top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Quality Breeding in Field Crops [[electronic resource] /] / edited by Asif M. Iqbal Qureshi, Zahoor Ahmad Dar, Shabir Hussain Wani
Quality Breeding in Field Crops [[electronic resource] /] / edited by Asif M. Iqbal Qureshi, Zahoor Ahmad Dar, Shabir Hussain Wani
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XVII, 275 p. 26 illus., 17 illus. in color.)
Disciplina 630
Soggetto topico Agriculture
Plant breeding
Plant genetics
Nutrition   
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Nutrition
ISBN 3-030-04609-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Foreword -- 1. Biofortification of Staple Food crops: An overview -- 2. Marker assisted Breeding for improving the cooking and eating quality of rice -- 3. Improving the nutritional value of potatoes by conventional breeding and genetic modification -- 4. Conventional and molecular breeding approaches for biofortification of pearl millet -- 5. Genetic approaches to improve common bean nutritional quality: current knowledge and future perspectives -- 6. Marker assisted breeding for Beta carotene rich Maize Hybrids -- 7. Recent Advances in Breeding for Modified Fatty Acid Profile in Soybean Oil -- 8. Breeding dry beans with improved cooking and canning quality traits -- 9. Genomic approaches for Biofortification of wheat grain with iron and zinc -- 10. Current Breeding Approaches for Developing Rice with Improved Grain and Nutritional Qualities -- 11. Quality Protein Maize for Nutritional Security -- 12. Genetic improvement for end use quality in wheat -- 13. The use of modern molecular biology and biotechnology tools for improving the Quality value of oilseed Brassicas -- Index.
Record Nr. UNINA-9910337938703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Approaches in Omics for Plant Resilience to Climate Change [[electronic resource] /] / edited by Shabir Hussain Wani
Recent Approaches in Omics for Plant Resilience to Climate Change [[electronic resource] /] / edited by Shabir Hussain Wani
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (407 pages)
Disciplina 581.722
Soggetto topico Plant genetics
Plant breeding
Climate change
Proteomics
Metabolism
Plant Genetics and Genomics
Plant Breeding/Biotechnology
Climate Change
Metabolomics
ISBN 3-030-21687-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Omics Technologies for Abiotic Stress Tolerance in Plants: Current status and Prospects -- 2. Genome editing and abiotic stress Tolerance in Plants -- 3. Metabolomic Profiling of plants to understand reasons for plant stress resilience to abiotic stress -- 4. In Vitro Screening of Crop Plants for Abiotic Stress Tolerance -- 5. Open-source software tools, databases and resources for single cell and single cell-type metabolomics -- 6. Advances in functional genomics in investigating salinity tolerance in plants -- 7. Drought stress in Chickpea: Physiological, Breeding and Omics Perspectives -- 8. GM maize for abiotic stresses; Potentials and opportunities -- 9. Novel breeding and biotechnological approaches to mitigate effects of heat stress on cotton -- 10. Modulation Of Proteome And Phosphoproteome Under Abiotic Stress In Plants: An Overview -- 11. Ionomic approaches for the discovery of novel abiotic stress tolerance genes in plants -- 12. Unravelling the complex networks involved in Plant stress tolerance through Metabolomics.
Record Nr. UNINA-9910349449603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Rice Improvement [[electronic resource] ] : Physiological, Molecular Breeding and Genetic Perspectives / / edited by Jauhar Ali, Shabir Hussain Wani
Rice Improvement [[electronic resource] ] : Physiological, Molecular Breeding and Genetic Perspectives / / edited by Jauhar Ali, Shabir Hussain Wani
Autore Ali Jauhar
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (XVI, 498 p. 54 illus., 46 illus. in color.)
Disciplina 630
Soggetto topico Agriculture
Plant breeding
Plant genetics
Plant physiology
Nutrition   
Arròs
Millorament selectiu de plantes
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Physiology
Nutrition
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Agriculture
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Physiology
Nutrition
Plant Biotechnology
Plant Genetics
Open Access
Rice Biotechnologies
Rice Breeding
biotic stress tolerance
abiotic stress tolerance
Submergence tolerance
Biofortification
Marker Assisted and Forward Breeding
disease resistance
CRISPR/CAS
Agricultural science
Botany & plant sciences
Biotechnology
Genetics (non-medical)
Biochemistry
ISBN 3-030-66530-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advances in Genetics and Breeding of Rice: An Overview -- Strategies for Engineering Photosynthesis for Enhanced Plant Biomass Production -- Green super rice (GSR) traits: Breeding and genetics for multiple biotic and abiotic stress tolerance in rice -- Advances in two-line heterosis breeding in rice via the temperature-sensitive genetic male sterility system -- Growing rice with less water: improving productivity by decreasing water demand -- Crop establishment in direct-seeded rice: traits, physiology and genetics -- Genetics and Breeding of Heat Tolerance in Rice -- Genetics and Breeding of Low-temperature stress tolerance in rice -- Arsenic stress responses and accumulation in rice -- Molecular approaches for Disease Resistance in Rice -- Molecular approaches for insect pest management in rice -- Doubled Haploids in Rice improvement: Approaches, Applications and Future prospects -- Zinc-biofortified rice: a sustainable food-based product for fighting zinc malnutrition -- Biofortification of Rice Grains for Increased Iron Content.
Record Nr. UNINA-9910476914103321
Ali Jauhar  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Salinity Responses and Tolerance in Plants, Volume 1 [[electronic resource] ] : Targeting Sensory, Transport and Signaling Mechanisms / / edited by Vinay Kumar, Shabir Hussain Wani, Penna Suprasanna, Lam-Son Phan Tran
Salinity Responses and Tolerance in Plants, Volume 1 [[electronic resource] ] : Targeting Sensory, Transport and Signaling Mechanisms / / edited by Vinay Kumar, Shabir Hussain Wani, Penna Suprasanna, Lam-Son Phan Tran
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (408 pages)
Disciplina 581.7
Soggetto topico Plant physiology
Plant breeding
Agriculture
Oxidative stress
Plant Physiology
Plant Breeding/Biotechnology
Oxidative Stress
ISBN 3-319-75671-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Salinity stress responses and adaptive mechanisms in major glycophytic crops: The story so far BY Sunita Kataria and Sandeep Kumar Verma -- 2. Deploying mechanisms adapted by halophytes to improve salinity tolerance in crop plants: Focus on anatomical features, stomatal attributes and water use efficiency BY Ankanagari Srinivas, Guddimalli Rajasheker, Gandra Jawahar, Punita L. Devineni, Maheshwari Parveda, Somanaboina Anil Kumar and Polavarapu B. Kavi Kishor -- 3. Targeting aquaporins for conferring salinity tolerance in crops BY Kundan Kumar and Ankush Ashok Saddhe -- 4. Strategies to mitigate salt stress effects on photosynthetic apparatus and productivity of crop plants BY Mbarki Sonia, Oksana Sytar, Artemio Cerda, Marek Zivcak, Anshu Rastogi, Xiaolan He, Aziza Zoghlami, Chedly Abdelly, Marian Brestic -- 5. Potassium uptake and homeostasis in plants grown under hostile environmental conditions and its regulation by CBL-interacting protein kinases BY Mohammad Alnayef, Jayakumar Bose, and Sergey Shabala -- 6. Plant hormones: potent targets for engineering salinity tolerance in plants BY Abdallah Atia, Zouhaier Barhoumi, Ahmed Debez, Safa Hkiri, Chedly Abdelly, Abderrazak Smaoui, Chiraz Chaffei Haouari, Houda Gouia -- 7. Transcription factors based genetic engineering for salinity tolerance in crops BY Parinita Agarwal, Pradeep Agarwal, Divya Gohil -- 8. Targeting the redox regulatory mechanisms for salinity stress tolerance in crop BY Mohsin Tanveer and Sergey Shabala -- 9. Manipulating metabolic pathways for development of salt tolerant crops BY Melike Bor and Filiz Özdemir -- 10. The glyoxalase system: a possible target to produce salinity tolerant crop plants BY Tahsina Sharmin Hoque, David J. Burritt, Mohammad Anwar Hossain -- 11. Cross-protection by oxidative stress: improving tolerance to abiotic stresses including salinity BY Vokkaliga T Harshavardhan, Geetha Govind, Rajesh Kalladan, Nese Sreenivasulu and Chwan-Yang Hong -- 12. Strategies to alleviate salinity stress in plants BY Sara Francisco Costa, Davide Martins, Monika Agacka-Mołdoch, Anna Czubacka and Susana Sousa Araújo -- 13. Polyamines and their metabolic engineering for plant salinity stress tolerance BY Tushar Khare, Amrita Srivastav, Samrin Shaikh and Vinay Kumar -- 14. Single versus multi-gene transfer approaches for crop salt tolerance BY Satpal Turan -- 15. Molecular markers and their role in producing salinity tolerant crop plants BY Sagar Satish Datir.
Record Nr. UNINA-9910298431103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Salinity Responses and Tolerance in Plants, Volume 2 [[electronic resource] ] : Exploring RNAi, Genome Editing and Systems Biology / / edited by Vinay Kumar, Shabir Hussain Wani, Penna Suprasanna, Lam-Son Phan Tran
Salinity Responses and Tolerance in Plants, Volume 2 [[electronic resource] ] : Exploring RNAi, Genome Editing and Systems Biology / / edited by Vinay Kumar, Shabir Hussain Wani, Penna Suprasanna, Lam-Son Phan Tran
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (335 pages)
Disciplina 581.8761
Soggetto topico Plant genetics
Plant breeding
Agriculture
Oxidative stress
Plant Genetics and Genomics
Plant Breeding/Biotechnology
Oxidative Stress
ISBN 3-319-90318-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Salinity responses and adaptive mechanisms in halophytes and their exploitation for producing salinity tolerant crops BY Karim Ben Hamed, Amira Dabbous, Hassan El Shaer, Chedly Abdely -- 2. The involvement of different secondary metabolites in salinity tolerance of crops BY Oksana Sytar, Mbarki Sonia, Marek Zivcak, Marian Brestic -- 3. Exploring halotolerant rhizomicrobes as a pool of potent genes for engineering salt stress tolerance in crops BY Neveen Talaat -- 4. Regulation and modification of the epigenome for enhanced salinity tolerance in crop plants BY Minoru Ueda, Kaori Sako, Motoaki Seki -- 5. Manipulating programmed cell death pathways for enhancing salinity tolerance in crops BY Ahmad Arzani -- 6. Helicases and their Importance in Abiotic Stresses BY Zeba I. Seraj, Sabrina M. Elias, Sudip Biswas, Narendra Tuteja -- 7. miRNAs: the game changer in producing salinity stress tolerant crops BY Ratanesh Kumar, Sudhir Kumar & Neeti Sanan-Mishra -- 8. Genomic roadmaps for augmenting salinity stress tolerance in crop plants BY Suprasanna P, Ghuge SA, Patade VY, Mirajkar SJ, Nikalje GC -- 9. Advances in genetics and breeding of salt tolerance in soybean BY Huatao Chen, Heng Ye, Tuyen D. Do, Jianfeng Zhou, Babu Valliyodan, Grover J. Shannon, Pengyin Chen, Xin Chen, Henry T. Nguyen -- 10. Proteomics perspectives in post-genomic era for producing salinity stress tolerant crops BY Pannaga Krishnamurthy, Lin Qingsong, Prakash P Kumar -- 11. Metabolomics for crop improvement against salinity stress BY Luisa D’Amelia, Emilia dell’Aversana, Pasqualina Woodrow, Loredana F. Ciarmiello, Petronia Carillo -- 12. Enhancing Crop Productivity in Saline Environment Using Nanobiotechnology BY Pragati Misra, Saumya Shukla, Preeti Rajoriya, Pradeep K. Shukla -- 13. Systems biology approach for elucidation of plant responses to salinity stress BY Amrita Srivastav, Tushar Khare, Vinay Kumar.
Record Nr. UNINA-9910298434003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Soybean improvement : physiological, molecular and genetic perspectives / / edited by Shabir Hussain Wani, [and three others]
Soybean improvement : physiological, molecular and genetic perspectives / / edited by Shabir Hussain Wani, [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (278 pages)
Disciplina 929
Soggetto topico Crop improvement
ISBN 3-031-12232-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Chapter 1: Soybean: A Key Player for Global Food Security -- 1.1 Introduction -- 1.2 Toward Soybean Cultivation: Past and Present Conditions -- 1.3 Indispensable Importance of Soybean -- 1.3.1 An Overall Glimpse -- 1.3.2 Critical See-Through -- 1.3.2.1 Protein Content -- 1.3.2.2 Soy Oil -- 1.3.2.3 Carbohydrates -- 1.3.2.4 Vitamins and Minerals -- 1.3.2.5 Fibers -- 1.3.2.6 Antioxidants -- 1.3.2.7 Miscellaneous -- 1.4 Soybean Production: International Scenario -- 1.5 Issues in Soybean Production -- 1.6 Soybean: A Strong Candidate for Nutritional Security -- 1.7 Conclusion -- References -- Chapter 2: Dissection of Physiological and Biochemical Bases of Drought Tolerance in Soybean (Glycine max) Using Recent Phenomics Approach -- 2.1 Introduction -- 2.2 Phenomics Approach for Drought Tolerance in Soybean -- 2.2.1 Digital Imaging -- 2.2.2 Visible and Infrared (IR) Imaging -- 2.2.3 NIR Spectroscopy and Spectral Reflectance -- 2.2.4 Fluorescence Imaging -- 2.2.5 Spectroscopy Imaging -- 2.3 Physiological and Biochemical Bases and Molecular Understanding of Drought Tolerance -- 2.3.1 Canopy Temperature -- 2.3.2 Chlorophyll Fluorescence -- 2.3.3 Root System Architecture (RSA) and Anatomy -- 2.3.4 Signal Perception and Transduction -- 2.3.5 Expression of Drought-Specific Proteins -- 2.3.6 Drought Tolerance in Soybean: Transgenics/CRISPR-Cas9 -- 2.3.7 CRISPR/Cas Genome-Editing System -- 2.3.8 Genome-Editing Approaches and Drought Tolerance -- 2.4 Summary and the Way Forward -- References -- Chapter 3: Soybean Improvement for Waterlogging Tolerance -- 3.1 Introduction -- 3.2 Waterlogging Stress and the Tolerance Mechanisms in Soybean -- 3.3 Phenotyping for Waterlogging Tolerance -- 3.4 Conventional Breeding Approaches for Improvement -- 3.5 Molecular Breeding Approaches for Improvement.
3.5.1 QTL Mapping for Flooding Tolerance -- 3.5.2 Genome-Wide Association Mapping for Flooding Tolerance -- 3.5.3 Transcriptomic Approaches to Develop Waterlogging Tolerance -- 3.6 Recent Concepts and Strategies Developed -- 3.7 Conclusions and Future Perspectives -- References -- Chapter 4: Salinity Tolerance in Soybeans: Physiological, Molecular, and Genetic Perspectives -- 4.1 Introduction -- 4.2 Physiological Perspectives -- 4.3 Molecular Perspectives -- 4.4 Genetic Perspectives -- 4.5 Conclusion -- References -- Chapter 5: Utility of Network Biology Approaches to Understand the Aluminum Stress Responses in Soybean -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Bootstrap Support Vector Machine-Recursive Feature Elimination Technique (Boot-SVM-RFE) -- 5.2.2 Gene Co-expression Network Analysis -- 5.2.3 Statistical Approach for Identification of Hub Genes -- 5.2.4 Algorithm -- 5.3 Results -- 5.3.1 Selection of Informative Genes for Al Stress in Soybean -- 5.3.2 Functional Analysis of Selected Genes for Al Stress in Soybean -- 5.3.3 Gene Co-expression Network Analysis for Al Stress in Soybean -- 5.3.4 Hub Gene Analysis for Al Stress Condition in Soybean -- 5.4 Discussion -- 5.5 Conclusions -- References -- Chapter 6: Advances in Molecular Markers to Develop Soybean Cultivars with Increased Protein and Oil Content -- 6.1 Introduction -- 6.2 Soybean Breeding for Protein Content -- 6.3 Molecular Markers for the Development of Soybean Cultivars -- 6.4 Types of Molecular Markers Used in Experimentation of Soybean -- 6.4.1 RFLP (Restriction Fragment Length Polymorphism) -- 6.4.2 RAPD (Randomly Amplified Polymorphic DNA) -- 6.4.3 SSR (Simple Sequence Repeats) -- 6.4.4 AFLP (Amplified Fragment Length Polymorphism) -- 6.4.5 Single-Nucleotide Polymorphism -- 6.5 Future Prospects -- 6.6 Conclusion -- References.
Chapter 7: Soybean Breeding for Rust Resistance -- 7.1 Introduction -- 7.2 The Genetic Variability of P. pachyrhizi Populations -- 7.3 Soybean Rust Infection and Development -- 7.4 Soybean Rust Evaluations -- 7.5 Genetic Mechanisms of Rust Resistance -- 7.6 Genes Conferring Rust Resistance to Soybean -- 7.7 Phenotypic Parameters Used for Rust Evaluations -- 7.7.1 Severity -- 7.7.2 Disease Progress -- 7.7.3 Resistance Reactions -- 7.8 Final Observations -- References -- Chapter 8: Molecular Breeding for Resistance against Pythium Root Rot (PRR) in Soybean -- 8.1 Introduction -- 8.2 Pythium Root Rot: A Threat to Soybean Production -- 8.3 Notable PRR-Resistant Soybean Accessions Reported -- 8.4 Breeding Soybean for PRR Control -- 8.5 Molecular Breeding Approaches for PRR Resistance -- 8.6 A Brief Account of PRR Resistance QTLs and Genes -- 8.7 Breeding Methods in the Modern Genomic Era to Improve the PRR Resistance -- 8.8 Conclusion and Perspectives -- References -- Chapter 9: Molecular Breeding for Resistance against Phytophthora in Soybean -- 9.1 Introduction -- 9.2 Symptoms of Infection in Root and Stem Rot -- 9.3 Seed Rot and Damping-Off -- 9.4 Advanced Molecular Breeding Approaches -- 9.5 R-Gene-Mediated Resistance -- 9.6 QTL Mapping -- 9.7 Genome-Wide Association Studies -- 9.8 Conclusion -- References -- Chapter 10: Mitigation of Soybean Mosaic Virus Using an Efficient Molecular Approach -- 10.1 Introduction -- 10.2 The Organization and Expression of the SMV Genome -- 10.3 Soybean Mosaic Virus Characteristics -- 10.4 Soybean Mosaic Virus Symptoms -- 10.5 SMV Infection Molecular Mechanisms -- 10.6 Protein Functions That Have Been Encoded -- 10.7 Biological Transfers -- 10.7.1 Transmission via Seeds -- 10.7.2 Transmission via Aphids -- 10.8 Variability and Divergence -- 10.9 The SMV Pathosystem's Resistance Genes.
10.10 Resistance to SMV Is Mediated by the NLR Gene Family -- 10.11 Conventional Control Strategy -- 10.12 Biotechnological Method -- 10.13 Gene Pyramiding and Marker-Assisted Selection -- 10.14 Conclusions and Prospects for the Future -- References -- Chapter 11: Transgenic approach: A Key to Enrich Soybean Oil Quality -- 11.1 Introduction -- 11.2 Biosynthetic Pathway of Lipids (TAG) in Seeds -- 11.3 Genomic Traits Linked to Soybean Seed Oil -- 11.4 Soybean Genetic Improvements -- 11.5 Conclusion -- References -- Chapter 12: miRNAs in Soybean Improvement -- 12.1 Introduction -- 12.2 Significance of miRNAs in Soybean -- 12.2.1 Abiotic Stress -- 12.2.2 Biotic Stress -- 12.2.3 Plant Growth and Development -- 12.2.3.1 Nutritional Stress -- 12.2.3.1.1 Nitrogen (N) -- 12.2.3.1.2 Phosphorus P -- 12.2.3.2 Root Development -- 12.2.3.3 Shoot Development -- 12.2.3.4 Floral Development -- 12.2.3.5 Seed Development -- 12.2.3.6 Nodule Development -- 12.3 Conclusion -- References -- Chapter 13: Genome Editing advances in Soybean Improvement against Biotic and Abiotic Stresses -- 13.1 Introduction -- 13.2 Genome Editing Techniques in Plants -- 13.2.1 Construction of TALEN Engineering Vectors and Transfection -- 13.3 Comparison of Different Genome Editing Techniques -- 13.4 CRISPR/Cas: A Splendid Gift from Nature -- 13.5 Emerging CRISPR/Cas Systems -- 13.6 CRISPR/Cas Tools for Engineering Abiotic Stress Tolerance in Soybean -- 13.7 Applications of CRISPR for Abiotic Stress Tolerance in Soybean -- 13.8 Engineering Biotic Stress Tolerance in Soybean Through CRISPR -- 13.8.1 Future Prospects -- References -- Index.
Record Nr. UNINA-9910619278003321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transcription factors for biotic stress tolerance in plants / / edited by Shabir Hussain Wani, Vennampally Nataraj, Gyanendra Pratap Singh
Transcription factors for biotic stress tolerance in plants / / edited by Shabir Hussain Wani, Vennampally Nataraj, Gyanendra Pratap Singh
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (253 pages)
Disciplina 304.2
Soggetto topico Genetic transcription
ISBN 3-031-12990-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910616388503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui