top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Aerogels for Energy Saving and Storage
Aerogels for Energy Saving and Storage
Autore Mathew Meldin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (545 pages)
Disciplina 621.4024
Altri autori (Persone) MariaHanna J
NzihouAnge
ThomasSabu
ISBN 9781119717621
9781119717638
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 The History, Physical Properties, and Energy-Related Applications of Aerogels -- 1.1 Definition and History of the Aerogels -- 1.1.1 Basic Characteristics and Definition of Aerogels -- 1.1.2 Brief History and Evolution of the Aerogel Science -- 1.2 The Physics Properties of the Aerogels -- 1.2.1 Mechanical Properties -- 1.2.2 Thermal Properties -- 1.2.2.1 Solid Conductivity -- 1.2.2.2 Gaseous Conductivity -- 1.2.2.3 Radiative Heat Transfer -- 1.2.3 Optical Properties -- 1.2.4 Electrical Properties -- 1.2.4.1 Dielectric Properties -- 1.2.4.2 Electrical Conductivity -- 1.2.4.3 Negative Permittivity and Negative Permeability -- 1.2.5 Acoustic Properties -- 1.3 Energy-Related Aerogel Applications -- 1.3.1 Applications in Energy Saving -- 1.3.2 Applications in Energy Conversion -- 1.3.3 Applications in Energy Storage -- 1.4 Prospects -- 1.4.1 Fundamental Science of the Aerogels -- 1.4.2 Novel Aerogels -- 1.4.3 Novel Application and Industrialization Technology of the Aerogels -- References -- Chapter 2 Aerogels and Their Composites in Energy Generation and Conversion Devices -- 2.1 Introduction to Aerogels -- 2.2 Strategies for Development of Aerogel Materials -- 2.2.1 Oxide-based Aerogel -- 2.2.2 Organic Aerogel -- 2.2.3 Carbon-based Aerogel -- 2.2.4 Chalcogenide Aerogel -- 2.2.5 Inorganic Gels -- 2.3 Chemistry and Mechanisms of Aerogels Formation -- 2.3.1 Mechanism of Network Formation in Aerogels -- 2.3.1.1 Sol-GelMethod -- 2.3.1.2 Self-AssemblyMethod -- 2.3.1.3 Emulsion Method -- 2.3.1.4 3-DPrinting -- 2.4 Drying Techniques -- 2.4.1 Supercritical Drying -- 2.4.2 Freeze Drying -- 2.4.3 Ambient Pressure Drying -- 2.4.4 Organic Solvent Sublimation Drying -- 2.5 Properties and Characterization -- 2.5.1 Aerogel Characterization.
2.5.2 Optical and IR Properties -- 2.5.3 Thermal Properties -- 2.5.4 Mechanical and Acoustic Properties -- 2.6 Applications of Aerogel in Energy Storage and Energy Saving -- 2.6.1 Batteries -- 2.6.1.1 Li-ion Battery -- 2.6.1.2 Li-SBattery -- 2.6.1.3 Li-airBattery -- 2.6.1.4 Zn-ionBattery -- 2.6.1.5 Zn-airBattery -- 2.6.1.6 Na-ionBattery -- 2.6.2 Supercapacitors -- 2.6.2.1 Electric Double Layer Capacitors -- 2.6.2.2 Pseudo-capacitors -- 2.6.2.3 Hybrid Capacitors -- 2.6.3 Fuel Cells -- 2.6.4 Electrocatalytic Hydrogen Evolution -- 2.6.5 Electrocatalytic Oxygen Reduction -- 2.7 Summary and Future Prospects -- Acknowledgments -- References -- Chapter 3 Metal Aerogels for Energy Storage and Conversion -- 3.1 Introduction of Metal Aerogels -- 3.2 Characterizations -- 3.2.1 Densities and Pore Structures -- 3.2.2 Morphologies -- 3.2.3 Element Distribution -- 3.2.4 Crystalline Structure -- 3.2.5 Mechanical Properties -- 3.2.6 Time-Lapse Techniques -- 3.3 Synthesis Methodologies -- 3.3.1 Mechanistic Insights -- 3.3.2 Two-Step Gelation -- 3.3.2.1 Precursors -- 3.3.2.2 Reductants -- 3.3.2.3 Initiation -- 3.3.3 One-Step Gelation -- 3.3.4 Acceleration -- 3.3.5 Postsynthesis -- 3.3.6 Drying of Wet Gels -- 3.3.7 Freezing-Based Method -- 3.3.7.1 Freeze-Casting -- 3.3.7.2 Freeze-Thawing -- 3.3.7.3 3D Printing -- 3.4 Energy-Related Applications -- 3.4.1 Electrocatalysis in Fuel Cells -- 3.4.1.1 Fuel Oxidation Reactions -- 3.4.1.2 Oxygen Reduction Reactions -- 3.4.2 Electrocatalysis in Water Splitting -- 3.4.2.1 Oxygen Evolution Reactions -- 3.4.2.2 Hydrogen Evolution Reactions -- 3.4.3 Electrocatalytic CO2 Reduction -- 3.4.4 Photoelectrocatalysis for Alcohol Oxidation -- 3.4.4.1 Energy Storage and Conversion -- 3.4.4.2 Electrochemical Energy Storage -- 3.4.4.3 Hydrogen Storage -- 3.4.4.4 Self-PropulsionDevices -- 3.5 Conclusions -- References.
Chapter 4 Aerogels Using Polymer Composites -- 4.1 Introduction -- 4.2 Preparation of Polymer-Based Aerogels -- 4.2.1 The Sol-Gel Process -- 4.2.2 Aging -- 4.2.3 Gel-Aerogel Transition (Drying) -- 4.2.3.1 Supercritical Drying -- 4.2.3.2 Ambient Pressure Drying -- 4.2.3.3 Freeze Drying -- 4.2.3.4 Other Drying Methods -- 4.2.4 Combination of a Polymer Aerogel with Another Component -- 4.3 Several Common Polymer Aerogels and Their Composites -- 4.3.1 Polyimide-Based Aerogels -- 4.3.1.1 Polyimide-BasedAerogels Combined with Carbon Materials -- 4.3.1.2 Cellulose/Polyimide Composite Aerogels -- 4.3.1.3 Polyimide-BasedAerogels Combined with Inorganic Materials -- 4.3.2 Poly(Vinyl Alcohol)-Based Aerogels -- 4.3.2.1 PVA-BasedAerogels Combined with Carbon Materials -- 4.3.2.2 Cellulose/PVA Composite Aerogels -- 4.3.2.3 PVA-BasedAerogels Combined with Inorganic Materials -- 4.3.2.4 PVA-BasedAerogels Combined with Hybrid Materials -- 4.3.3 Phenolic Resin-Based Aerogels -- 4.3.3.1 Phenolic Resin-BasedAerogel Composites -- 4.4 Applications of Polymer Aerogel Composites -- 4.4.1 Absorption -- 4.4.2 Thermal Insulation -- 4.4.3 Flame Retardant Materials -- 4.4.4 Sensing -- 4.4.5 Electromagnetic Interference Shielding -- 4.5 Conclusions and Outlook -- References -- Chapter 5 Epoxide Related Aerogels -- Sol-Gel Synthesis, Property Studies and Energy Applications -- 5.1 Overview of Epoxide Aerogels -- 5.1.1 History of Aerogels -- 5.1.2 Advantages of Epoxide-Assisted Approach -- 5.2 Synthesis and Drying Technique -- 5.2.1 Metal Salt Precursors for Aerogels -- 5.2.1.1 Selection of Precursors -- 5.2.1.2 Choice of Solvents -- 5.2.2 Hydrolysis -- 5.2.2.1 Hydrolysis in Aqueous Media: Formation of Hydroxo/Oxo Ligands -- 5.2.2.2 Hydrolysis in Organic Solvents -- 5.2.3 Epoxide-Assisted Gelation and Condensation -- 5.2.3.1 Olation Condensation -- 5.2.3.2 Oxolation Condensation.
5.2.4 Gel Drying -- 5.2.4.1 Supercritical Drying (SCD) -- 5.2.4.2 Freeze Drying -- 5.2.4.3 Ambient Pressure Drying -- 5.3 Epoxide-assisted Aerogels -- 5.3.1 Metal Oxides -- 5.3.1.1 Alumina Aerogels -- 5.3.1.2 Titania Aerogels -- 5.3.1.3 Vanadia Aerogels -- 5.3.1.4 Zirconia Aerogels -- 5.3.1.5 Other Oxide Aerogels -- 5.3.2 Composites Aerogels -- 5.3.2.1 Inorganic-inorganicComposites -- 5.3.2.2 Inorganic-OrganicComposites -- 5.4 Aerogels Properties and Characterization -- 5.4.1 Structural Characterization -- 5.4.1.1 X-rayDiffraction -- 5.4.1.2 Electron Microscopy -- 5.4.1.3 Infrared Spectroscopy -- 5.4.2 Mechanical Characterization -- 5.5 Some Applications and Examples -- 5.5.1 Catalysis -- 5.5.2 Solid Fuel Cell -- 5.5.3 Water Treatment -- 5.5.4 Biodiesel Production -- 5.5.5 Energy Conversion and Storage Applications -- 5.6 Summary -- References -- Chapter 6 CNT-Based Aerogels and Their Applications -- 6.1 Introduction -- 6.2 The Fundamental Principle of Preparing CNT-based Aerogels -- 6.3 Strategies for Preparation of CNT-based Aerogels -- 6.3.1 Preparation of CNT-based Aerogels via CVD -- 6.3.1.1 Isotropic CNT Aerogels -- 6.3.1.2 3D Vertical CNT Arrays -- 6.3.1.3 Template-assistedCNT-basedAerogels -- 6.3.2 Surface-modified CNT-based Aerogels -- 6.3.2.1 Preparation of Aerogels with Noncovalent Modified CNTs -- 6.3.2.2 Preparation of Aerogels with Covalent Modified CNTs -- 6.3.3 CNT Doping in 3D Aerogels -- 6.3.4 CNT/Inorganic Nanocrystal Composite Aerogels -- 6.4 Applications -- 6.4.1 Water Treatment -- 6.4.2 Energy Storage and Conversion -- 6.4.3 Catalysts -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Silica-Based Aerogels for Building Transparent Components -- 7.1 Introduction -- 7.2 Silica Aerogels Production -- 7.2.1 Preparation Steps -- 7.2.1.1 Precursors -- 7.2.1.2 Gel Preparation -- 7.2.1.3 Aging -- 7.2.1.4 Drying.
7.2.1.1 Precursors -- 7.2.2 Rapid Extraction Methods -- 7.3 Silica Aerogel Properties -- 7.3.1 Mechanical Properties -- 7.3.2 Thermal Properties -- 7.3.3 Optical Properties -- 7.3.4 Acoustic Properties -- 7.4 Energy Performance of Silica Aerogels in Buildings -- 7.4.1 Energy Performance of Monolithic Aerogel Glazing Systems -- 7.4.2 Energy Performance of Granular Aerogel Glazing Systems -- 7.5 Applications -- 7.6 Conclusions -- 7.7 Outlook -- References -- Chapter 8 Inorganic Aerogels and Their Composites for Thermal Insulation in White Goods -- 8.1 Introduction -- 8.1.1 Energy Consumption in White Goods -- 8.1.2 Aerogels -- 8.1.2.1 Synthesis of Aerogels -- 8.1.2.2 Classification of Aerogels -- 8.1.2.3 Forms of Aerogels -- 8.2 Heat Transfer Mechanisms in Aerogels -- 8.2.1 Solid Thermal Conductivity -- 8.2.2 Gaseous Thermal Conductivity -- 8.2.3 Radiative Thermal Conductivity -- 8.2.3.1 Approximations Neglecting Some Physical Process -- 8.2.3.2 Optically Thin Approximation Optically -- 8.2.3.3 Optically Thick Approximation -- 8.2.3.4 Two Flux Method -- 8.2.3.5 Discrete Ordinate Method -- 8.3 Inorganic Aerogels and Their Composites in White Goods -- 8.3.1 Refrigerators -- 8.3.1.1 Thermal Insulation in Refrigerators -- 8.3.1.2 Aerogels for Vacuum Insulation Panels -- 8.3.1.3 Aerogel Blankets for Refrigerators -- 8.3.1.4 Monolithic Aerogels for Refrigerators -- 8.3.1.5 Aerogel Polyurethane Composites -- 8.3.2 Ovens -- 8.3.2.1 Thermal Insulation in Ovens -- 8.3.2.2 Aerogel Blankets for Ovens -- 8.3.2.3 Monolithic Aerogel Panels -- 8.4 Conclusions -- References -- Chapter 9 Natural Polymer-Based Aerogels for Filtration Applications -- 9.1 Introduction -- 9.2 Material Option for the Preparation of Aerogel -- 9.2.1 Synthetic Polymers -- 9.2.2 Biopolymers-Based Aerogels -- 9.3 Application of Aerogels in Water Purification -- 9.3.1 Organic Molecule Separation.
9.3.2 Organic Solvent Separation.
Record Nr. UNINA-9910877176303321
Mathew Meldin  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Alkaline Anion Exchange Membranes for Fuel Cells : From Tailored Materials to Novel Applications
Alkaline Anion Exchange Membranes for Fuel Cells : From Tailored Materials to Novel Applications
Autore Thomas Jince
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (451 pages)
Altri autori (Persone) SchechterAlex
GrynszpanFlavio
FrancisBejoy
ThomasSabu
ISBN 3-527-83758-2
3-527-83760-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 An Introduction to Polymeric Electrolyte Alkaline Anion Exchange Membranes -- 1.1 Introduction -- 1.2 Different Types of Electrolytes -- 1.3 Why Polymer Electrolytes Are Important? -- 1.4 Anion Exchange Membrane (AEM) -- 1.4.1 Fundamental Concepts of Anion Exchange Membranes as Polymer Electrolytes -- 1.4.2 Classification of AEM -- 1.4.3 Pros and Cons of AEM -- 1.4.4 Application of AEM -- 1.5 AEMs in Fuel Cells -- 1.6 Conclusion and Outlook -- References -- 2 Historical and Recent Developments inAnion Exchange Membranes (AEM) -- 2.1 Introduction -- 2.2 Fuel Cell: Conventional Versus Modern Approach -- 2.3 Role of AEM in Fuel Cell Technology -- 2.4 Preparation of AEMs -- 2.5 Challenges in Existing AEMs -- 2.6 Recent Advancement -- 2.7 Major Challenges -- 2.8 Commercially Available AEMs -- 2.9 Current Scenario and Future Market -- 2.10 Summary and Concluding Remarks -- References -- 3 Fabrication Processes and Characterization Proceduresof Anion Exchange Membranes -- 3.1 Introduction -- 3.2 Fabrication Processes of Anion Exchange Membranes -- 3.2.1 AEM of Cationic Charged Polymers -- 3.2.2 AEMs of Ion-Solvating Polymers -- 3.2.3 AEMs with Nanofibers -- 3.2.4 Hybrid AEMs -- 3.2.5 Recent Developments in AEMs -- 3.3 Characterization Procedures of AEMs -- 3.3.1 Ionic Conductivity -- 3.3.2 IEC, Swelling Ratio, and Water Content -- 3.3.3 Mechanical and Thermal Properties -- 3.3.4 Chemical Stability -- 3.3.5 Chemical Composition and Morphological Characterization -- 3.3.6 Other Characterizations -- 3.4 Conclusions -- References -- 4 Types of Polymeric Electrolyte Anion Exchange Membranes: Heterogeneous and Grafted Membranes, Interpenetrating Polymer Networks and Homogeneous Membranes -- 4.1 Heterogenous Anion Exchange Membranes -- 4.1.1 Ion-Solvating Polymers -- 4.1.2 Hybrid Membranes.
4.2 Grafted Anion Exchange Membranes -- 4.2.1 Radiation-Grafted Membranes -- 4.2.2 Side Chain Grafted Membranes -- 4.2.3 Long-side-chain Grafted Membranes -- 4.3 Interpenetrating Anion Exchange Membranes -- 4.3.1 Anion Exchange Membranes Based on Interpenetrating Polymer Networks (IPN) -- 4.3.2 Anion Exchange Membranes Based on Semi-Interpenetrating Polymer Networks (Semi-IPN) -- 4.4 Homogenous Membranes -- 4.4.1 Homogenous Membranes Based on Poly(arylene ether)s -- 4.4.2 Homogenous Membranes Based on Poly(styrene)s -- 4.4.3 Homogenous Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide) -- 4.4.4 Fluorene-Containing Homogenous Membranes -- 4.4.5 Homogenous Membranes Based on Polyolefins -- 4.4.6 Other Kinds of Homogenous Membranes -- 4.5 Conclusions -- References -- 5 Proton Exchange Membranes Versus Anion Exchange Membranes -- 5.1 Introduction -- 5.2 Proton Exchange Membrane (PEM) -- 5.2.1 Classification of PEM Membranes Based on the Materials of Synthesis -- 5.2.1.1 Perfluorinated Ionomeric Membranes -- 5.2.1.2 Partially Fluorinated Hydrocarbon Membranes -- 5.2.1.3 Non-fluorinated Hydrocarbon Membranes -- 5.2.1.4 Acid-Base Complexes -- 5.2.2 Preparation Methods of PEM -- 5.2.3 Proton Transport Mechanism in PEM -- 5.2.4 Current State of Art of PEM -- 5.3 Comparison with AEM -- 5.3.1 Materials Used for Preparations -- 5.3.2 Investigative Methods and Measurement for Ion-Exchange Membranes -- 5.3.2.1 Ionic Conductivity -- 5.3.2.2 Water Absorption or Swelling Index -- 5.3.2.3 Ion-Exchange Capacity (IEC) of the Membrane -- 5.3.2.4 Thermal Stability and Mechanical Strength -- 5.3.2.5 Durability of the Membranes -- 5.3.3 Water Management -- 5.3.4 Transport Mechanism -- 5.3.5 Catalyst Used in PEMFC and AEMFC -- 5.3.6 MEA Fabrication -- 5.3.7 Fuels Used in Fuel Cells -- 5.3.8 Fuel Cell Efficiency -- 5.4 Conclusion -- References.
6 Transport and Conductive Mechanisms in Anion Exchange Membranes -- 6.1 Introduction -- 6.2 Transport Mechanisms of Hydroxide Ion in AEMs -- 6.3 AEM Structure-Transport Efficiency Relationships -- 6.4 Ion Conductivity Measurement -- 6.5 Carbonation Process in AEMs -- 6.5.1 Elucidating the Dynamics of Carbonation -- 6.5.2 Impact of Carbonation on AEM and AEMFC -- 6.5.3 Strategies to Avoid Carbonation of OH Ions -- 6.6 Conclusion and Outlook -- References -- 7 Anion Exchange Membranes Based on Quaternary Ammonium Cations and Modified Quaternary Ammonium Cations -- 7.1 Introduction -- 7.1.1 Background of AEMFC Invention -- 7.2 Quaternary Ammonium (QA)-Based AEMs - Recent Developments and Performances -- 7.3 Other Factors Affecting Performance of Fuel Cells -- 7.4 Summary and Perspectives -- Acknowledgments -- References -- 8 Guanidinium Cations and Their Derivatives-Based Anion Exchange Membranes -- 8.1 Introduction -- 8.2 General Synthetic Method of Various Guanidiniums -- 8.3 Degradation Mechanism and Alkaline Stability of Guanidinium Cations -- 8.4 Preparation of Guanidinium and Their Derivative-Based AEMs -- 8.4.1 Benzyl-guanidinium AEMs -- 8.4.2 Alkyl-guanidinium AEMs -- 8.4.3 Aryl-guanidinium AEMs -- 8.4.4 Other Guanidinium-Based AEMs -- 8.5 Prospect -- References -- 9 Anion Exchange Membranes Based on Imidazolium and Triazolium Cations -- 9.1 Introduction -- 9.2 AEMs Based on Imidazolium Cations -- 9.2.1 AEMs Based on Imidazolium-type Ionic Liquids -- 9.2.2 Imidazole Containing Polymers and Composites -- 9.3 AEM Based on Triazolium Cations -- 9.4 Summary and Future Perspectives -- Acknowledgments -- References -- 10 Radiation-Grafted and Cross-linked Polymers-Based Anion Exchange Membranes -- 10.1 Historic Overview -- 10.2 Sources of Radiation -- 10.3 Types of Radiation-Induced Grafting -- 10.3.1 Absorbed Dose -- 10.3.2 Dose Rate.
10.3.3 Atmosphere During Irradiation -- 10.3.4 Temperature During Irradiation -- 10.4 Base Polymer -- 10.5 Grafting Solution -- 10.6 Physicochemical Properties of RG-AEMs -- 10.7 Cross-linking in AEMs -- 10.7.1 Physical Cross-linking -- 10.7.2 Chemical Cross-linking -- 10.7.2.1 Cross-linking with Diamine Agents -- 10.7.2.2 Chemical Cross-linking Reaction with Other Agents -- 10.7.2.3 Other Methods of Producing Cross-linked Membranes -- 10.8 Conclusions -- References -- 11 Degradation Mechanisms of Anion Exchange Membranes due to Alkali Hydrolysis and Radical Oxidative Species -- 11.1 Introduction -- 11.2 Necessity to Investigate the Degradation Mechanism in AEMs -- 11.3 Structure and Degradation Mechanism of Tailored Anion Exchange Groups and Polymers -- 11.3.1 Alkaline Hydrolysis of Cationic Head Groups -- 11.3.2 Alkaline Hydrolysis of Novel Metallocenium Based AEMs -- 11.3.3 Alkaline Hydrolysis of Polymers -- 11.3.3.1 Degradation Mechanism in Poly(arylene ethers) (PAEs) -- 11.3.3.2 Degradation Mechanism in Fluorinated Polymer -- 11.3.3.3 Degradation Mechanism in Poly(benzimidazole) Based Polymers -- 11.3.3.4 Degradation Mechanism in Poly(alkyl) and Poly(arene) Based Polymers -- 11.3.4 Free Radical Oxidative Degradation of AEM -- 11.4 Prospects and Outlook -- 11.5 Conclusion -- References -- 12 Computational Approaches to Alkaline Anion Exchange Membranes -- 12.1 Introduction -- 12.2 Why Computational Studies Are Important in Anion Exchange Membranes? -- 12.3 Tools of In Silico Approaches in Anion Exchange Membranes -- 12.3.1 Electronic Structure Methods in Anion Exchange Membranes -- 12.3.1.1 Analysis on HOMO-LUMO Energies and Mulliken Charges -- 12.3.1.2 Analysis on ESP -- 12.3.1.3 Analysis on Chemical Structure and Bonding Nature -- 12.3.1.4 Analysis on Degradation Pathways -- 12.3.2 Molecular Dynamics in Anion Exchange Membranes.
12.3.3 Continuum Modeling and Simulation in Anion Exchange Membranes -- 12.3.4 Monte Carlo Simulations in Anion Exchange Membranes -- 12.3.5 Machine Learning in Anion Exchange Membranes -- 12.4 Challenges and Outlook -- 12.5 Conclusion -- References -- 13 An Overview of Commercial and Non-commercial Anion Exchange Membranes -- 13.1 Introduction -- 13.1.1 Characteristics and Existing Problems of Commercial Alkaline Anion Exchange Membranes -- 13.1.1.1 Fumatech: Fumasep -- 13.1.1.2 Tokuyama: A201 -- 13.1.1.3 Ionomr: AEMION -- 13.1.1.4 Dioxide Materials: Sustainion -- 13.1.1.5 Orion Polymer: Orion TM1 -- 13.1.1.6 Xergy: Xion-Dappion, Xion-Durion, Xion-Pention -- 13.1.1.7 Versogen: PiperION -- 13.1.1.8 Membranes International Inc.: AMI-7001 -- 13.1.1.9 Asahi Glass: Selemion AMV -- 13.1.2 Characteristics and Existing Problems of Non-Commercial Alkaline Anion Exchange Membrane -- 13.1.3 Strategies to Improve the Properties of AEMs -- 13.1.3.1 The Regulation of Microphase Morphologies -- 13.1.3.2 Constructing Free Volumes -- 13.1.3.3 The Introduction of Cross-linking Structures -- 13.1.3.4 Other Physical Methods -- 13.1.3.5 The Development of Novel Cationic Functional Groups and Aryl Ether-free Main Chains with High Stability -- 13.2 Summary and Outlooks -- Acknowledgment -- References -- 14 Membrane Electrode Assembly Preparation for Anion Exchange Membrane Fuel Cell (AEMFC): Selection of Ionomers and How to Avoid CO2 Poisoning -- 14.1 The Preparation of Membrane Electrode Assembly -- 14.2 Selection of Ionomers -- 14.2.1 Commercial Ionomers -- 14.2.2 Custom-made Ionomers -- 14.3 Effect of CO2 on AEMFCs -- 14.3.1 Effect of CO2 on Ex Situ Measured Conductivity -- 14.3.2 Effect of CO2 on Electrochemical Reactions on the Electrodes -- 14.3.3 Effect of CO2 on Fuel Cell Performance -- 14.4 Strategies to Avoid CO2 Poisoning.
14.4.1 Reducing HCO3/CO32 Concentration Through Self-purging.
Record Nr. UNINA-9910830286803321
Thomas Jince  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Alkaline Anion Exchange Membranes for Fuel Cells : From Tailored Materials to Novel Applications
Alkaline Anion Exchange Membranes for Fuel Cells : From Tailored Materials to Novel Applications
Autore Thomas Jince
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (451 pages)
Altri autori (Persone) SchechterAlex
GrynszpanFlavio
FrancisBejoy
ThomasSabu
ISBN 3-527-83758-2
3-527-83760-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 An Introduction to Polymeric Electrolyte Alkaline Anion Exchange Membranes -- 1.1 Introduction -- 1.2 Different Types of Electrolytes -- 1.3 Why Polymer Electrolytes Are Important? -- 1.4 Anion Exchange Membrane (AEM) -- 1.4.1 Fundamental Concepts of Anion Exchange Membranes as Polymer Electrolytes -- 1.4.2 Classification of AEM -- 1.4.3 Pros and Cons of AEM -- 1.4.4 Application of AEM -- 1.5 AEMs in Fuel Cells -- 1.6 Conclusion and Outlook -- References -- 2 Historical and Recent Developments inAnion Exchange Membranes (AEM) -- 2.1 Introduction -- 2.2 Fuel Cell: Conventional Versus Modern Approach -- 2.3 Role of AEM in Fuel Cell Technology -- 2.4 Preparation of AEMs -- 2.5 Challenges in Existing AEMs -- 2.6 Recent Advancement -- 2.7 Major Challenges -- 2.8 Commercially Available AEMs -- 2.9 Current Scenario and Future Market -- 2.10 Summary and Concluding Remarks -- References -- 3 Fabrication Processes and Characterization Proceduresof Anion Exchange Membranes -- 3.1 Introduction -- 3.2 Fabrication Processes of Anion Exchange Membranes -- 3.2.1 AEM of Cationic Charged Polymers -- 3.2.2 AEMs of Ion-Solvating Polymers -- 3.2.3 AEMs with Nanofibers -- 3.2.4 Hybrid AEMs -- 3.2.5 Recent Developments in AEMs -- 3.3 Characterization Procedures of AEMs -- 3.3.1 Ionic Conductivity -- 3.3.2 IEC, Swelling Ratio, and Water Content -- 3.3.3 Mechanical and Thermal Properties -- 3.3.4 Chemical Stability -- 3.3.5 Chemical Composition and Morphological Characterization -- 3.3.6 Other Characterizations -- 3.4 Conclusions -- References -- 4 Types of Polymeric Electrolyte Anion Exchange Membranes: Heterogeneous and Grafted Membranes, Interpenetrating Polymer Networks and Homogeneous Membranes -- 4.1 Heterogenous Anion Exchange Membranes -- 4.1.1 Ion-Solvating Polymers -- 4.1.2 Hybrid Membranes.
4.2 Grafted Anion Exchange Membranes -- 4.2.1 Radiation-Grafted Membranes -- 4.2.2 Side Chain Grafted Membranes -- 4.2.3 Long-side-chain Grafted Membranes -- 4.3 Interpenetrating Anion Exchange Membranes -- 4.3.1 Anion Exchange Membranes Based on Interpenetrating Polymer Networks (IPN) -- 4.3.2 Anion Exchange Membranes Based on Semi-Interpenetrating Polymer Networks (Semi-IPN) -- 4.4 Homogenous Membranes -- 4.4.1 Homogenous Membranes Based on Poly(arylene ether)s -- 4.4.2 Homogenous Membranes Based on Poly(styrene)s -- 4.4.3 Homogenous Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide) -- 4.4.4 Fluorene-Containing Homogenous Membranes -- 4.4.5 Homogenous Membranes Based on Polyolefins -- 4.4.6 Other Kinds of Homogenous Membranes -- 4.5 Conclusions -- References -- 5 Proton Exchange Membranes Versus Anion Exchange Membranes -- 5.1 Introduction -- 5.2 Proton Exchange Membrane (PEM) -- 5.2.1 Classification of PEM Membranes Based on the Materials of Synthesis -- 5.2.1.1 Perfluorinated Ionomeric Membranes -- 5.2.1.2 Partially Fluorinated Hydrocarbon Membranes -- 5.2.1.3 Non-fluorinated Hydrocarbon Membranes -- 5.2.1.4 Acid-Base Complexes -- 5.2.2 Preparation Methods of PEM -- 5.2.3 Proton Transport Mechanism in PEM -- 5.2.4 Current State of Art of PEM -- 5.3 Comparison with AEM -- 5.3.1 Materials Used for Preparations -- 5.3.2 Investigative Methods and Measurement for Ion-Exchange Membranes -- 5.3.2.1 Ionic Conductivity -- 5.3.2.2 Water Absorption or Swelling Index -- 5.3.2.3 Ion-Exchange Capacity (IEC) of the Membrane -- 5.3.2.4 Thermal Stability and Mechanical Strength -- 5.3.2.5 Durability of the Membranes -- 5.3.3 Water Management -- 5.3.4 Transport Mechanism -- 5.3.5 Catalyst Used in PEMFC and AEMFC -- 5.3.6 MEA Fabrication -- 5.3.7 Fuels Used in Fuel Cells -- 5.3.8 Fuel Cell Efficiency -- 5.4 Conclusion -- References.
6 Transport and Conductive Mechanisms in Anion Exchange Membranes -- 6.1 Introduction -- 6.2 Transport Mechanisms of Hydroxide Ion in AEMs -- 6.3 AEM Structure-Transport Efficiency Relationships -- 6.4 Ion Conductivity Measurement -- 6.5 Carbonation Process in AEMs -- 6.5.1 Elucidating the Dynamics of Carbonation -- 6.5.2 Impact of Carbonation on AEM and AEMFC -- 6.5.3 Strategies to Avoid Carbonation of OH Ions -- 6.6 Conclusion and Outlook -- References -- 7 Anion Exchange Membranes Based on Quaternary Ammonium Cations and Modified Quaternary Ammonium Cations -- 7.1 Introduction -- 7.1.1 Background of AEMFC Invention -- 7.2 Quaternary Ammonium (QA)-Based AEMs - Recent Developments and Performances -- 7.3 Other Factors Affecting Performance of Fuel Cells -- 7.4 Summary and Perspectives -- Acknowledgments -- References -- 8 Guanidinium Cations and Their Derivatives-Based Anion Exchange Membranes -- 8.1 Introduction -- 8.2 General Synthetic Method of Various Guanidiniums -- 8.3 Degradation Mechanism and Alkaline Stability of Guanidinium Cations -- 8.4 Preparation of Guanidinium and Their Derivative-Based AEMs -- 8.4.1 Benzyl-guanidinium AEMs -- 8.4.2 Alkyl-guanidinium AEMs -- 8.4.3 Aryl-guanidinium AEMs -- 8.4.4 Other Guanidinium-Based AEMs -- 8.5 Prospect -- References -- 9 Anion Exchange Membranes Based on Imidazolium and Triazolium Cations -- 9.1 Introduction -- 9.2 AEMs Based on Imidazolium Cations -- 9.2.1 AEMs Based on Imidazolium-type Ionic Liquids -- 9.2.2 Imidazole Containing Polymers and Composites -- 9.3 AEM Based on Triazolium Cations -- 9.4 Summary and Future Perspectives -- Acknowledgments -- References -- 10 Radiation-Grafted and Cross-linked Polymers-Based Anion Exchange Membranes -- 10.1 Historic Overview -- 10.2 Sources of Radiation -- 10.3 Types of Radiation-Induced Grafting -- 10.3.1 Absorbed Dose -- 10.3.2 Dose Rate.
10.3.3 Atmosphere During Irradiation -- 10.3.4 Temperature During Irradiation -- 10.4 Base Polymer -- 10.5 Grafting Solution -- 10.6 Physicochemical Properties of RG-AEMs -- 10.7 Cross-linking in AEMs -- 10.7.1 Physical Cross-linking -- 10.7.2 Chemical Cross-linking -- 10.7.2.1 Cross-linking with Diamine Agents -- 10.7.2.2 Chemical Cross-linking Reaction with Other Agents -- 10.7.2.3 Other Methods of Producing Cross-linked Membranes -- 10.8 Conclusions -- References -- 11 Degradation Mechanisms of Anion Exchange Membranes due to Alkali Hydrolysis and Radical Oxidative Species -- 11.1 Introduction -- 11.2 Necessity to Investigate the Degradation Mechanism in AEMs -- 11.3 Structure and Degradation Mechanism of Tailored Anion Exchange Groups and Polymers -- 11.3.1 Alkaline Hydrolysis of Cationic Head Groups -- 11.3.2 Alkaline Hydrolysis of Novel Metallocenium Based AEMs -- 11.3.3 Alkaline Hydrolysis of Polymers -- 11.3.3.1 Degradation Mechanism in Poly(arylene ethers) (PAEs) -- 11.3.3.2 Degradation Mechanism in Fluorinated Polymer -- 11.3.3.3 Degradation Mechanism in Poly(benzimidazole) Based Polymers -- 11.3.3.4 Degradation Mechanism in Poly(alkyl) and Poly(arene) Based Polymers -- 11.3.4 Free Radical Oxidative Degradation of AEM -- 11.4 Prospects and Outlook -- 11.5 Conclusion -- References -- 12 Computational Approaches to Alkaline Anion Exchange Membranes -- 12.1 Introduction -- 12.2 Why Computational Studies Are Important in Anion Exchange Membranes? -- 12.3 Tools of In Silico Approaches in Anion Exchange Membranes -- 12.3.1 Electronic Structure Methods in Anion Exchange Membranes -- 12.3.1.1 Analysis on HOMO-LUMO Energies and Mulliken Charges -- 12.3.1.2 Analysis on ESP -- 12.3.1.3 Analysis on Chemical Structure and Bonding Nature -- 12.3.1.4 Analysis on Degradation Pathways -- 12.3.2 Molecular Dynamics in Anion Exchange Membranes.
12.3.3 Continuum Modeling and Simulation in Anion Exchange Membranes -- 12.3.4 Monte Carlo Simulations in Anion Exchange Membranes -- 12.3.5 Machine Learning in Anion Exchange Membranes -- 12.4 Challenges and Outlook -- 12.5 Conclusion -- References -- 13 An Overview of Commercial and Non-commercial Anion Exchange Membranes -- 13.1 Introduction -- 13.1.1 Characteristics and Existing Problems of Commercial Alkaline Anion Exchange Membranes -- 13.1.1.1 Fumatech: Fumasep -- 13.1.1.2 Tokuyama: A201 -- 13.1.1.3 Ionomr: AEMION -- 13.1.1.4 Dioxide Materials: Sustainion -- 13.1.1.5 Orion Polymer: Orion TM1 -- 13.1.1.6 Xergy: Xion-Dappion, Xion-Durion, Xion-Pention -- 13.1.1.7 Versogen: PiperION -- 13.1.1.8 Membranes International Inc.: AMI-7001 -- 13.1.1.9 Asahi Glass: Selemion AMV -- 13.1.2 Characteristics and Existing Problems of Non-Commercial Alkaline Anion Exchange Membrane -- 13.1.3 Strategies to Improve the Properties of AEMs -- 13.1.3.1 The Regulation of Microphase Morphologies -- 13.1.3.2 Constructing Free Volumes -- 13.1.3.3 The Introduction of Cross-linking Structures -- 13.1.3.4 Other Physical Methods -- 13.1.3.5 The Development of Novel Cationic Functional Groups and Aryl Ether-free Main Chains with High Stability -- 13.2 Summary and Outlooks -- Acknowledgment -- References -- 14 Membrane Electrode Assembly Preparation for Anion Exchange Membrane Fuel Cell (AEMFC): Selection of Ionomers and How to Avoid CO2 Poisoning -- 14.1 The Preparation of Membrane Electrode Assembly -- 14.2 Selection of Ionomers -- 14.2.1 Commercial Ionomers -- 14.2.2 Custom-made Ionomers -- 14.3 Effect of CO2 on AEMFCs -- 14.3.1 Effect of CO2 on Ex Situ Measured Conductivity -- 14.3.2 Effect of CO2 on Electrochemical Reactions on the Electrodes -- 14.3.3 Effect of CO2 on Fuel Cell Performance -- 14.4 Strategies to Avoid CO2 Poisoning.
14.4.1 Reducing HCO3/CO32 Concentration Through Self-purging.
Record Nr. UNINA-9910876865903321
Thomas Jince  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Antimicrobial Resistance : Global Challenges and Future Interventions / / edited by Sabu Thomas
Antimicrobial Resistance : Global Challenges and Future Interventions / / edited by Sabu Thomas
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIII, 230 p. 20 illus., 16 illus. in color.)
Disciplina 615
Soggetto topico Pharmaceutical technology
Pharmacy management
Drug resistance
Microbiology
Pharmaceutical Sciences/Technology
Pharmacoeconomics and Health Outcomes
Drug Resistance
Applied Microbiology
Resistència als medicaments
Microbiologia
Soggetto genere / forma Llibres electrònics
ISBN 981-15-3658-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1) The Evolution of Microbial Defense Systems against Antimicrobial Agents -- 2) Carbapenem Resistance in Gram-negative bacilli: Mechanisms and Challenges -- 3) Influence of Antimicrobials on the Gut Microbiota -- 4) Influence of Abiotic Factors in the Emergence of Antibiotic Resistance -- 5) Polluted Coastal and Estuarine Environments – A Potential Reservoir for AMR Determinants in Various Pathogenic Bacteria -- 6) AMR in Animal Health: Issues and One Health Solutions for LMICs -- 7) Antifungal Resistance: Current Concepts -- 8) 'Planetary Health’ Perspectives and Alternative Approaches to Tackle the AMR Challenge -- 9) Use of Bacterial Cell Wall Recycle Inhibitors to Combat AMR in Bacteria -- 10) Status quo of Omics Technologies in Analyzing the Genetic Mediators of Antimicrobial Resistance at Sub-MIC Concentrations.
Record Nr. UNINA-9910416106703321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Biopolymers in Science, Biotechnology, and Engineering
Applications of Biopolymers in Science, Biotechnology, and Engineering
Autore Reghunadhan Arunima
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (431 pages)
Disciplina 620.1923
Altri autori (Persone) HAkhina
ThomasSabu
ISBN 1-119-78347-X
1-119-78345-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830323403321
Reghunadhan Arunima  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Biopolymers in Science, Biotechnology, and Engineering
Applications of Biopolymers in Science, Biotechnology, and Engineering
Autore Reghunadhan Arunima
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (431 pages)
Disciplina 620.1923
Altri autori (Persone) HAkhina
ThomasSabu
ISBN 1-119-78347-X
1-119-78345-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910877145503321
Reghunadhan Arunima  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bio-Based Materials : Contribution to Advancing Circular Economy / / Maya Jacob John, Sabu Thomas, editor
Bio-Based Materials : Contribution to Advancing Circular Economy / / Maya Jacob John, Sabu Thomas, editor
Pubbl/distr/stampa [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023
Descrizione fisica 1 online resource (252 pages)
Disciplina 572
Soggetto topico Biopolymers - Industrial applications
Circular economy
ISBN 3-0365-6048-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editors -- Special Issue-"Bio-Based Materials: Contribution to Advancing Circular Economy" -- 3D Printing Parameter Optimization Using Taguchi Approach to Examine Acrylonitrile Styrene Acrylate (ASA) Mechanical Properties -- Towards a Circular Economy of Plastics: An Evaluation of the Systematic Transition to a New Generation of Bioplastics -- Effect of Prosopis Juliflora Thorns on Mechanical Properties of Plastic Waste Reinforced Epoxy Composites -- Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites -- Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface -- Development and Characterization of Plantain (Musa paradisiaca) Flour-Based Biopolymer Films -- Investigating the Effects of Tobacco Lignin on Polypropylene -- Esterification of Cellulose with Long Fatty Acid Chain through Mechanochemical Method -- Physicomechanical Properties of Rice Husk/Coco Peat Reinforced Acrylonitrile Butadiene Styrene Blend Composites -- Morphology, Structural, Thermal, and Tensile Properties of Bamboo Microcrystalline Cellulose/Poly(Lactic Acid)/Poly(Butylene Succinate) Composites -- Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber -- Chitosan: A Sustainable Material for Multifarious Applications -- Alginate-Induced Disease Resistance in Plants.
Altri titoli varianti Bio-Based Materials
Record Nr. UNINA-9910647228003321
[Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomaterial applications : macro to nanoscales / / edited by Sabu Thomas, PhD, Nandakumar Kalarikkal, PhD, Weimin Yang, MD, and Snigdha S. Babu
Biomaterial applications : macro to nanoscales / / edited by Sabu Thomas, PhD, Nandakumar Kalarikkal, PhD, Weimin Yang, MD, and Snigdha S. Babu
Pubbl/distr/stampa Oakville, ON : , : Apple Academic Press, Inc.
Descrizione fisica 1 online resource (221 p.)
Disciplina 610.28
Soggetto topico Biomedical materials
Biopolymers
ISBN 1-77463-349-3
0-429-17421-7
1-77188-027-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Green organic-inorganic hybrid material from plant oil polyol / Eram Sharmin, Mudsser Azam, Fahmina Zafar, Deewan Akram, Qazi Mohd. Rizwanul Haq, and Sharif Ahmad -- 2. Bio-hybrid 3D tubular scaffolds for vascular tissue engineering : a materials perspective / Harsh Patel, Roman Garcia, and Vinoy Thomas -- 3. Polymers for use in the monitoring and treatment of waterborne protozoa / Helen Bridle and Moushumi Ghosh -- 4. Synthesis of Polypyrrole/TiO2 nanoparticles in water by chemical oxidative polymerization / Yang Tan, Michel B. Johnson, and Khashayar Gandhi -- 5. Poly (lactic acid) based hybrid composite films containing ultrasound treated cellulose and poly (ethylene glycol) as plasticizer and reaction media / Katalin Halász, Mandar P. Badve, and Levente Csóka -- 6. An experimental observation of disparity in mechanical properties of turmeric fiber reinforced polyester composites / Nadendla srinivasababu, J. Suresh Kumar and K. Vijaya Kumar Reddy -- 7. Wavelength dependence of SERS spectra of pyrene / F. Hubenthal, D. Blázquez Sánchez, R. Ossig, H. Schmidt, and H.-D. Kronfeldt -- 8. Emerging therapeutic applications of bacterial exopolysaccharides / P. Priyanka, A.B. Arun, and P.D. Rekha -- 9. Preparation and properties of composite films from modified cellulose fiber-reinforced with different polymers / Sandeep S. Laxmishwar and G.K. Nagaraja -- 10. Natural bio resources : the unending source of nanofactory / Balaprasad Ankamwar.
Record Nr. UNINA-9910787851203321
Oakville, ON : , : Apple Academic Press, Inc.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomaterial applications : macro to nanoscales / / edited by Sabu Thomas, PhD, Nandakumar Kalarikkal, PhD, Weimin Yang, MD, and Snigdha S. Babu
Biomaterial applications : macro to nanoscales / / edited by Sabu Thomas, PhD, Nandakumar Kalarikkal, PhD, Weimin Yang, MD, and Snigdha S. Babu
Pubbl/distr/stampa Oakville, ON : , : Apple Academic Press, Inc.
Descrizione fisica 1 online resource (221 p.)
Disciplina 610.28
Soggetto topico Biomedical materials
Biopolymers
ISBN 1-77463-349-3
0-429-17421-7
1-77188-027-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Green organic-inorganic hybrid material from plant oil polyol / Eram Sharmin, Mudsser Azam, Fahmina Zafar, Deewan Akram, Qazi Mohd. Rizwanul Haq, and Sharif Ahmad -- 2. Bio-hybrid 3D tubular scaffolds for vascular tissue engineering : a materials perspective / Harsh Patel, Roman Garcia, and Vinoy Thomas -- 3. Polymers for use in the monitoring and treatment of waterborne protozoa / Helen Bridle and Moushumi Ghosh -- 4. Synthesis of Polypyrrole/TiO2 nanoparticles in water by chemical oxidative polymerization / Yang Tan, Michel B. Johnson, and Khashayar Gandhi -- 5. Poly (lactic acid) based hybrid composite films containing ultrasound treated cellulose and poly (ethylene glycol) as plasticizer and reaction media / Katalin Halász, Mandar P. Badve, and Levente Csóka -- 6. An experimental observation of disparity in mechanical properties of turmeric fiber reinforced polyester composites / Nadendla srinivasababu, J. Suresh Kumar and K. Vijaya Kumar Reddy -- 7. Wavelength dependence of SERS spectra of pyrene / F. Hubenthal, D. Blázquez Sánchez, R. Ossig, H. Schmidt, and H.-D. Kronfeldt -- 8. Emerging therapeutic applications of bacterial exopolysaccharides / P. Priyanka, A.B. Arun, and P.D. Rekha -- 9. Preparation and properties of composite films from modified cellulose fiber-reinforced with different polymers / Sandeep S. Laxmishwar and G.K. Nagaraja -- 10. Natural bio resources : the unending source of nanofactory / Balaprasad Ankamwar.
Record Nr. UNINA-9910810135903321
Oakville, ON : , : Apple Academic Press, Inc.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biopolymer nanocomposites [[electronic resource] ] : processing, properties, and applications / / edited by Alain Dufresne, Sabu Thomas, Laly A. Pothan
Biopolymer nanocomposites [[electronic resource] ] : processing, properties, and applications / / edited by Alain Dufresne, Sabu Thomas, Laly A. Pothan
Pubbl/distr/stampa Hoboken, NJ, : John Wiley and Sons, Inc., c2013
Descrizione fisica 1 online resource (698 p.)
Disciplina 572
Altri autori (Persone) DufresneAlain <1962->
ThomasSabu
PothanLaly A
Collana Wiley Series on Polymer Engineering and Technology
Soggetto topico Biopolymers
Nanocomposites (Materials)
ISBN 1-118-60990-5
1-118-60995-6
1-118-60987-5
Classificazione TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Copyright page; Contents; Foreword; Contributors; CHAPTER 1: Bionanocomposites: State of the Art, Challenges, and Opportunities; 1.1 Introduction; 1.2 Nanocrystalline Cellulose; References; CHAPTER 2: Preparation of Chitin Nanofibers and Their Composites; 2.1 Introduction; 2.2 Isolation of Chitin Nanofibers from Different Sources; 2.2.1 Processing of Chitin Nanofibers from Crab Shells; 2.2.2 Chitin Nanofibers from Prawn Shells; 2.2.3 Facile Preparation of Chitin Nanofibers from Dry Chitin
2.3 Characterization of Chitin Nanofibers Obtained from Crab, Prawn, and Dry Chitin Powder2.4 Preparation of Chitin Nanofibers from Edible Mushrooms; 2.5 Preparation of Chitin Nanofiber Nanocomposites; 2.6 Acetylation of Chitin Nanofibers; 2.6.1 Study of Degree of Substitution; 2.6.2 SEM Images of Substituted Chitin Nanofibers; 2.6.3 Acetylated Chitin Nanofiber Composites; 2.7 Conclusion; References; CHAPTER 3: Chemical Modification of Chitosan and Its Biomedical Application; 3.1 Introduction; 3.2 Structure of Chitosan; 3.3 Chemical Modifications of Chitosan; 3.3.1 Chitosan-Grafted Copolymers
3.3.2 Cyclodextrin-Linked Chitosan3.3.3 Crown Ether Bound Chitosan; 3.3.4 Thiol-Containing Chitosan; 3.3.5 Carbohydrate Branched Chitosans; 3.3.6 Carboxymethylated Chitosans; 3.3.7 Alkylated Chitosans; 3.3.8 Quaternized Chitosan Derivatives; 3.3.9 Chitosan Hydrogels; 3.4 Biomedical Applications of Chitosan Derivatives; 3.4.1 Tissue Engineering; 3.4.2 Wound Healing; 3.4.3 Drug Delivery; 3.5 Conclusion; References; CHAPTER 4: Biomimetic Lessons for Processing Chitin-Based Composites; 4.1 Introduction; 4.2 Physicochemical Properties of Chitin; 4.2.1 Chitin Hierarchical Structure
4.2.2 Chitin Crystallinity4.2.3 Liquid Crystal Behavior of Chitin; 4.2.4 Chitin and Proteins; 4.3 Biomimetic Lessons from Natural Chitin Nanocomposites; 4.3.1 Chitin Synthesis in Mollusk and Crustacean Hard Tissue; 4.3.2 Jumbo Squid Beak; 4.4 Bioinspired Lessons for Processing Chitin Nanocomposites; 4.4.1 Chitin Nanocomposite Processing; 4.4.2 Chitin Nanocomposites in Biomedical Engineering; 4.4.3 Inorganic Chitin-Based Nanocomposites; 4.5 Conclusions; Acknowledgments; References; CHAPTER 5: Morphological and Thermal Investigations of Chitin-Based Nanocomposites
5.1 Morphological Investigations of Chitin-Based Nanocomposites5.1.1 Optical Microscopy; 5.1.2 Scanning Electron Microscopy and Transmittance Electron Microscopy; 5.1.3 Atomic Force Microscopy; 5.2 Thermal Investigations of Chitin-Based Nanocomposites; 5.2.1 Differential Scanning Calorimetry; 5.2.2 Dynamic Thermal Mechanical Analysis; 5.2.3 Thermogravimetric Analysis; 5.2.4 Thermomechanical Analysis; References; CHAPTER 6: Mechanical Properties of Chitin-Based Nanocomposites; 6.1 Introduction; 6.2 Mechanical Properties of Chitin/Chitosan Nanocomposites
6.2.1 Chitosan-Hydroxyapatite Nanocomposites
Record Nr. UNINA-9910141812403321
Hoboken, NJ, : John Wiley and Sons, Inc., c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui