- 7.7 STI Pull-Down and Gate Wrap-Around -- 7.8 MOSFETs -- 7.9 LOCOS-bound Thick Oxide MOSFET -- 7.10 Bipolar Transistor Devices -- 7.11 Silicide Blocked N-diffusion Resistors -- 7.12 Silicon Germanium ESD Failure Mechanisms -- 7.13 Silicon Germanium Carbon ESD Failure Mechanisms -- 7.14 Gallium Arsenide Technology ESD Failure Mechanisms -- 7.15 Indium Gallium Arsenide ESD Failure Mechanisms -- 7.16 Micro Electromechanical (MEM) Systems -- 7.17 Micro-mirror Array Failures -- 7.18 EOS Bond Pad and Interconnect Failure -- 7.19 Summary and Closing Comments -- References -- 8 ESD Design Synthesis -- 8.1 ESD Design Synthesis and Architecture Flow -- 8.2 ESD Design - the Signal Path and the Alternate Current Path -- 8.3 ESD Electrical Circuit and Schematic Architecture Concepts -- 8.4 The Ideal ESD Network -- 8.5 Mapping Semiconductor Chips and ESD Designs -- 8.6 Mapping across Semiconductor Fabricators -- 8.7 ESD Design Mapping across Technology Generations -- 8.8 ESD Networks, Sequencing, and Chip Architecture -- 8.9 ESD Layout and Floorplan-related Concepts -- 8.10 ESD Architecture and Floor-planning -- 8.11 Digital and Analog CMOS Architecture.
8.12 Digital and Analog Floorplan - Placement of Analog Circuits -- 8.13 Mixed-signal Architecture - Digital, Analog, and RF Architecture -- 8.14 Summary and Closing Comments -- Questions -- References -- 9 On-chip ESD Protection Circuits - Input Circuitry -- 9.1 Receivers and ESD -- 9.2 Receivers and Receiver Delay Time -- 9.3 ESD Loading Effect on Receiver Performance -- 9.4 Receivers and HBM -- 9.5 Receivers and CDM -- 9.6 Receivers and Receiver Evolution -- 9.7 Receiver Circuits with Half-pass Transmission Gate -- 9.8 Receiver with Full-pass Transmission Gate -- 9.9 Receiver, Half-pass Transmission Gate, and Keeper Network -- 9.10 Receiver, Half-pass Transmission Gate, and the Modified Keeper Network -- 9.11 Receiver Circuits with Pseudo-zero VT Half-pass Transmission Gates -- 9.12 Receiver with Zero VT Transmission Gate -- 9.13 Receiver Circuits with Bleed Transistors -- 9.14 Receiver Circuits with Test Functions -- 9.15 Receiver with Schmitt Trigger Feedback Network -- 9.16 Bipolar Transistor Receivers -- 9.17 CMOS Differential Receiver with Analog Layout Concepts -- 9.18 CMOS Differential Receiver Capacitance Loading -- 9.19 CMOS Differential Receiver ESD Mismatch -- 9.20 Analog Differential Pair ESD Signal Pin Matching with Common Well Layout -- 9.21 Analog Differential Pair Common Centroid Design Layout - Signal-Pin to Signal-Pin and Parasitic ESD Elements -- 9.22 Off-chip Drivers (OCD) -- 9.23 Off-chip Driver I/O Standards and ESD -- 9.24 Off-chip Driver (OCD) ESD Design Basics -- 9.25 Off-chip Drivers (OCD): Mixed Voltage Interface -- 9.26 Off-chip Drivers (OCD): Self-bias Well OCD Networks -- 9.27 Self-bias Well Off-chip Driver (OCD) Networks -- 9.28 ESD Protection Networks for Self-bias Well OCD Networks -- 9.29 Programmable Impedance Off-chip Driver (OCD) Network.
9.30 ESD Input Protection Networks for Programmable Impedance Off-chip Drivers.
Record Nr. UNINA-9910798927803321
Voldman Steven H.  
Hoboken, New Jersey ; ; West Sussex, England : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ESD handbook / / Steven H. Voldman
The ESD handbook / / Steven H. Voldman
Autore Voldman Steven H.
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2021
Descrizione fisica 1 online resource (1122 pages) : illustrations
Disciplina 537.52
Soggetto topico Electric discharges
Semiconductors - Protection
Breakdown (Electricity)
Soggetto non controllato Electronic Circuits
Technology & Engineering
ISBN 1-119-23309-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Author xxxvii Acknowledgements xxxix 1 ESD, EOS, EMI, EMC, and Latchup 1 1.1 Electrostatic Discharge (ESD) 1 1.2 Human Body Model (HBM) 2 1.3 Machine Model (MM) 3 1.4 Cassette Model 3 1.5 Charged Device Model (CDM) 4 1.6 Transmission Line Pulse (TLP) 5 1.7 Very Fast Transmission Line Pulse (VF-TLP) 8 1.8 Electrical Overstress (EOS) 8 1.9 Electrical Overstress (EOS) 8 1.10 EOS Sources - Lightning 9 1.11 EOS Sources - Electromagnetic Pulse (EMP) 9 1.12 EOS Sources - Machinery 10 1.13 EOS Sources - Power Distribution 10 1.14 EOS Sources - Switches, Relays, and Coils 10 1.15 EOS Design Flow and Product Definition 10 1.16 EOS Sources - Design Issues 11 1.17 Electromagnetic Interference (EMI) 12 1.18 Electromagnetic Compatibility (EMC) 13 1.19 Latchup 13 Questions and Answers 14 1.20 Summary and Closing Comments 15 References 15 2 ESD in Manufacturing 21 2.1 Flooring 21 2.2 Work Surfaces 21 2.3 Garments 22 2.4 Wrist Straps 22 2.5 Shoes - Footwear 22 2.6 Ionization 23 2.7 Clean Rooms 24 2.8 Carts 26 2.9 Shipping Tubes 26 2.10 Trays 27 2.11 Measurements 27 2.12 Verification 28 2.13 Audit 28 2.14 Triboelectric Charging - How Does it Happen? 29 2.15 Conductors, Semiconductors, and Insulators 30 2.16 Static Dissipative Materials 30 2.17 ESD and Materials 31 2.18 Electrification and Coulomb's Law 31 2.19 Electromagnetism and Electrodynamics 33 2.20 Electrical Breakdown 33 2.21 Electro-Quasistatics and Magnetoquasistatics 36 2.22 Electrodynamics and Maxwell's Equations 36 2.23 Electrostatic Discharge (ESD) 36 2.24 Electromagnetic Compatibility (EMC) 37 2.25 Electromagnetic Interference (EMI) 37 2.26 Fundamentals of Manufacturing and Electrostatics 37 2.27 Materials, Tooling, Human Factors, and Electrostatic Discharge 38 2.28 Materials and Human-induced Electric Fields 39 2.29 Manufacturing Environment and Tooling 39 2.30 Manufacturing Equipment and ESD Manufacturing Problems 39 2.31 Manufacturing Materials 39 2.32 Measurement and Test Equipment 40 2.33 Manufacturing Testing for Compliance 41 2.34 Grounding and Bonding Systems 42 2.35 Work Surfaces 42 2.36 Wrist Straps 43 2.37 Constant Monitors 43 2.38 Footwear 43 2.39 Floors 44 2.40 Personnel Grounding with Garments 44 2.41 Garments 44 2.42 Air Ionization 44 2.43 Seating 45 2.44 Packaging and Shipping 46 2.45 Trays 46 2.46 ESD Identification 46 2.47 ESD Program Auditing 46 2.48 ESD On-Chip Protection 47 2.49 ESD, EOS, EMI, EMC, and Latchup 47 2.50 Manufacturing Electrical Overstress (EOS) 48 2.51 EMI 50 2.52 EMC 50 2.53 Summary and Closing Comments 50 References 50 3 ESD Standards 55 3.1 Factory - Flooring 55 3.2 Factory - Resistance Measurement of Materials 56 3.3 JEDEC 58 3.4 International Electro-Technical Commission (IEC) 59 3.5 IEEE 59 3.6 Department of Defense (DOD) 59 3.7 Military Standards 59 3.8 SAE 60 3.9 Summary and Closing Comments 60 Questions and Answers 60 References 61 4 ESD Testing 65 4.1 Electrostatic Discharge (ESD) Testing 65 4.2 ESD Models 65 4.3 HBM Test System 69 4.4 HBM Two-pin Test System 69 4.5 Machine Model (MM) 69 4.6 Small Charge Model (SCM) 70 4.7 Small Charge Model Source 71 4.8 CDM Pulse Waveform 72 4.9 HMM Equivalent Circuit 77 4.10 HMM Test Equipment 77 4.11 HMM Test Configuration 78 4.12 HMM Fixture Board 78 4.13 Transmission Line Pulse (TLP) 82 4.14 TLP Test Systems 84 4.15 IEC 61000-4-2 87 4.16 Equivalent Circuit 89 4.17 Test Equipment 89 4.18 Cable Discharge Event (CDE) 90 4.19 CDE Pulse Waveform 93 4.20 Equivalent Circuit 93 4.21 Commercial Test Systems 94 4.22 Systems Electromagnetic Interference (EMI) 95 4.23 Electromagnetic Compatibility (EMC) 95 4.24 Electrical Overstress (EOS) 95 4.25 Latchup 95 4.26 Electrical Overstress (EOS) 95 4.27 EOS Sources - Lightning 96 4.28 EOS Sources - Electromagnetic Pulse (EMP) 97 4.29 Electromagnetic Compatibility 97 4.30 Summary and Closing Comments 100 References 100 5 ESD Device Physics 117 5.1 Electro-thermal Instability 117 5.2 Stable System 118 5.3 Unstable System 118 5.4 Differential Relation of Voltage and Current 120 5.5 Time Constant Hierarchy 121 5.6 Thermal Physics Time Constants 121 5.7 Adiabatic, Thermal Diffusion Time Scale and Steady State 121 5.8 Electro-quasistatic and Magnetoquasistatics 122 5.9 Electrical Instability 124 5.10 Thermal Physics Time Constants 125 5.11 Adiabatic, Thermal Diffusion Time Scale and Steady State 126 5.12 Electrical Instability and Breakdown 126 5.13 Spatial Instability and Electro-thermal Current Constriction 127 5.14 Equipotential Surface 127 5.15 Heat Flow 128 5.16 Conservation of Heat 128 5.17 Electric Potential and Temperature Gradient 128 5.18 Electric Energy, Resistivity, and Thermal Conductivity 129 5.19 Breakdown 131 5.20 Electron Current Continuity Relationship 136 5.21 Air Breakdown and Peak Currents 138 5.22 Electro-thermal Instability 139 5.23 Mathematical Methods - Green's Function and Method of Images 141 5.24 Mathematical Methods - Green's Function and Method of Images 143 5.25 Mathematical Methods - Integral Transforms of the Heat Conduction Equation 148 5.26 Flux Potential Transfer Relations Matrix Methodology 152 5.27 Heat Equation Variable Conductivity 154 5.28 Mathematical Methods - Boltzmann Transformation 156 5.29 Mathematical Methods - The Duhamel Formulation 158 5.30 Spherical Source Tasca Model 160 5.31 Wunsch-Bell Model 163 5.32 The Smith and Littau Model 166 5.33 The Arkihpov-Astvatsaturyan-Godovosyn-Rudenko Model 168 5.34 The Vlasov-Sinkevitch Model 169 5.35 The Dwyer, Franklin and Campbell Model 169 5.36 Negative Differential Resistor and Resistor Ballasting 174 5.37 Ash Model - Nonlinear Failure Power Thresholds 176 5.38 Statistical Models for ESD Prediction 178 5.39 Summary and Closing Comments 180 References 180 6 ESD Events and Protection Circuits 189 6.1 Human Body Model (HBM) 189 6.2 Machine Model (MM) 191 6.3 Charged Device Model 193 6.4 Human Metal Model (HMM) 197 6.5 IEC 61000-4-2 History 204 6.6 IEC 61000-4-5 209 6.7 Cable Discharge Event (CDE) 213 6.8 CDM Scope 215 References 219 7 ESD Failure Mechanism 235 7.1 Tables of CMOS ESD Failure Mechanisms 235 7.2 LOCOS Isolation-Defined CMOS 235 7.3 LOCOS-bound Thick Oxide MOSFET 241 7.4 LOCOS-Bound Structures 242 7.5 Shallow Trench Isolation (STI) 245 7.6 STI Pull-down ESD Failure Mechanism 245 7.7 STI Pull-Down and Gate Wrap-Around 246 7.8 MOSFETs 247 7.9 LOCOS-bound Thick Oxide MOSFET 252 7.10 Bipolar Transistor Devices 254 7.11 Silicide Blocked N-diffusion Resistors 259 7.12 Silicon Germanium ESD Failure Mechanisms 259 7.13 Silicon Germanium Carbon ESD Failure Mechanisms 259 7.14 Gallium Arsenide Technology ESD Failure Mechanisms 260 7.15 Indium Gallium Arsenide ESD Failure Mechanisms 261 7.16 Micro Electromechanical (MEM) Systems 263 7.17 Micro-mirror Array Failures 265 7.18 EOS Bond Pad and Interconnect Failure 269 7.19 Summary and Closing Comments 272 References 273 8 ESD Design Synthesis 281 8.1 ESD Design Synthesis and Architecture Flow 281 8.2 ESD Design - the Signal Path and the Alternate Current Path 287 8.3 ESD Electrical Circuit and Schematic Architecture Concepts 289 8.4 The Ideal ESD Network 289 8.5 Mapping Semiconductor Chips and ESD Designs 293 8.6 Mapping across Semiconductor Fabricators 294 8.7 ESD Design Mapping across Technology Generations 295 8.8 ESD Networks, Sequencing, and Chip Architecture 306 8.9 ESD Layout and Floorplan-related Concepts 314 8.10 ESD Architecture and Floor-planning 323 8.11 Digital and Analog CMOS Architecture 347 8.12 Digital and Analog Floorplan - Placement of Analog Circuits 348 8.13 Mixed-signal Architecture - Digital, Analog, and RF Architecture 350 8.14 Summary and Closing Comments 351 Questions 351 References 352 9 On-chip ESD Protection Circuits - Input Circuitry 363 9.1 Receivers and ESD 363 9.2 Receivers and Receiver Delay Time 363 9.3 ESD Loading Effect on Receiver Performance 364 9.4 Receivers and HBM 365 9.5 Receivers and CDM 366 9.6 Receivers and Receiver Evolution 368 9.7 Receiver Circuits with Half-pass Transmission Gate 368 9.8 Receiver with Full-pass Transmission Gate 371 9.9 Receiver, Half-pass Transmission Gate, and Keeper Network 373 9.10 Receiver, Half-pass Transmission Gate, and the Modified Keeper Network 377 9.11 Receiver Circuits with Pseudo-zero VT Half-pass Transmission Gates 379 9.12 Receiver with Zero VT Transmission Gate 381 9.13 Receiver Circuits with Bleed Transistors 383 9.14 Receiver Circuits with Test Functions 384 9.15 Receiver with.
Schmitt Trigger Feedback Network 385 9.16 Bipolar Transistor Receivers 389 9.17 CMOS Differential Receiver with Analog Layout Concepts 397 9.18 CMOS Differential Receiver Capacitance Loading 398 9.19 CMOS Differential Receiver ESD Mismatch 398 9.20 Analog Differential Pair ESD Signal Pin Matching with CommonWell Layout 400 9.21 Analog Differential Pair Common Centroid Design Layout - Signal-Pin to Signal-Pin and Parasitic ESD Elements 403 9.22 Off-chip Drivers (OCD) 405 9.23 Off-chip Driver I/O Standards and ESD 407 9.24 Off-chip Driver (OCD) ESD Design Basics 408 9.25 Off-chip Drivers (OCD): Mixed Voltage Interface 414 9.26 Off-chip Drivers (OCD): Self-bias Well OCD Networks 414 9.27 Self-bias Well Off-chip Driver (OCD) Networks 415 9.28 ESD Protection Networks for Self-bias Well OCD Networks 417 9.29 Programmable Impedance Off-chip Driver (OCD) Network 418 9.30 ESD Input Protection Networks for Programmable Impedance Off-chip Drivers 422 9.31 Universal Off-chip Drivers 423 9.32 Gate Array Off-chip Driver Design 423 9.33 Gate Array OCD Design - Impedance Matching of Unused Elements 425 9.34 OCD ESD Design - Power Rails Over Multi-finger MOSFETs 426 9.35 Off-chip Driver: Gate-modulated MOSFET ESD Network 427 9.36 Off-chip Driver Simplified Gate Modulated Network 428 9.37 Off-chip Drivers ESD Design: Integration of Coupling and Ballasting Techniques 428 9.38 Ballasting and Coupling 429 9.39 MOSFET Source-initiated Gate-bootstrapped Resistor Ballasted Multi-finger MOSFET with Diode 429 9.40 MOSFET Source-initiated Gate-bootstrapped Resistor Ballasted Multi-finger MOSFET with a MOSFET 430 9.41 Gate-coupled Domino Resistor-ballasted MOSFET 431 9.42 Substrate-modulated Resistor Ballasted MOSFET 433 9.43 Summary and Closing Comments 434 Problems 435 References 437 10 On-Chip ESD Protection Circuits - ESD Power Clamps 441 10.1 ESD Power Clamps 441 10.2 ESD Power Clamp Design Practices 441 10.3 Current Loops 442 10.4 Impedance 442 10.5 Segmentation 443 10.6 Voltage Limitations 443 10.7 Latchup 443 10.8 ESD Power Clamp Circuits 444 10.9 Classification of ESD Power Clamps 444 10.10 Master-Slave ESD Power Clamps 445 10.11 Trigger Networks 445 10.12 ESD Power Clamp Characteristics and Issues 445 10.13 Design Synthesis of ESD Power Clamp - Key Design Parameters 446 10.14 Design Synthesis of ESD Power Clamps Trigger Networks 446 10.15 Transient Response Frequency Trigger Element and the ESD Frequency Window 446 10.16 ESD Power Clamp Frequency Design Window 447 10.17 Design Synthesis of ESD Power Clamp - Voltage Triggered ESD Trigger Elements 448 10.18 Design Synthesis of ESD Power Clamp - The ESD Power Clamp Shunting Element 449 10.19 ESD Power Clamp Trigger Condition vs. Shunt Failure 450 10.20 ESD Clamp Element - Width Scaling 450 10.21 ESD Clamp Element - On-resistance 450 10.22 ESD Clamp Element - Safe Operating Area (SOA) 451 10.23 ESD Power Clamp Issues 451 10.24 ESD Power Clamp Issues - Power-up and Power-down 451 10.25 ESD Power Clamp Issues - False Triggering 452 10.26 ESD Power Clamp Issues - Pre-charging 452 10.27 ESD Power Clamp Issues - Post-charging 452 10.28 ESD Power Clamp Design 453 10.29 ESD Power Clamp Design Synthesis - Forward Bias Triggered ESD Power Clamps 456 10.30 Series Stacked RC-triggered ESD Power Clamps 459 10.31 Triple Well Diode String ESD Power Clamp 463 10.32 Bipolar ESD Power Clamps 464 10.33 ESD Power Clamp Design Synthesis - Bipolar ESD Power Clamps 469 10.34 Bipolar ESD Power Clamps with Frequency Trigger Elements: Capacitance-triggered 480 10.35 Silicon Controlled Rectifier Power Clamps 481 References 486 11 ESD Architecture and Floor Planning 491 11.1 ESD Design Floor Plan 491 11.2 Peripheral I/O Design 492 11.3 Pad Limited Peripheral I/O Design Architecture 493 11.4 Pad Limited Peripheral I/O Design Architecture - Staggered I/O 493 11.5 Core Limited Peripheral I/O Design Architecture 495 11.6 Lumped ESD Power Clamp in Peripheral I/O Design Architecture 496 11.7 Lumped ESD Power Clamp in Peripheral I/O Design Architecture in the Semiconductor Chip Corners 496 11.8 Lumped ESD Power Clamp in Peripheral I/O Design Architecture - Power Pads 497 11.9 Lumped ESD Power Clamp in Peripheral I/O Design Architecture - Master/Slave ESD Power Clamp System 498 11.10 Array I/O 498 11.11 Array I/O Nibble Architecture 501 11.12 Array I/O Pair Architecture 503 11.13 Array I/O - Fully Distributed 504 11.14 ESD Architecture - Dummy Bus Architecture 507 11.15 ESD Architecture - Dummy VDD Bus 507 11.16 ESD Architecture - Dummy Ground (VSS) Bus 508 11.17 Native Voltage Power Supply Architecture 508 11.18 Single Power Supply Architecture 509 11.19 Mixed Voltage Architecture 509 11.20 Mixed Voltage Architecture - Single Power Supply 509 11.21 Mixed Voltage Architecture - Dual Power Supply 511 11.22 Mixed Signal Architecture 514 11.23 Digital and Analog Floor Plan - Placement of Analog Circuits 515 11.24 Mixed Signal Architecture - Digital, Analog, and RF Architecture 518 11.25 ESD Power Grid Design 519 11.26 I/O to Core Guard Rings 525 11.27 Within I/O Guard Rings 527 11.28 ESD-to-I/O Off-Chip Driver (OCD) Guard Ring 527 11.29 Guard Rings and Computer Aided Design (CAD) Methods 539 11.30 Summary and Closing Comments 541 References 541 12 ESD Digital Design 551 12.1 Fundamental Concepts of ESD Design 551 12.2 Concepts of ESD Digital Design 551 12.3 Device Response to External Events 552 12.4 Alternative Current Loops 553 12.5 Decoupling of Feedback Loops 554 12.6 Decoupling of Power Rails 554 12.7 Local and Global Distribution 554 12.8 Usage of Parasitic Elements 555 12.9 Unused Section of a Semiconductor Device, Circuit, or Chip Function 556 12.10 Unused Corners 556 12.11 Unused White Space 556 12.12 Impedance Matching Between Floating and Non-floating Networks 556 12.13 Unconnected Structures 557 12.14 Symmetry 557 12.15 Design Synthesis 557 12.16 ESD, Latchup, and Noise 559 12.17 Structures Under Bond Pads 574 12.18 Summary and Closing Comments 575 References 576 13 ESD Analog Design 583 13.1 Analog Design: Local Matching 583 13.2 Analog Design: Global Matching 583 13.3 Symmetry 584 13.4 Analog Design - Local Matching 584 13.5 Analog Design - Global Matching 584 13.6 Common Centroid Design 586 13.7 Common Centroid Arrays 586 13.8 Interdigitation Design 586 13.9 Common Centroid and Interdigitation Design 587 13.10 Dummy Resistor Layout 593 13.11 Thermoelectric Cancelation Layout 593 13.12 Electrostatic Shield 593 13.13 Interdigitated Resistors and ESD Parasitics 594 13.14 Capacitor Element Design 595 13.15 Inductor Element Design 596 13.16 ESD Failure in Inductors 597 13.17 Inductor Physical Variables 598 13.18 Inductor Element Design 599 13.19 Diode Design 599 13.20 Analog ESD Circuits 602 13.21 ESD MOSFETs 607 13.24 Analog Differential Pair Common Centroid Design Layout - Signal-pin to Signal-pin and Parasitic ESD Elements 620 13.25 Summary and Closing Comments 624 References 624 14 ESD RF Design 629 14.1 Fundamental Concepts of ESD Design 629 14.2 Fundamental Concepts of RF ESD Design 632 14.3 RF CMOS Input Circuits 637 14.4 RF CMOS Impedance Isolation LC Resonator ESD Networks 647 14.5 RF CMOS LC-diode Networks Experimental Results 648 14.6 RF CMOS LNA ESD Design - Low Resistance ESD Inductor and ESD Diode Clamping Elements in Π-configuration 650 14.7 RF CMOS T-coil Inductor ESD Input Network 653 14.8 RF CMOS Distributed ESD Networks 655 14.9 RF CMOS Distributed ESD-RF Networks 656 14.10 RF CMOS Distributed RF-ESD Networks Using Series Inductors and Dual-diode Shunts 656 14.11 RF CMOS Distributed RF-ESD Networks Using Series Inductors and MOSFET Parallel Shunts 659 14.12 RF CMOS Distributed ESD Networks - Transmission Lines and Co-planar Waveguides 661 14.13 RF CMOS - ESD and RF LDMOS Power Technology 663 14.14 Summary and Closing Comments 666 References 666 15 ESD Power Electronics Design 681 15.1 Reliability Technology Scaling and the Reliability Bathtub Curve 681 15.2 Input Circuitry 686 15.3 Summary and Closing Comments 702 References 702 16 ESD in Advanced CMOS 709 16.1 Interconnects and ESD 709 16.2 Aluminum Interconnects 710 16.3 Interconnects - Vias 714 16.4 Interconnects - Wiring 715 16.5 Junctions 719 16.6 Titanium Silicide 725 16.7 Shallow Trench Isolation 731 16.8 LOCOS-bound ESD Structures 734 16.9 LOCOS-bound p+/n-well Junction Diodes 734 16.10 LOCOS-bound n+ Junction Diodes 736 16.11 LOCOS-bound n-well/Substrate Diodes 737 16.12.
LOCOS-bound Lateral N-Well to N-Well Bipolar ESD Element 738 16.13 LOCOS-bound Lateral N+ to N-well Bipolar ESD Element 738 16.14 LOCOS-bound Lateral pnp Bipolar ESD Element 739 16.15 LOCOS-bound Thick Oxide MOSFET ESD Element 739 16.16 Shallow Trench Isolation 739 16.17 STI-bound ESD Structures 741 16.18 Substrate Modeling - Electrical and Thermal Discretization 746 16.19 Heavily Doped Substrates 750 16.20 Retrograde Wells and ESD Scaling 766 16.21 Triple Well and Isolated MOSFET CMOS 775 16.22 Summary and Closing Comments 779 References 779 17 ESD in Silicon on Insulator 783 17.1 Silicon on Insulator (SOI) Technologies 783 17.2 Elimination of CMOS Latchup 784 17.3 Lack of Vertical Bipolar Transistors 785 17.4 Floating Gate Tie Downs 785 17.5 Physical Separation of MOSFETs from the Bulk Substrate 785 17.6 SOI ESD Design Fundamental Concepts 786 17.7 SOI Lateral Diode Structure 791 17.8 Transistors - Bulk versus SOI Technology 791 17.9 SOI Buried Resistors (BR) Elements 796 17.10 Dynamic Threshold MOS (DTMOS) SOI MOSFET 797 17.11 SOI P+ Body Contact Abutting n+ Drain 798 17.12 Transmission Line Pulse (TLP) Testing of SOI Diode Designs 798 17.13 SOI ESD with MOSFET Drain and Body Width Ratio Variation 799 17.14 SOI Dual-Gate MOSFET Structure 799 17.15 SOI ESD Design - Mixed Voltage T-Shape Layout Style 800 17.16 SOI ESD Design: Double Diode Network 802 17.17 Bulk to SOI ESD Design Remapping 803 17.18 SOI ESD Diode Design Parameters 804 17.19 SOI ESD Design in Mixed Voltage Interface Environments 808 17.20 Comparison of Bulk with SOI ESD Results 809 17.21 SOI ESD Design with Aluminum Interconnects 810 17.22 SOI ESD Design with Copper Interconnects 812 17.23 SOI ESD Design with Gate Circuitry 813 17.24 Summary and Closing Comments 815 References 815 18 ESD in Analog Circuits 821 18.1 Analog Design Circuits 821 18.2 Single-ended Receivers 822 18.3 Schmitt Trigger Receivers 822 18.4 Differential Receivers 822 18.5 Comparators 824 18.6 Current Sources 825 18.7 Current Mirrors 825 18.8 Widlar Current Mirror 826 18.9 Wilson Current Mirror 826 18.10 Voltage Regulators 827 18.11 Buck Converters 828 18.12 Boost Converters 828 18.13 Buck-Boost Converters 829 18.14 Cuk Converters 830 18.15 Voltage Reference Circuits 830 18.16 Brokaw Bandgap Voltage Reference 830 18.17 Converters 831 18.18 Analog-to-Digital Converter (ADC) 831 18.19 Digital-to-Analog Converters (DAC) 832 18.20 Oscillators 832 18.21 Phase Lock Loop (PLL) Circuits 832 18.22 Delay Locked Loop (DLL) 833 18.23 Analog and ESD Design Synthesis 833 18.24 Analog Chip Architecture - Separation of Analog Power from Digital Power, AVDD-DVDD 836 18.25 ESD Failure in Phase Lock Loop (PLL) and System Clock 837 18.26 ESD Failure in Current Mirrors 837 18.27 ESD Failure in Schmitt Trigger Receivers 838 18.28 ESD Design Practice - Prevent ESD Failure in Schmitt Trigger 840 18.29 Analog-Digital Architecture: Isolated Digital and Analog Domains 841 18.30 ESD Protection Solution - Connectivity of AVDD-to-VDD 842 18.31 ESD Solution: Connectivity of AVSS-to-DVSS 843 18.32 Digital and Analog Domain with ESD Power Clamps 843 18.33 Digital and Analog Domain with Master-Slave ESD Power Clamps 846 18.34 High Voltage, Digital, and Analog Domain Floorplan 846 18.35 Floor-planning of Digital and Analog 846 18.36 Inter-domain Signal Lines ESD Failures 849 18.37 Digital-to-Analog Signal Line ESD Failures 849 18.38 Digital-to-Analog Core Spatial Isolation 851 18.39 Digital-to-Analog Core Ground Coupling 851 18.40 Digital-to-Analog Core Resistive Ground Coupling 852 18.41 Digital-to-Analog Core Diode Ground Coupling 852 18.42 Domain-to-Domain Signal Line ESD Networks 852 18.43 Domain-to-Domain Third-party Coupling Networks 853 18.44 Domain-to-Domain Cross-domain ESD Power Clamp 854 18.45 Digital-to-Analog Domain Moat 855 18.46 Analog and ESD Circuit Integration 855 18.47 Integrated Body Ties 856 18.48 Self-Protecting vs Non-self Protecting Designs 856 References 856 19 ESD in RF CMOS 865 19.1 CMOS and ESD 865 19.2 RF CMOS 865 19.3 RF CMOS and ESD 865 19.4 RF CMOS ESD Failure Mechanisms 865 19.5 RF CMOS - ESD Device Comparisons 866 19.6 RF ESD Metrics 867 19.7 Grounded Gate n-channel MOSFET versus STI Diode 868 19.8 Silicon-controlled Rectifier 869 19.9 SCR versus GGNMOS 869 19.10 Shallow Trench Isolation and Polysilicon Gated Diodes 869 19.11 RF ESD Design 870 19.12 RF ESD Design Layout - Circular RF ESD Devices 870 19.13 Disadvantage of RF ESD Circular Element 871 19.14 RF ESD Design - ESD Wiring Design 872 19.15 RF ESD Design - Loading Capacitance 872 19.16 Metal Capacitance 873 19.17 Analog Metal (AM) 873 19.18 RF ESD Design Practices 874 19.19 RF Passives - ESD and Schottky Barrier Diodes 874 19.20 Schottky Barrier Diodes and Metallurgy 875 19.21 Silicon Germanium Schottky Barrier Diodes 876 19.22 Schottky Barrier RF ESD Design Practice 877 19.23 RF Passives - ESD and Inductors 877 19.24 Quality Factor, Q 878 19.25 Incremental Model of an Inductor 878 19.26 Inductor Coil Parameters 878 19.27 RF Passives - ESD and Capacitors 882 19.28 Capacitors and RF Applications 882 19.29 Capacitors in ESD Networks 882 19.30 Types of Radio Frequency Capacitors 883 19.31 Metal-Oxide-Semiconductor and Metal-Insulator-Metal Capacitors 883 19.32 Varactors and Hyper-abrupt Junction Varactor Capacitors 884 19.33 Metal-ILD-Metal Capacitors 884 19.34 Vertical Parallel Plate (VPP) Capacitors 884 19.35 Tips: ESD RF Design Practices for Capacitors 885 19.36 Summary and Closing Comments 886 Problems 886 References 888 20 ESD in Silicon Germanium 891 20.1 Heterojunctions Bipolar Transistors 891 20.2 Silicon Germanium 891 20.3 Silicon Germanium HBT Devices 892 20.4 Silicon Germanium Device Structure 893 20.5 Silicon Germanium Film Deposition 894 20.6 Silicon Germanium Emitter-Base Region 895 20.7 Silicon Germanium Physics 895 20.8 Silicon Germanium Bandgap 896 20.9 Silicon Germanium Intrinsic Temperature 896 20.10 Position-dependent Silicon Germanium Profile 896 20.11 Position-dependent Intrinsic Temperature 897 20.12 SiGe Collector Current with Graded Germanium Concentration 897 20.13 Silicon Germanium ESD and Time Constants 898 20.14 Silicon Germanium Base Transit Time 898 20.15 Silicon Germanium Breakdown Voltages 898 20.16 Silicon Germanium ESD Measurements 899 20.17 Silicon Germanium Collector-to-Emitter ESD Stress 899 20.18 Transmission Line Pulse Testing of Silicon Germanium HBT 899 20.19 Transmission Line Pulse (TLP) I-V Characteristic 899 20.20 Wunsch-Bell Characteristic of Silicon Germanium HBT 901 20.21 Comparison of Silicon Germanium HBT and Silicon BJT 901 20.22 Wunsch-Bell Characteristic of SiGe HBT versus Si BJT 902 20.23 Intrinsic Base Resistance in SiGe HBT 904 20.24 SiGe HBT Electro-thermal HBM Simulation of Collector-Emitter Stress 904 20.25 Silicon Germanium Transistor Emitter-Base Design 905 20.26 Epitaxial-Base Hetero-Junction Bipolar Transistor (HBT) Emitter-Base Design 907 20.27 Self-aligned Silicon Germanium HBT Device 907 20.28 Non-Self Aligned Silicon Germanium HBT 908 20.29 Emitter-Base Design RF Frequency Performance Metrics 908 20.30 SiGe HBT Emitter-Base Resistance Model 909 20.31 SiGe HBT Emitter-Base Design and Silicide Placement 909 20.32 Silicide Material and ESD 910 20.33 Titanium Silicide and ESD 911 20.34 Cobalt Salicide 913 20.35 Self-aligned (SA) Emitter Base Design 914 20.36 Non-Self Aligned (NSA) Emitter Base Design 917 20.37 Non-Self Aligned HBT Human Body Model (HBM) Step Stress 918 20.38 Transmission Line Pulse (TLP) Step Stress 918 20.39 RF Testing of SiGe HBT Emitter-Base Configuration 921 20.40 Unity Current Gain Cutoff Frequency - Collector Current Plots 923 20.41 f MAX and f T 924 20.42 Electrothermal Simulation of Emitter-Base Stress 925 20.43 Field-Oxide (FOX) Isolation Defined Silicon Germanium Heterojunction Bipolar Transistor HBM Data 926 20.44 Silicon Germanium HBT Multiple-emitter Study 927 20.45 RF ESD Design Practice 927 20.46 Silicon Germanium ESD Failure Mechanisms 928 20.47 Summary and Closing Comments 928 References 928 21 ESD in Silicon Germanium Carbon 935 21.1 Heterojunctions and Silicon Germanium Carbon Technology 935 21.2 Silicon Germanium Carbon 935 21.3 Silicon Germanium Carbon Collector-Emitter ESD Measurements 937 21.4 Silicon Germanium Transistor Emitter-Base Design 940 21.5 Silicon Germanium Carbon - ESD-Induced S-Parameter Degradation 943 21.6 Silicon Germanium Carbon ESD Failure Mechanisms 945 21.7.
Summary and Closing Comments 945 References 946 22 ESD in GaAs 951 22.1 Gallium Arsenide Technology and ESD 951 22.2 Gallium Arsenide Energy-to-Failure, and Power-to-Failure 951 22.3 Gallium Arsenide ESD Failures in Active and Passive Elements 954 22.4 Gallium Arsenide HBT Devices and ESD 955 22.5 Gallium Arsenide HBT Device ESD Results 956 22.6 Gallium Arsenide HBT Diode Strings 957 22.7 Gallium Arsenide HBT-based Passive Elements 959 22.8 GaAs HBT Base-Collector Varactor 959 22.9 Gallium Arsenide Technology Table of Failure Mechanisms 960 22.10 Application - GaAs Power Amplifier in a Cell Phone 961 22.11 Summary and Closing Comments 965 Questions 965 References 966 23 ESD in Bulk and SOI FINFET 971 23.1 Early FinFET Structures 971 23.2 FinFET Structure and Design Parameters 971 23.3 FinFET Parameters 973 23.4 Summary and Closing Comments 977 References 977 24 MEMs 979 24.1 Micro-electromechanical (MEM) Devices 979 24.2 ESD Concerns in Micro-electromechanical (MEM) Devices 980 24.3 Actuators 982 24.5 Micro-electromechanical (MEM) Mirrors 985 24.6 Summary and Closing Comments 989 References 989 25 Magnetic Recording 991 25.1 Magnetic Recording Technology 991 25.2 Summary and Closing Comments 995 References 995 26 Photomasks 1003 26.1 Photomasks and Reticles 1003 26.2 ESD Concerns in Photomasks 1003 26.3 Avalanche Breakdown in Photomasks 1004 26.4 Electrical Model in Photomasks 1007 26.5 Failure Defects in Photomasks 1008 26.6 Summary and Closing Comments 1011 References 1011 Appendix Table of Acronyms 1013 A Glossary of Terms - EMC Terminology 1015 B Appendix B. ESD Standards 1017 B.1 ESD Association 1017 B.2 International Organization of Standards 1018 B.3 Department of Defense 1018 B.4 Military Standards 1019 B.5 Airborne Standards and Lightning 1019 C Index 1021 D Wiley Series in Electrostatic Discharge (ESD) and Electrical Overstress (EOS) 1055 D.1 Additional Wiley Texts 1055 E ESD Design Rules 1057 E.1 ESD Design Rule Check (DRC) 1057 E.2 Electrostatic Discharge (ESD) Layout Versus Schematic (LVS) Verification 1058 E.3 ESD Electrical Rule Check (ERC) 1059 F Guard Ring Design Rules 1061 F.1 Latchup Design Rule Checking (DRC) and Guard Rings 1061 F.2 Latchup Electrical Rule Check (ERC) 1063 F.3 Guard Ring Resistance 1064 G EOS Design Rules and Checklist 1067 G.1 Electrical Overstress (EOS) Design Rule Checking 1067 G.2 Electrical Overstress (EOS) Layout Versus Schematic (LVS) Verification 1067 G.3 Electrical Overstress (EOS) Electrical Rule Check (ERC) 1068 H Latchup Design Rules 1069 H.1 Latchup Design Rule Checking (DRC) 1069 H.2 Latchup Electrical Rule Check (ERC) 1072 I ESD Cookbook 1077 I.1 Electrostatic Discharge (ESD) Cookbook 1077 J EOS Cookbook 1079 J.1 Electrical Overstress (EOS) Cookbook 1079 K Latchup Cookbook 1081 K.1 Latchup Design Rule Checking (DRC) 1081 K.2 Latchup Electrical Rule Check (ERC) 1083 L ESD Design and Release Check List 1087 L.1 ESD Design Release 1087 L.2 Electrostatic Discharge (ESD) Checklists 1087 M EOS Design and Release Checklist 1089 M.1 Electrical Overstress (EOS) and ESD Design Release 1089 M.2 Electrical Overstress (EOS) Design Release Process 1089 M.3 Electrical Overstress (EOS) Checklists 1090 M.4 An EOS Checklist 1091 N Latchup Design and Release Checklist 1093 N.1 Latchup Design Rule Checking (DRC) 1093 N.2 Latchup Electrical Rule Checking (ERC) 1095 N.3 Latchup Checklists 1095 N.4 A Latchup Design and Release Checklist 1096 Index 1097.
Record Nr. UNINA-9910829865103321
Voldman Steven H.  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ESD handbook / / Steven H. Voldman
The ESD handbook / / Steven H. Voldman
Autore Voldman Steven H.
Pubbl/distr/stampa Hoboken, New Jersey ; ; West Sussex, England : , : Wiley, , [2021]
Descrizione fisica 1 online resource (1,574 pages) : illustrations
Disciplina 537.52
Soggetto topico Electric discharges
ISBN 1-119-23310-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Title Page -- Copyright -- Dedication -- About the Author -- Acknowledgements -- 1 ESD, EOS, EMI, EMC, and Latchup -- 1.1 Electrostatic Discharge (ESD) -- 1.2 Human Body Model (HBM) -- 1.3 Machine Model (MM) -- 1.4 Cassette Model -- 1.5 Charged Device Model (CDM) -- 1.6 Transmission Line Pulse (TLP) -- 1.7 Very Fast Transmission Line Pulse (VF-TLP) -- 1.8 Electrical Overstress (EOS) -- 1.9 Electrical Overstress (EOS) -- 1.10 EOS Sources - Lightning -- 1.11 EOS Sources - Electromagnetic Pulse (EMP) -- 1.12 EOS Sources - Machinery -- 1.13 EOS Sources - Power Distribution -- 1.14 EOS Sources - Switches, Relays, and Coils -- 1.15 EOS Design Flow and Product Definition -- 1.16 EOS Sources - Design Issues -- 1.17 Electromagnetic Interference (EMI) -- 1.18 Electromagnetic Compatibility (EMC) -- 1.19 Latchup -- Questions and Answers -- 1.20 Summary and Closing Comments -- References -- 2 ESD in Manufacturing -- 2.1 Flooring -- 2.2 Work Surfaces -- 2.3 Garments -- 2.4 Wrist Straps -- 2.5 Shoes - Footwear -- 2.6 Ionization -- 2.7 Clean Rooms -- 2.8 Carts -- 2.9 Shipping Tubes -- 2.10 Trays -- 2.11 Measurements -- 2.12 Verification -- 2.13 Audit -- 2.14 Triboelectric Charging - How Does it Happen? -- 2.15 Conductors, Semiconductors, and Insulators -- 2.16 Static Dissipative Materials -- 2.17 ESD and Materials -- 2.18 Electrification and Coulomb's Law -- 2.19 Electromagnetism and Electrodynamics -- 2.20 Electrical Breakdown -- 2.21 Electro-Quasistatics and Magnetoquasistatics -- 2.22 Electrodynamics and Maxwell's Equations -- 2.23 Electrostatic Discharge (ESD) -- 2.24 Electromagnetic Compatibility (EMC) -- 2.25 Electromagnetic Interference (EMI) -- 2.26 Fundamentals of Manufacturing and Electrostatics -- 2.27 Materials, Tooling, Human Factors, and Electrostatic Discharge -- 2.28 Materials and Human-induced Electric Fields.
2.29 Manufacturing Environment and Tooling -- 2.30 Manufacturing Equipment and ESD Manufacturing Problems -- 2.31 Manufacturing Materials -- 2.32 Measurement and Test Equipment -- 2.33 Manufacturing Testing for Compliance -- 2.34 Grounding and Bonding Systems -- 2.35 Work Surfaces -- 2.36 Wrist Straps -- 2.37 Constant Monitors -- 2.38 Footwear -- 2.39 Floors -- 2.40 Personnel Grounding with Garments -- 2.41 Garments -- 2.42 Air Ionization -- 2.43 Seating -- 2.44 Packaging and Shipping -- 2.45 Trays -- 2.46 ESD Identification -- 2.47 ESD Program Auditing -- 2.48 ESD On-Chip Protection -- 2.49 ESD, EOS, EMI, EMC, and Latchup -- 2.50 Manufacturing Electrical Overstress (EOS) -- 2.51 EMI -- 2.52 EMC -- 2.53 Summary and Closing Comments -- References -- 3 ESD Standards -- 3.1 Factory - Flooring -- 3.2 Factory - Resistance Measurement of Materials -- 3.3 JEDEC -- 3.4 International Electro-Technical Commission (IEC) -- 3.5 IEEE -- 3.6 Department of Defense (DOD) -- 3.7 Military Standards -- 3.8 SAE -- 3.9 Summary and Closing Comments -- Questions and Answers -- References -- 4 ESD Testing -- 4.1 Electrostatic Discharge (ESD) Testing -- 4.2 ESD Models -- 4.3 HBM Test System -- 4.4 HBM Two-pin Test System -- 4.5 Machine Model (MM) -- 4.6 Small Charge Model (SCM) -- 4.7 Small Charge Model Source -- 4.8 CDM Pulse Waveform -- 4.9 HMM Equivalent Circuit -- 4.10 HMM Test Equipment -- 4.11 HMM Test Configuration -- 4.12 HMM Fixture Board -- 4.13 Transmission Line Pulse (TLP) -- 4.14 TLP Test Systems -- 4.15 IEC 61000-4-2 -- 4.16 Equivalent Circuit -- 4.17 Test Equipment -- 4.18 Cable Discharge Event (CDE) -- 4.19 CDE Pulse Waveform -- 4.20 Equivalent Circuit -- 4.21 Commercial Test Systems -- 4.22 Systems Electromagnetic Interference (EMI) -- 4.23 Electromagnetic Compatibility (EMC) -- 4.24 Electrical Overstress (EOS) -- 4.25 Latchup.
4.26 Electrical Overstress (EOS) -- 4.27 EOS Sources - Lightning -- 4.28 EOS Sources - Electromagnetic Pulse (EMP) -- 4.29 Electromagnetic Compatibility -- 4.30 Summary and Closing Comments -- References -- 5 ESD Device Physics -- 5.1 Electro-thermal Instability -- 5.2 Stable System -- 5.3 Unstable System -- 5.4 Differential Relation of Voltage and Current -- 5.5 Time Constant Hierarchy -- 5.6 Thermal Physics Time Constants -- 5.7 Adiabatic, Thermal Diffusion Time Scale and Steady State -- 5.8 Electro-quasistatic and Magnetoquasistatics -- 5.9 Electrical Instability -- 5.10 Thermal Physics Time Constants -- 5.11 Adiabatic, Thermal Diffusion Time Scale and Steady State -- 5.12 Electrical Instability and Breakdown -- 5.13 Spatial Instability and Electro-thermal Current Constriction -- 5.14 Equipotential Surface -- 5.15 Heat Flow -- 5.16 Conservation of Heat -- 5.17 Electric Potential and Temperature Gradient -- 5.18 Electric Energy, Resistivity, and Thermal Conductivity -- 5.19 Breakdown -- 5.20 Electron Current Continuity Relationship -- 5.21 Air Breakdown and Peak Currents -- 5.22 Electro-thermal Instability -- 5.23 Mathematical Methods - Green's Function and Method of Images -- 5.24 Mathematical Methods - Green's Function and Method of Images -- 5.25 Mathematical Methods - Integral Transforms of the Heat Conduction Equation -- 5.26 Flux Potential Transfer Relations Matrix Methodology -- 5.27 Heat Equation Variable Conductivity -- 5.28 Mathematical Methods - Boltzmann Transformation -- 5.29 Mathematical Methods - The Duhamel Formulation -- 5.30 Spherical Source Tasca Model -- 5.31 Wunsch-Bell Model -- 5.32 The Smith and Littau Model -- 5.33 The Arkihpov-Astvatsaturyan-Godovosyn-Rudenko Model -- 5.34 The Vlasov-Sinkevitch Model -- 5.35 The Dwyer, Franklin and Campbell Model -- 5.36 Negative Differential Resistor and Resistor Ballasting.
5.37 Ash Model - Nonlinear Failure Power Thresholds -- 5.38 Statistical Models for ESD Prediction -- 5.39 Summary and Closing Comments -- References -- 6 ESD Events and Protection Circuits -- 6.1 Human Body Model (HBM) -- 6.2 Machine Model (MM) -- 6.3 Charged Device Model -- 6.4 Human Metal Model (HMM) -- 6.5 IEC 61000-4-2 History -- 6.6 IEC 61000-4-5 -- 6.7 Cable Discharge Event (CDE) -- 6.8 CDM Scope -- References -- 7 ESD Failure Mechanism -- 7.1 Tables of CMOS ESD Failure Mechanisms -- 7.2 LOCOS Isolation-Defined CMOS -- 7.3 LOCOS-bound Thick Oxide MOSFET -- 7.4 LOCOS-Bound Structures -- 7.5 Shallow Trench Isolation (STI) -- 7.6 STI Pull-down ESD Failure Mechanism -- 7.7 STI Pull-Down and Gate Wrap-Around -- 7.8 MOSFETs -- 7.9 LOCOS-bound Thick Oxide MOSFET -- 7.10 Bipolar Transistor Devices -- 7.11 Silicide Blocked N-diffusion Resistors -- 7.12 Silicon Germanium ESD Failure Mechanisms -- 7.13 Silicon Germanium Carbon ESD Failure Mechanisms -- 7.14 Gallium Arsenide Technology ESD Failure Mechanisms -- 7.15 Indium Gallium Arsenide ESD Failure Mechanisms -- 7.16 Micro Electromechanical (MEM) Systems -- 7.17 Micro-mirror Array Failures -- 7.18 EOS Bond Pad and Interconnect Failure -- 7.19 Summary and Closing Comments -- References -- 8 ESD Design Synthesis -- 8.1 ESD Design Synthesis and Architecture Flow -- 8.2 ESD Design - the Signal Path and the Alternate Current Path -- 8.3 ESD Electrical Circuit and Schematic Architecture Concepts -- 8.4 The Ideal ESD Network -- 8.5 Mapping Semiconductor Chips and ESD Designs -- 8.6 Mapping across Semiconductor Fabricators -- 8.7 ESD Design Mapping across Technology Generations -- 8.8 ESD Networks, Sequencing, and Chip Architecture -- 8.9 ESD Layout and Floorplan-related Concepts -- 8.10 ESD Architecture and Floor-planning -- 8.11 Digital and Analog CMOS Architecture.
8.12 Digital and Analog Floorplan - Placement of Analog Circuits -- 8.13 Mixed-signal Architecture - Digital, Analog, and RF Architecture -- 8.14 Summary and Closing Comments -- Questions -- References -- 9 On-chip ESD Protection Circuits - Input Circuitry -- 9.1 Receivers and ESD -- 9.2 Receivers and Receiver Delay Time -- 9.3 ESD Loading Effect on Receiver Performance -- 9.4 Receivers and HBM -- 9.5 Receivers and CDM -- 9.6 Receivers and Receiver Evolution -- 9.7 Receiver Circuits with Half-pass Transmission Gate -- 9.8 Receiver with Full-pass Transmission Gate -- 9.9 Receiver, Half-pass Transmission Gate, and Keeper Network -- 9.10 Receiver, Half-pass Transmission Gate, and the Modified Keeper Network -- 9.11 Receiver Circuits with Pseudo-zero VT Half-pass Transmission Gates -- 9.12 Receiver with Zero VT Transmission Gate -- 9.13 Receiver Circuits with Bleed Transistors -- 9.14 Receiver Circuits with Test Functions -- 9.15 Receiver with Schmitt Trigger Feedback Network -- 9.16 Bipolar Transistor Receivers -- 9.17 CMOS Differential Receiver with Analog Layout Concepts -- 9.18 CMOS Differential Receiver Capacitance Loading -- 9.19 CMOS Differential Receiver ESD Mismatch -- 9.20 Analog Differential Pair ESD Signal Pin Matching with Common Well Layout -- 9.21 Analog Differential Pair Common Centroid Design Layout - Signal-Pin to Signal-Pin and Parasitic ESD Elements -- 9.22 Off-chip Drivers (OCD) -- 9.23 Off-chip Driver I/O Standards and ESD -- 9.24 Off-chip Driver (OCD) ESD Design Basics -- 9.25 Off-chip Drivers (OCD): Mixed Voltage Interface -- 9.26 Off-chip Drivers (OCD): Self-bias Well OCD Networks -- 9.27 Self-bias Well Off-chip Driver (OCD) Networks -- 9.28 ESD Protection Networks for Self-bias Well OCD Networks -- 9.29 Programmable Impedance Off-chip Driver (OCD) Network.
9.30 ESD Input Protection Networks for Programmable Impedance Off-chip Drivers.
Record Nr. UNINA-9910815642003321
Voldman Steven H.  
Hoboken, New Jersey ; ; West Sussex, England : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 1434-2014 (Revision of IEEE Std 1434-2000) : IEEE guide for the measurement of partial discharges in AC electric machinery / / IEEE Power & Energy Society Electric Machinery Committee, IEEE Dielectrics and Electrical Insulation Society Standards Committee, Institute of Electrical and Electronics Engineers, IEEE-SA Standards Board
IEEE Std 1434-2014 (Revision of IEEE Std 1434-2000) : IEEE guide for the measurement of partial discharges in AC electric machinery / / IEEE Power & Energy Society Electric Machinery Committee, IEEE Dielectrics and Electrical Insulation Society Standards Committee, Institute of Electrical and Electronics Engineers, IEEE-SA Standards Board
Pubbl/distr/stampa New York : , : IEEE, , [2014]
Descrizione fisica 1 online resource (x, 76 pages) : illustrations
Disciplina 537.52
Collana IEEE Std
Soggetto topico Electric discharges
ISBN 0-7381-9352-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1434-2014 (Revision of IEEE Std 1434-2000): IEEE Guide for the Measurement of Partial Discharges in AC Electric Machinery
IEEE Std 1434-2014
Record Nr. UNINA-9910135883803321
New York : , : IEEE, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 1434-2014 (Revision of IEEE Std 1434-2000) : IEEE guide for the measurement of partial discharges in AC electric machinery / / IEEE Power & Energy Society Electric Machinery Committee, IEEE Dielectrics and Electrical Insulation Society Standards Committee, Institute of Electrical and Electronics Engineers, IEEE-SA Standards Board
IEEE Std 1434-2014 (Revision of IEEE Std 1434-2000) : IEEE guide for the measurement of partial discharges in AC electric machinery / / IEEE Power & Energy Society Electric Machinery Committee, IEEE Dielectrics and Electrical Insulation Society Standards Committee, Institute of Electrical and Electronics Engineers, IEEE-SA Standards Board
Pubbl/distr/stampa New York : , : IEEE, , [2014]
Descrizione fisica 1 online resource (x, 76 pages) : illustrations
Disciplina 537.52
Collana IEEE Std
Soggetto topico Electric discharges
ISBN 0-7381-9352-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1434-2014 (Revision of IEEE Std 1434-2000): IEEE Guide for the Measurement of Partial Discharges in AC Electric Machinery
IEEE Std 1434-2014
Record Nr. UNISA-996280734203316
New York : , : IEEE, , [2014]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE Std 1613-2009 (Revision of IEEE Std 1613-2003) - Redline / / Institute of Electrical and Electronics Engineers
IEEE Std 1613-2009 (Revision of IEEE Std 1613-2003) - Redline / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway : , : IEEE, , 2009
Descrizione fisica 1 online resource (65 pages)
Disciplina 537.52
Soggetto topico Electric discharges
ISBN 0-7381-6949-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1613-2009 (Revision of IEEE Std 1613-2003) - Redline: IEEE Standard Environmental and Testing Requirements for Communications Networking Devices Installed in Electric Power Substations - Redline
IEEE Std 1613-2009
Record Nr. UNINA-9910135880803321
Piscataway : , : IEEE, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 1613-2009 (Revision of IEEE Std 1613-2003) - Redline / / Institute of Electrical and Electronics Engineers
IEEE Std 1613-2009 (Revision of IEEE Std 1613-2003) - Redline / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway : , : IEEE, , 2009
Descrizione fisica 1 online resource (65 pages)
Disciplina 537.52
Soggetto topico Electric discharges
ISBN 0-7381-6949-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1613-2009 (Revision of IEEE Std 1613-2003) - Redline: IEEE Standard Environmental and Testing Requirements for Communications Networking Devices Installed in Electric Power Substations - Redline
IEEE Std 1613-2009
Record Nr. UNISA-996278288103316
Piscataway : , : IEEE, , 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE Std 454-1973 : IEEE Recommended Practice for the Detection and Measurement of Partial Discharges (Corona) During Dielectric Tests / / Institute of Electrical and Electronics Engineers
IEEE Std 454-1973 : IEEE Recommended Practice for the Detection and Measurement of Partial Discharges (Corona) During Dielectric Tests / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, N.Y. : , : IEEE, , 1973
Descrizione fisica 1 online resource (22 pages) : illustrations
Disciplina 537.52
Soggetto topico Electric discharges
Electric power systems
ISBN 1-5044-0353-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 454-1973 - IEEE Recommended Practice for the Detection and Measurement of Partial Discharges
IEEE Std 454-1973
IEEE Recommended Practice for the Detection and Measurement of Partial Discharges
Record Nr. UNINA-9910136412103321
New York, N.Y. : , : IEEE, , 1973
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 454-1973 : IEEE Recommended Practice for the Detection and Measurement of Partial Discharges (Corona) During Dielectric Tests / / Institute of Electrical and Electronics Engineers
IEEE Std 454-1973 : IEEE Recommended Practice for the Detection and Measurement of Partial Discharges (Corona) During Dielectric Tests / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, N.Y. : , : IEEE, , 1973
Descrizione fisica 1 online resource (22 pages) : illustrations
Disciplina 537.52
Soggetto topico Electric discharges
Electric power systems
ISBN 1-5044-0353-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 454-1973 - IEEE Recommended Practice for the Detection and Measurement of Partial Discharges
IEEE Std 454-1973
IEEE Recommended Practice for the Detection and Measurement of Partial Discharges
Record Nr. UNISA-996279438803316
New York, N.Y. : , : IEEE, , 1973
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui