Vai al contenuto principale della pagina

New Advanced High Strength Steels : Optimizing Properties / / coordinated by Mohamed Goune, Thierry Iung, and Jean-Hubert Schmitt



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: New Advanced High Strength Steels : Optimizing Properties / / coordinated by Mohamed Goune, Thierry Iung, and Jean-Hubert Schmitt Visualizza cluster
Pubblicazione: London, England : , : ISTE Ltd, , [2023]
©2023
Edizione: First edition.
Descrizione fisica: 1 online resource (413 pages)
Disciplina: 672
Soggetto topico: Steel
Persona (resp. second.): GouneMohamed
IungThierry
SchmittJean-Hubert
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Introduction -- Chapter 1. Strain Hardening and Tensile Properties -- 1.1. Introductory remarks -- 1.2. Stress/strain curve: macroscopic quantities -- 1.3. Behavior of a single-phase structure: microscopic approach -- 1.3.1. Elastic limit -- 1.3.2. Strain hardening and plasticity -- 1.4. Strain hardening and mechanical behavior of precipitation hardened micro-alloyed steels -- 1.4.1. Introductory remarks -- 1.4.2. Identification of the different contributions to strain hardening -- 1.4.3. Reference materials and data from the theoretical analysis -- 1.4.4. Strain hardening and mechanical properties: effect of grain size -- 1.4.5. Strain hardening and mechanical properties: effects of precipitation -- 1.5. Strain hardening and mechanical behavior of martensitic steels -- 1.5.1. Multiscale structure and mechanical properties -- 1.5.2. Tensile properties and strain hardening -- 1.5.3. Effect of carbon on changes in YS0.2 and UTS -- 1.6. Austenitic steels Fe-0.6C-22Mn with TWIP effect -- 1.6.1. Introductory remarks -- 1.6.2. Role of twins and nature of strain hardening -- 1.6.3. Strain hardening and mechanical behavior of Fe-0.6C-22Mn steel -- 1.6.4. Evolution of the yield strength -- 1.7. Multiphase quenching and partitioning steels -- 1.7.1. From dual-phase, TRIP to quenching and partitioning steels -- 1.7.2. Phenomenological approaches to the mechanical behavior of multiphase steels -- 1.7.3. Mechanical properties and strain hardening of Q& -- P steels -- 1.8. Conclusion -- 1.9. References -- Chapter 2. Anisotropy and Mechanical Properties -- 2.1. Challenges -- 2.1.1. The problem of textures in modern steels -- 2.1.2. The problem of phase transformation textures -- 2.2. Textural anisotropy and mechanical properties -- 2.2.1. Typical orientations of ferrite.
2.2.2. Typical orientations of austenite -- 2.2.3. Typical orientations of phase transformation -- 2.3. Conclusion -- 2.4. Calculation details -- 2.4.1. How to calculate the Young's modulus of a textured polycrystal? -- 2.4.2. How to calculate the Lankford coefficient of a textured polycrystal? -- 2.4.3. How to calculate the yield surface of a textured polycrystal? -- 2.5. References -- Chapter 3. Compromise between Strength and Fracture Resistance -- 3.1. Introduction -- 3.2. Methods for measuring the resistance to damage and fracture -- 3.2.1. Fracture elongation -- 3.2.2. Bending impact toughness -- 3.2.3. Fracture toughness: resistance to unstable crack propagation -- 3.3. Physical mechanisms and microstructural control of damage and fracture -- 3.3.1. Brittle transgranular cleavage fracture -- 3.3.2. Ductile fracture by cavitation -- 3.3.3. Intergranular brittle fracture -- 3.3.4. Synthesis on fracture mechanisms -- 3.4. Examples of application -- 3.4.1. Fracture toughness and ultra-high strength -- 3.4.2. Fracture resistance of multiphase grades -- 3.5. Conclusion and outlook -- 3.6. References -- Chapter 4. Compromise between Tensile and Fatigue Strength -- 4.1. Toughness: the main cause of part failure in service -- 4.2. Fatigue: from crack initiation to failure -- 4.2.1. Approaches to determine the risk of failure through mechanical fatigue -- 4.2.2. Crack initiation mechanisms -- 4.2.3. Crack propagation mechanisms -- 4.2.4. Increasing the ultimate tensile strength or the propagation threshold? Approach of Kitagawa-Takahashi for the harmfulness of a defect -- 4.3. How to improve fatigue life through metallurgy? -- 4.3.1. Link between ultimate tensile strength and fatigue resistance -- 4.3.2. Postpone the crack initiation or activation of plasticity to the highest stresses -- 4.3.3. Slowing down the propagation of cracks.
4.4. Increasing role of defects in high strength steels -- 4.4.1. Murakami's approach: small defects and short cracks -- 4.4.2. Decreased fatigue strength of quenched and tempered steels in the presence of sulfide inclusions -- 4.5. Specific treatments for fatigue performance -- 4.5.1. Thermochemical treatments -- 4.5.2. Mechanical treatments -- 4.5.3. Case of welding -- 4.6. Conclusion -- 4.7. References -- Chapter 5. High Strength Steels and Coatings -- 5.1. Introduction -- 5.2. The continuous galvanizing process -- 5.2.1. Mechanisms involved in the steel/liquid metal interaction -- 5.2.2. Intermetallic compounds and coating -- 5.3. Selective oxidation during continuous annealing -- 5.3.1. Thermodynamic stability of oxides -- 5.3.2. Reactive diffusion -- 5.4. Coatings on high-strength steels -- 5.4.1. Liquid metal wetting of partially oxidized steels -- 5.4.2. Process adaptations for galvanizing high-strength steels -- 5.4.3. Use of other coating processes -- 5.5. Conclusion -- 5.6. References -- Chapter 6. Corrosion Resistant Steels with High Mechanical Properties -- 6.1. Introduction -- 6.2. General principles of corrosion/oxidation and corrosion/oxidation resistance -- 6.3. Wet corrosion resistant and high strength steels -- 6.3.1. Weathering steels -- 6.3.2. Stainless steels -- 6.3.3. Process-corrosion relationship: examples in additive manufacturing -- 6.4. Alloys resistant to hot oxidation and creep -- 6.4.1. "9-12 Cr" ferritic-martensitic steels -- 6.4.2. AFA steels -- 6.5. Conclusion -- 6.6. References -- Chapter 7. Crashworthiness by Steels -- 7.1. Introduction and industrial issues -- 7.2. The tests in force, or how to pass from the behavior of the complete vehicle to the behavior of the material -- 7.2.1. Full vehicle test -- 7.2.2. Component testing and performance and evaluation criteria.
7.2.3. Tests on simple specimens (strain rate and failure strain) -- 7.3. Parameters influencing the material during the manufacturing process and the behavior in service -- 7.3.1. Forming/cutting -- 7.3.2. Assembly (spot welding) -- 7.3.3. Paint curing treatment -- 7.4. Adequacy between material properties and crash behavior according to the different evaluation criteria -- 7.4.1. Anti-intrusion effort -- 7.4.2. Average crushing force - energy absorption -- 7.4.3. Ductility/failure of the material in crash -- 7.4.4. Ductility/failure of crash assemblies: special case of the thermally affected zone -- 7.5. Conclusion -- 7.6. References -- Chapter 8. Cut Edge Behavior -- 8.1. Introduction/problem analysis -- 8.2. Cutting processes and characteristics of the cut edge -- 8.2.1. The different cutting processes -- 8.2.2. Description of the punched or sheared edge -- 8.2.3. Parameters influencing the quality of cutting by shearing or punching -- 8.3. Behavior of the cut edge -- 8.3.1. The different edge characterization tests -- 8.3.2. Parameters influencing the behavior of the cut edge -- 8.3.3. In-use behavior: fatigue and crash cases -- 8.3.4. Cut edge behavior of the main families of steels -- 8.3.5. Modeling the cut edge in finite elements stamping codes -- 8.4. Conclusion -- 8.5. References -- Chapter 9. The Relationship between Mechanical Strength and Hydrogen Embrittlement -- 9.1. Introduction -- 9.2. How to identify and characterize HE -- 9.2.1. Fractographic analysis -- 9.2.2. Chemical and microstructural analysis -- 9.2.3. Laboratory mechanical testing -- 9.3. Solubility and (apparent) diffusion coefficients of hydrogen in steels -- 9.3.1. Hydrogen sources (intrinsic/environmental) -- 9.3.2. Hydrogen transport in steels -- 9.3.3. Evidence of HE -- 9.4. Case study: embrittlement of fastener steels -- 9.4.1. Recent incidents of in-service failures.
9.4.2. Phenomenological description and sensitivity parameters -- 9.4.3. Martensitic steels - industrial strategies -- 9.5. Case study: HE of thin sheets -- 9.5.1. Specific case: austenitic TWIP steel -- 9.5.2. TWIP steels - industrial strategies -- 9.6. Research and perspectives -- 9.7. References -- Chapter 10. Weldability of High Strength Steels -- 10.1. Introduction -- 10.1.1. Overview -- 10.1.2. Microstructural changes in the heat-affected zone -- 10.2. Weldability issues -- 10.2.1. Softening in HAZ and FZ -- 10.2.2. Toughness-resilience -- 10.2.3. Cold cracking -- 10.2.4. Hot cracking -- 10.2.5. Reheat cracking -- 10.2.6. Liquid metal embrittlement -- 10.3. Solutions for a good weldability of high-strength steels -- 10.3.1. Filler metals -- 10.3.2. Post-weld heat treatments -- 10.3.3. Design of a weldable high-strength steel -- 10.4. References -- Appendix: A Brief Review of Steel Metallurgy -- Postface: What's Next for Ultra-high Strength Steels? -- List of Authors -- Index -- EULA.
Titolo autorizzato: New Advanced High Strength Steels  Visualizza cluster
ISBN: 1-394-25743-0
1-394-25741-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910829931003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui