top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Polymer electrolytes : characterization techniques and energy applications / / edited by Tan Winie, Abdul K. Arof, Sabu Thomas
Polymer electrolytes : characterization techniques and energy applications / / edited by Tan Winie, Abdul K. Arof, Sabu Thomas
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2020]
Descrizione fisica 1 online resource (418 pages)
Disciplina 541.372
Soggetto topico Polyelectrolytes
ISBN 3-527-80546-X
3-527-80543-5
3-527-80545-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830266603321
Weinheim, Germany : , : Wiley-VCH, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymer Nanocomposites for Energy Applications
Polymer Nanocomposites for Energy Applications
Autore Nandhakumar Manjubaashini
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (271 pages)
Disciplina 620.192
Altri autori (Persone) ThangaduraiT. Daniel
ThomasSabu
NzihouAnge
Soggetto genere / forma Electronic books.
ISBN 3-527-83855-4
3-527-83854-6
3-527-83853-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Origin of Polymer Materials -- 1.1 History of Polymers -- 1.1.1 Examples of Polymers -- 1.2 Types of Polymers -- 1.2.1 Based on Applications -- 1.2.2 Classification Based on Temperature Effect -- 1.2.2.1 Thermosetting Polymers -- 1.2.2.2 Thermoplastic Polymers -- 1.3 Properties of Polymers -- 1.3.1 Molecular Weight -- 1.3.2 Structural Aspects -- 1.3.3 Copolymers in Sequence -- 1.3.4 Crystallinity of Polymers -- 1.3.4.1 Solid‐State Crystallinity -- 1.3.4.2 Factors Favoring Crystallinity -- 1.3.5 Morphology of the Polymeric Crystals -- 1.3.5.1 Solid‐State Thermal Transitions -- 1.3.6 Mechanical Behavior -- 1.3.7 Polymer Rheology and Processing -- 1.3.7.1 Polymer Processing Techniques -- 1.3.7.2 Rheology of Nanocomposites -- 1.3.7.3 Theory and Modeling of Nanocomposites Rheology -- 1.3.8 Polymer Viscoelasticity -- 1.4 Physicochemical Properties of Polymers -- 1.4.1 Polymers are Very Resistant to Chemicals -- 1.4.2 Polymers are Both Thermal and Electrical Insulators -- 1.4.3 Polymers are Very Light in Weight with Significant Degrees of Strength -- 1.4.4 Polymers are Processed in Various Ways -- 1.4.5 Polymers are Materials With a Seemingly Limitless Range of Characteristics and Colors -- 1.4.6 Polymers are Usually Made of Petroleum, but not Always -- 1.4.7 Polymers are Used to Make Items That Have no Alternatives to Other Materials -- References -- Chapter 2 Synthesis of Polymers -- 2.1 Features of the Polymerization Reactions -- 2.2 Chain Polymerization -- 2.3 Ring‐Opening Polymerization -- 2.4 Polycondensation -- 2.5 Polyaddition -- 2.6 Step‐Growth Polymerization -- 2.7 Dendrimers -- 2.8 Anionic Polymerization -- 2.9 Cationic Polymerization -- 2.10 Controlled Radical Polymerization -- 2.11 Atom Transfer Radical Polymerization (ATRP).
2.12 Reversible Addition Fragmentation Chain Transfer (RAFT) -- 2.13 Supramolecular Polymerization -- 2.14 Bulk Polymerization -- 2.15 Solution Polymerization -- 2.16 Suspension Polymerization -- 2.17 Methods for the Synthesis of Functional Polymers -- 2.17.1 Direct Copolymerization -- 2.17.2 End‐Functionalization -- 2.17.3 Functionalization‐Grafting -- 2.17.4 Click Chemistry in Polymerization -- 2.18 Polymer Nanoparticles -- 2.19 Synthesis Techniques of Polymer Nanoparticle -- 2.19.1 Solvent Evaporation -- 2.19.2 Salting‐Out -- 2.19.3 Nanoprecipitation -- 2.19.4 Dialysis -- 2.19.5 Supercritical Fluid Technology -- 2.19.6 Rapid Expansion of Supercritical Solution (RESS) -- 2.19.7 Rapid Expansion of Supercritical Solution into a Liquid Solvent (RESOLV) -- 2.19.8 Polymerization of Monomers -- 2.19.9 Emulsion Polymerization -- 2.19.10 Conventional Emulsion Polymerization -- 2.19.11 Surfactant‐Free Emulsion Polymerization -- 2.19.12 Mini‐Emulsion Polymerization -- 2.19.13 Micro‐Emulsion Polymerization -- 2.19.14 Interfacial Polymerization -- References -- Chapter 3 Characterization of Polymer Materials -- 3.1 Introduction -- 3.2 UV-Visible Spectroscopy -- 3.3 Elemental Analysis -- 3.4 Infrared Spectroscopy -- 3.5 Qualitative Analysis of Polymers -- 3.6 Spectral Analysis for Polyethylene and Polystyrene -- 3.7 Determination of Molecular Weight and Thermodynamic Properties -- 3.8 Differential Scanning Colorimetry (DSC) Analysis -- 3.9 Thermogravimetric Assays (TGAs) -- 3.10 Gel Permeation Chromatography (GPC) -- 3.11 High‐Performance Liquid Chromatography (HPLC) -- 3.12 Size Exclusion Chromatography (SEC) -- 3.13 Raman Spectroscopy -- 3.13.1 Polyethylene Density -- 3.13.2 Polybutadiene Microstructure -- 3.14 Mechanical Testing and Rheometry -- 3.15 Nuclear Magnetic Resonance Spectroscopy -- 3.16 X‐ray Diffraction.
3.17 Molar Mass and Molar Mass Distribution -- 3.18 Osmometry -- 3.19 Mass Spectrometry -- 3.20 Scanning Electron Microscopy (SEM) -- 3.21 Transmission Electron Microscopy (TEM) -- 3.22 Atomic Force Microscopy (AFM) -- 3.23 Optical Microscopy (OM) -- References -- Chapter 4 Diverse Applications of Polymer Materials -- 4.1 Board Area of Polymer Applications -- 4.2 Polymers in Biotechnology -- 4.3 Polymer Dielectrics for Electronics -- 4.3.1 Luminescent Layers in Light‐Emitting Diodes -- 4.4 Smart and Self‐healing Coatings -- 4.5 Polymeric Biocides and Herbicides -- 4.6 Polymers for Soil Remediation -- 4.7 Benefits of Polymers in Fabric and Home Care Formulations -- 4.8 Polymeric Materials for Photonics -- 4.9 Polymers for Electrophotography -- 4.10 Polymers in Energy Applications -- 4.11 Polymers in Construction Applications -- 4.12 Polymers in Automobile Applications -- References -- Chapter 5 Introduction to Nanomaterials -- 5.1 Nanotechnology -- 5.2 Nanomaterials -- 5.3 Types of Nanomaterials -- 5.3.1 Quantum Dots -- 5.3.2 Organic Materials -- 5.3.3 Metal Oxides -- 5.3.4 Carbon Nanotubes -- 5.3.5 Polymeric Nanomaterials -- 5.4 Synthesis of Nanoparticles -- 5.4.1 Coprecipitation -- 5.4.2 Hydrothermal Technique -- 5.4.3 Inert Gas Condensation -- 5.4.4 Sonochemical -- 5.4.5 Microemulsion -- 5.4.6 Microwave‐Assisted -- 5.4.7 Laser Ablation -- 5.4.8 Sol-Gel -- 5.4.9 Spark Discharge -- 5.4.10 Template Synthesis -- 5.4.11 Biological Synthesis -- 5.5 Applications of Nanotechnology -- 5.5.1 Nanotechnology in Energy Sector -- 5.5.2 Nanotechnology in Textile -- 5.5.3 Nanotechnology in Agriculture -- 5.5.4 Nanotechnology in Electronics -- 5.5.5 Nanotechnology in Cosmetics -- 5.5.6 Nanotechnology in Medical Field -- References -- Chapter 6 Introduction to Polymer Nanocomposites -- 6.1 Classes of Nanocomposites -- 6.2 Different Types of Nanocomposites.
6.2.1 Polymer‐Based and Non‐Polymer‐Based Nanocomposites -- 6.2.1.1 Polymer/Ceramic Nanocomposite -- 6.2.1.2 Inorganic/Organic Polymer Nanocomposites -- 6.2.1.3 Inorganic/Organic Hybrid Nanocomposite -- 6.2.1.4 Polymer/Layered Silicate (PLS) Nanocomposites -- 6.2.1.5 Polymer/Polymer Nanocomposites -- 6.2.1.6 Biocomposites -- 6.2.1.7 Ceramic Matrix Nanocomposites -- 6.2.1.8 Metal Matrix Nanocomposites -- 6.2.1.9 Polymer Matrix Nanocomposites -- 6.3 Synthesis Methods of Nanocomposite -- 6.3.1 Solution Casting Method -- 6.3.2 Melt Blending Method -- 6.3.3 In situ Polymerization Method -- 6.3.4 Exfoliation Adsorption Method -- 6.3.5 Template Synthesis Method -- 6.4 Characterization Techniques for Nanocomposite -- 6.5 Applications of Nanocomposite Materials -- 6.5.1 Automotive Industry -- 6.5.2 Packaging Industry -- 6.5.3 Catalysis -- 6.5.4 Solid Polymer Electrolyte -- 6.5.5 Water Treatment Applications -- 6.5.6 Aircrafts -- 6.5.7 Electronics -- 6.5.8 Environmental Protection -- References -- Chapter 7 Polymer Nanocomposites in Energy Storage System -- 7.1 Introduction -- 7.2 Batteries -- 7.3 Thermal -- 7.4 Mechanical Storage -- 7.5 Hydrogen -- 7.6 Pumped Hydropower -- 7.7 Flywheels -- 7.8 Role of Polymer Nanocomposites in Energy Storage Applications -- 7.9 Properties of Polymer Nanocomposites -- 7.9.1 Physical Properties -- 7.9.2 Rheological Properties -- 7.9.3 Mechanical Properties -- 7.9.4 Thermal Properties -- 7.9.5 Barrier and Chemical Resistance -- 7.9.6 Flame Retardancy -- 7.9.7 Optical Properties -- 7.9.8 Electrical Properties -- 7.9.9 Dielectric Properties -- 7.9.10 Biological Properties -- References -- Chapter 8 Polymer Nanocomposites for Renewable Energy Storage System -- 8.1 Renewable Energy -- 8.2 Renewable Energy Storage -- 8.3 Polymers for Energy Storage -- 8.4 Carbon‐Based Storage Materials.
8.5 Energy Storage Capability of Polymer Nanocomposites -- References -- Chapter 9 High‐Performance Inorganic Polymer Nanocomposites‐Based Solar Cells -- 9.1 Introduction -- 9.2 Organic-Organic Composites -- 9.3 Inorganic Nanocomposites -- 9.4 Nanocomposites in Perovskite Solar Cells -- 9.5 Polymeric Nanocomposites in Dye‐Sensitized Solar Cells (DSSCs) -- References -- Chapter 10 Polymer Nanocomposites for Magnetic Energy and Thermal Energy Storage -- 10.1 Background of Polymer Nanocomposites for Energy Storage -- 10.2 Energy Density -- 10.3 Superconducting Magnetic Energy Storage (SMES) -- 10.4 Thermal Energy Storage (TES) -- 10.4.1 Sensible Heat Storage (SH‐TES) -- 10.4.2 Latent Heat Storage (LH‐TES) -- 10.4.3 Thermochemical Heat Storage (TH‐TES) -- 10.5 Thermoplastic Composites for TES -- References -- Chapter 11 Polymer Nanocomposites for Triboelectricity and Hydrogen Storage -- 11.1 Polymer Nanocomposites for Triboelectricity -- 11.1.1 Energy Harvesting Application -- 11.2 Polymer Nanocomposites for Hydrogen Storage -- 11.3 Hydrogen‐Based Energy Storage System -- 11.3.1 Liquid Hydrogen Storage -- 11.3.2 Compressed and Stored in a Pressure Tank -- 11.3.3 Physical Adsorption in Carbon -- 11.3.4 Complex Compounds‐Microsphere Hydrogen Storage -- 11.3.5 Metal Hydrides -- References -- Chapter 12 Polymer Nanocomposites for Supercapacitors and Battery Application -- 12.1 Battery‐Based Energy Storage System -- 12.2 Types of Battery -- 12.2.1 Lead‐Acid Battery -- 12.2.2 Nickel‐Based Battery -- 12.2.3 Sodium-Sulfur Battery (NaS) -- 12.2.4 Lithium‐Based Battery -- 12.2.5 Flow Battery Energy Storage (FBES) -- 12.3 Conducting Polymer Nanocomposites -- 12.4 Fuel Cells -- 12.5 Capacitor and Supercapacitor Energy Storage -- References -- Chapter 13 Electrochemical Energy Storage System -- 13.1 Introduction -- 13.2 Need for Energy Storage System.
13.2.1 Energy Reality and Increasing Renewable Penetration.
Record Nr. UNINA-9910595593203321
Nandhakumar Manjubaashini  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymers for packaging applications / / edited by Sajid Alavi, PhD, Sabu Thomas, PhD, K.P. Sandeep, PhD, Nandakumar Kalarikkal, PhD, Jini Varghese, and Srinivasarao Yaragalla
Polymers for packaging applications / / edited by Sajid Alavi, PhD, Sabu Thomas, PhD, K.P. Sandeep, PhD, Nandakumar Kalarikkal, PhD, Jini Varghese, and Srinivasarao Yaragalla
Edizione [First edition.]
Pubbl/distr/stampa Waretown, NJ : , : Apple Academic Press, Inc.
Descrizione fisica 1 online resource (478 p.)
Disciplina 664/.09
Soggetto topico Packaging
Polymers
ISBN 0-429-15686-3
1-926895-77-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; ABOUT THE EDITORS; CONTENTS; LIST OF CONTRIBUTORS; LIST OF ABBREVIATIONS; PREFACE; Part I: Conventional Plastics in Packaging Applications; CHAPTER 1: PROPERTIES OF PLASTICS FOR PACKAGING APPLICATIONS; CHAPTER 2: INTERACTION PHENOMENA BETWEEN PACKAGING AND PRODUCT; CHAPTER 3: SPECIFIC MIGRATION OF ANTIOXIDANTS BHT, IRGANOX 1076, AND IRGAFOS 168 INTO TYPICAL EDIBLE OILS UNDER MICROWAVE HEATING CONDITIONS; CHAPTER 4: SUITABILITY OF POLYMER-BASED RETORTABLE POUCHES FOR PACKAGING OF FISH PRODUCTS; Part II: Bio-Based and Biodegradable Materials for Packaging
CHAPTER 5: A VIEW ON ECO-FRIENDLY NATURAL FIBERS FOR PACKAGINGCHAPTER 6: ENVIRONMENT FRIENDLY PACKAGING PLASTICS; CHAPTER 7: BIOPOLYMERS: POTENTIAL BIODEGRADABLE PACKAGING MATERIAL FOR FOOD INDUSTRY; CHAPTER 8: EDIBLE FILMS AND COATINGS FOR PACKAGING APPLICATIONS; CHAPTER 9: ENVIRONMENTAL FRIENDLY MICROBIAL POLYMERS, POLYHYDROXYALKANOATES (PHAs) FOR PACKAGING AND BIOMEDICAL APPLICATIONS; Part III: Bio-Nanocomposites in Packaging Applications; CHAPTER 10: BIO-NANOCOMPOSITES AND THEIR POTENTIAL APPLICATIONS IN FOOD PACKAGING
CHAPTER 11: BIO-BASED NANOCOMPOSITES: PROSPECTS IN GREEN PACKAGING APPLICATIONSCHAPTER 12: UNDERSTANDING OF MECHANICAL AND BARRIER PROPERTIES OF STARCH, POLYVINYL ALCOHOL AND LAYERED SILICATE NANOCOMPOSITE FILMS UTILIZING MATHEMATICAL MODELS; CHAPTER 13: ANALYTICAL TECHNIQUES FOR STRUCTURAL CHARACTERIZATION OF BIOPOLYMER-BASED NANOCOMPOSITES; Part IV: Modified Atmosphere Packaging for Foods and Other Applications; CHAPTER 14: MODIFIED ATMOSPHERE PACKAGING OF FOOD; CHAPTER 15: APPLICATION OF MODIFIED ATMOSPHERE PACKAGING FOR EXTENSION OF SHELF-LIFE OF FOOD COMMODITIES
CHAPTER 16: ACTIVE AND INTELLIGENT PACKAGINGCHAPTER 17: CONDUCTIVE POLYMERS FOR PACKAGING APPLICATIONS; Back Cover
Record Nr. UNINA-9910787848203321
Waretown, NJ : , : Apple Academic Press, Inc.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymers for packaging applications / / edited by Sajid Alavi, PhD, Sabu Thomas, PhD, K.P. Sandeep, PhD, Nandakumar Kalarikkal, PhD, Jini Varghese, and Srinivasarao Yaragalla
Polymers for packaging applications / / edited by Sajid Alavi, PhD, Sabu Thomas, PhD, K.P. Sandeep, PhD, Nandakumar Kalarikkal, PhD, Jini Varghese, and Srinivasarao Yaragalla
Edizione [First edition.]
Pubbl/distr/stampa Waretown, NJ : , : Apple Academic Press, Inc.
Descrizione fisica 1 online resource (478 p.)
Disciplina 664/.09
Soggetto topico Packaging
Polymers
ISBN 0-429-15686-3
1-926895-77-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; ABOUT THE EDITORS; CONTENTS; LIST OF CONTRIBUTORS; LIST OF ABBREVIATIONS; PREFACE; Part I: Conventional Plastics in Packaging Applications; CHAPTER 1: PROPERTIES OF PLASTICS FOR PACKAGING APPLICATIONS; CHAPTER 2: INTERACTION PHENOMENA BETWEEN PACKAGING AND PRODUCT; CHAPTER 3: SPECIFIC MIGRATION OF ANTIOXIDANTS BHT, IRGANOX 1076, AND IRGAFOS 168 INTO TYPICAL EDIBLE OILS UNDER MICROWAVE HEATING CONDITIONS; CHAPTER 4: SUITABILITY OF POLYMER-BASED RETORTABLE POUCHES FOR PACKAGING OF FISH PRODUCTS; Part II: Bio-Based and Biodegradable Materials for Packaging
CHAPTER 5: A VIEW ON ECO-FRIENDLY NATURAL FIBERS FOR PACKAGINGCHAPTER 6: ENVIRONMENT FRIENDLY PACKAGING PLASTICS; CHAPTER 7: BIOPOLYMERS: POTENTIAL BIODEGRADABLE PACKAGING MATERIAL FOR FOOD INDUSTRY; CHAPTER 8: EDIBLE FILMS AND COATINGS FOR PACKAGING APPLICATIONS; CHAPTER 9: ENVIRONMENTAL FRIENDLY MICROBIAL POLYMERS, POLYHYDROXYALKANOATES (PHAs) FOR PACKAGING AND BIOMEDICAL APPLICATIONS; Part III: Bio-Nanocomposites in Packaging Applications; CHAPTER 10: BIO-NANOCOMPOSITES AND THEIR POTENTIAL APPLICATIONS IN FOOD PACKAGING
CHAPTER 11: BIO-BASED NANOCOMPOSITES: PROSPECTS IN GREEN PACKAGING APPLICATIONSCHAPTER 12: UNDERSTANDING OF MECHANICAL AND BARRIER PROPERTIES OF STARCH, POLYVINYL ALCOHOL AND LAYERED SILICATE NANOCOMPOSITE FILMS UTILIZING MATHEMATICAL MODELS; CHAPTER 13: ANALYTICAL TECHNIQUES FOR STRUCTURAL CHARACTERIZATION OF BIOPOLYMER-BASED NANOCOMPOSITES; Part IV: Modified Atmosphere Packaging for Foods and Other Applications; CHAPTER 14: MODIFIED ATMOSPHERE PACKAGING OF FOOD; CHAPTER 15: APPLICATION OF MODIFIED ATMOSPHERE PACKAGING FOR EXTENSION OF SHELF-LIFE OF FOOD COMMODITIES
CHAPTER 16: ACTIVE AND INTELLIGENT PACKAGINGCHAPTER 17: CONDUCTIVE POLYMERS FOR PACKAGING APPLICATIONS; Back Cover
Record Nr. UNINA-9910810132403321
Waretown, NJ : , : Apple Academic Press, Inc.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polyurethane polymers : composites and nanocomposites / / edited by Sabu Thomas [and three others]
Polyurethane polymers : composites and nanocomposites / / edited by Sabu Thomas [and three others]
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , 2017
Descrizione fisica 1 online resource (592 pages) : illustrations (some color), tables
Disciplina 668.4239
Soggetto topico Polyurethanes
ISBN 0-12-804102-1
0-12-804065-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583068703321
Amsterdam, Netherlands : , : Elsevier, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polyurethane polymers : blends and interpenetrating polymer networks / / edited by Sabu Thomas, Mahatma Gandhi University, Kottayam, Kerala, India [and three others]
Polyurethane polymers : blends and interpenetrating polymer networks / / edited by Sabu Thomas, Mahatma Gandhi University, Kottayam, Kerala, India [and three others]
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , [2017]
Descrizione fisica 1 online resource (440 pages) : illustrations (some color)
Disciplina 620.192
Soggetto topico Polymerization
Polymers
Polyurethanes
ISBN 0-12-804085-8
0-12-804039-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583358803321
Amsterdam, Netherlands : , : Elsevier, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recycling of polyethylene terephthalate bottles / / edited by Sabu Thomas [and four others]
Recycling of polyethylene terephthalate bottles / / edited by Sabu Thomas [and four others]
Pubbl/distr/stampa Kidlington, Oxford, England : , : William Andrew, , 2019
Descrizione fisica 1 online resource (213 pages)
Disciplina 668.4234
Collana PDL handbook series
Soggetto topico Polyethylene terephthalate
ISBN 0-323-50967-3
0-12-811361-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Recycling of Polyethylene Terephthalate Bottles -- Copyright Page -- Contents -- List of Contributors -- 1 PET Chemistry -- 1.1 Introduction -- 1.2 Physical and Chemical Properties -- 1.3 Synthesis and its Chemistry -- 1.4 Continuous Melt Phase Polymerization -- 1.5 Catalyst Chemistry and Mechanism -- 1.6 Chain Extender -- 1.7 Structure-Property Relationship of PET -- 1.8 New Enzymatic Route to Synthesize Polyester -- 1.9 Conclusion -- References -- 2 Regulations on Recycling PET Bottles -- 2.1 Introduction -- 2.2 Conclusions -- Acknowledgments -- References -- Further Reading -- 3 Materials Recovery, Direct Reuse and Incineration of PET Bottles -- 3.1 Introduction -- 3.2 An Overview of Polyethylene Terephthalate Bottle Management -- 3.2.1 Recycling of Polyethylene Terephthalate Bottle -- 3.2.1.1 Collection -- 3.2.1.2 Sorting -- 3.2.1.3 Cleaning -- 3.2.1.4 Final Separation -- 3.2.2 Types of Polyethylene Terephthalate Recycling -- 3.2.2.1 Primary Recycling -- 3.2.2.2 Secondary Recycling -- 3.2.2.3 Feedstock or Tertiary Recycling -- 3.2.2.4 Quaternary Recycling -- 3.2.3 Materials Recovery From Polyethylene Terephthalate Bottles -- 3.2.3.1 Direct Reuse of Polyethylene Terephthalate Bottles -- 3.2.4 Incineration of Polyethylene Terephthalate Waste -- 3.2.5 Landfilling of Polyethylene Terephthalate Waste -- 3.3 Conclusion -- References -- 4 Chemical Depolymerization of PET Bottles via Glycolysis -- 4.1 Introduction -- 4.1.1 Primary Recycling -- 4.1.2 Secondary Recycling -- 4.1.3 Tertiary or Chemical Recycling -- 4.1.4 Quaternary Recycling -- 4.2 Glycolysis -- 4.2.1 Catalyzed Glycolysis -- 4.2.1.1 Metal Derivatives -- 4.2.1.2 Zeolites -- 4.2.1.3 Ionic Liquids -- 4.2.2 Solvent-Assisted Glycolysis -- 4.2.3 Supercritical Glycolysis -- 4.2.4 Microwave-Assisted Glycolysis -- 4.3 Factors Influencing Glycolysis -- 4.3.1 Contaminant.
4.3.2 Stirring Speed -- 4.3.3 Particle Size -- 4.3.4 Solvent Ratio -- 4.3.5 Reactions Conditions -- 4.4 Advantages and Drawbacks of Glycolysis -- 4.5 Analytical Techniques -- 4.6 Applications of the Glycolyzed Products -- 4.6.1 Polyurethane Products -- 4.6.2 Unsaturated Polyesters -- 4.6.3 Acrylate/Methacrylate-Terminated products -- 4.7 Conclusion -- References -- Further Reading -- 5 Depolymerization of PET Bottle via Methanolysis and Hydrolysis -- 5.1 Introduction -- 5.2 Depolymerization of Polyethylene Terephthalate Bottles -- 5.2.1 Glycolysis -- 5.2.2 Methanolysis -- 5.2.2.1 Liquid Methanolysis -- 5.2.2.2 Vapor Methanolysis -- 5.2.2.3 Supercritical Methanolysis -- 5.2.2.4 Hydrolysis of Dimethyl Terephthalate -- 5.2.2.5 Purification of Dimethyl Terephthalate and Ethylene Glycol -- 5.2.3 Hydrolysis -- 5.2.3.1 Acid Hydrolysis -- 5.2.3.2 Alkaline Hydrolysis -- 5.2.3.3 Neutral Hydrolysis -- 5.3 Depolymerization Kinetics of Polyethylene Terephthalate -- 5.4 Pros and Cons of Depolymerization Methods -- 5.5 History of Feedstock Recycling Techniques From a Standpoint of Patents -- 5.6 Representative Chemical Recycling Processes Based on Methanolysis and Hydrolysis -- 5.6.1 Eastman Kodak Process -- 5.6.2 Teijin Process -- 5.6.3 Mitsubishi Process -- 5.6.4 Chungnam National University Process -- 5.7 Conclusions -- References -- 6 Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis -- 6.1 Introduction -- 6.2 Aminolysis -- 6.3 Ammonolysis -- 6.4 Conclusion -- References -- 7 Chemical Depolymerization of PET Bottles via Combined Chemolysis Methods -- 7.1 Introduction -- 7.2 Various Chemolysis Processes -- 7.2.1 Methanolysis Process -- 7.2.2 Hydrolysis Process -- 7.2.3 Glycolysis Process -- 7.2.4 Aminolysis Process -- 7.2.5 Commercial Viability -- 7.3 Combined Chemolysis Process -- 7.3.1 Glycolysis-Hydrolysis.
7.3.2 Glycolysis-Methanolysis -- 7.3.3 Methanolysis-Hydrolysis -- 7.3.4 Glycolysis-Aminolysis -- 7.4 Advantages and Disadvantages of Combined Chemolysis -- 7.5 Summary of Products From Chemolysis -- 7.6 Conclusion -- References -- 8 Life Cycle Assessment (LCA) of PET Bottles -- 8.1 Goal Definition Scope -- 8.1.1 Background -- 8.1.2 Introduction -- 8.1.3 Purpose -- 8.1.4 Previous Research -- 8.1.5 Market Trends -- 8.1.6 Need for the Project -- 8.1.7 Targeted Audience and Use of the Study Product System -- 8.1.8 Functional Unit -- 8.1.9 Assessment Boundaries -- 8.1.10 General Exclusions -- 8.2 Life Cycle Inventory -- 8.2.1 General Methodology -- 8.2.2 Upstream and Downstream Life Cycle Methodology -- 8.2.3 Manufacturing Stage -- 8.2.4 Product Usage and Recycling Stage -- 8.2.5 Life Cycle Inventory Limitations and Uncertainties -- 8.3 Life Cycle Impact Assessment -- 8.3.1 Top Contributors -- 8.3.2 Sensitivity Analysis -- 8.4 Qualitative Risk Screening of Selected Chemicals -- 8.5 Conclusions and Suggestions -- References -- 9 Applications of Waste Poly(Ethylene Terephthalate) Bottles -- 9.1 Introduction -- 9.2 PET Bottles-Fiber-Fabric -- 9.3 PET Bottles-Resins for Coatings and Recycled Polymer Composites -- 9.4 Coating Applications -- 9.4.1 Epoxy Resins -- 9.4.2 Polyurethane Dispersions -- 9.4.3 Alkyd Resins -- 9.5 Microfibrillar Polymer Composites -- References -- Index -- Back Cover.
Record Nr. UNINA-9910583363303321
Kidlington, Oxford, England : , : William Andrew, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recycling of polyurethane foams / / edited by Sabu Thomas [and four others]
Recycling of polyurethane foams / / edited by Sabu Thomas [and four others]
Pubbl/distr/stampa Oxford, United Kingdom ; ; Cambridge, MA : , : William Andrew is an imprint of Elsevier, , [2018]
Descrizione fisica 1 online resource (147 pages)
Disciplina 668.4
Soggetto topico Plastics - Recycling
Polyurethanes
ISBN 0-323-51134-1
0-323-51133-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583334703321
Oxford, United Kingdom ; ; Cambridge, MA : , : William Andrew is an imprint of Elsevier, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Rheology and processing of polymer nanocomposites / / edited by Sabu Thomas, Rene Muller, Jiji Abraham
Rheology and processing of polymer nanocomposites / / edited by Sabu Thomas, Rene Muller, Jiji Abraham
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2016]
Descrizione fisica 1 online resource (619 p.)
Disciplina 620.1/92
Soggetto topico Rheology
Plasticity
Polymers
Nanocomposites (Materials)
ISBN 1-118-96982-0
1-118-96981-2
1-118-96980-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Contributors; Chapter 1 Materials for Polymer Nanocomposites; 1.1 Introduction; 1.2 Nanocomposite Framework; 1.2.1 Nanoscale Fillers; 1.2.2 Choice of Polymeric Matrices; 1.3 Recent Developments and Opportunities in the Area of Polymer Nanocomposites; 1.4 Challenges in the Area of Polymer Nanocomposites; 1.5 Relationships of Macroscopic Rheological Properties to Nanoscale Structural Variables; 1.6 Conclusion; Acknowledgments; References; Chapter 2 Manufacturing Polymer Nanocomposites; 2.1 Introduction; 2.2 Nanofillers
2.2.1 Structure and Properties of Clay2.2.2 Structure and Properties of Organically Modified Clay; 2.2.3 Structure and Properties of CNTs; 2.3 Polymer Matrices; 2.4 Preparation of Nanocomposites; 2.4.1 In Situ Polymerization; 2.4.2 Solution Blending; 2.4.3 Melt Compounding; 2.4.4 Other Methods; 2.4.5 Supercritical CO2 Assisted Compounding; 2.5 Characterization; 2.6 Conclusions; References; Chapter 3 Rheology and Processing of Polymer Nanocomposites: Theory, Practice, and New Challenges; 3.1 Introduction; 3.2 Viscoelasticity of Nanocomposites; 3.2.1 General Trends; 3.2.2 Percolation Treshold
3.2.3 Equilibrium Shear Modulus3.2.4 Validity of TTS Principle; 3.2.5 Quantifying Dispersion via Melt Rheology; 3.2.6 Payne Effect; 3.3 Flow Properties of Nanocomposites; 3.3.1 Steady-State Flow Curves: Relative Viscosity and Normal Stress Difference; 3.3.2 Flow-Induced Structure in Nanocomposites; 3.3.3 Elongational Flow; 3.4 Theory and Modeling of Nanocomposites Rheology; 3.4.1 Steady-State Viscosity; 3.4.2 Dynamic Rheology; 3.4.3 Elongational Rheology; 3.4.4 Payne Effect; 3.5 Processing of Nanocomposites; 3.5.1 Influence of Blending Procedure; 3.5.2 Usual Processing Methods
3.5.3 New Processing Routes3.6 Conclusion and Futures Challenges; Acknowledgments; References; Chapter 4 Mixing of Polymers Using the Elongational Flow Mixer (RMX®); 4.1 Introduction; 4.2 Polymer Blends; 4.2.1 Capillary Number, Ca; 4.2.2 Rheology and Processing of Polymer Blends; 4.3 Polymer Nanocomposites; 4.3.1 Dispersion of Solid Additives; 4.4 Elongational Flow Mixer (RMX®); 4.4.1 RMX® Assembly and Operating Principles; 4.4.2 RMX® Flow Analysis by Numeric Simulation; 4.4.3 Estimation of Rheological Parameters in the RMX® via Capillary Rheometry; 4.5 RMX® Mixing of Polymer Blends
4.5.1 Influence of the RMX® Parameters on Mixing4.5.2 Influence of the Viscosity Ratio, p; 4.5.3 Energy of Mixing: Performance Comparison; 4.5.4 Viscous Heating; 4.5.5 Effect of a Compatibilizer; 4.5.6 Rheology/Morphology Relationship; 4.6 Mixing of Polymer Nanocomposites; 4.7 Concluding Remarks; References; Chapter 5 Rheology and Processing of Polymer/Layered Silicate Nanocomposites; 5.1 Introduction; 5.2 Nanostructure Development; 5.2.1 Melt Intercalation; 5.2.2 Interlayer Structure of OMLFs and Intercalation; 5.3 Novel Compounding Methods for Delamination of OMLFs
5.3.1 Solid-State Shear Processing
Record Nr. UNINA-9910135043403321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Rheology and processing of polymer nanocomposites / / edited by Sabu Thomas, Rene Muller, Jiji Abraham
Rheology and processing of polymer nanocomposites / / edited by Sabu Thomas, Rene Muller, Jiji Abraham
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2016]
Descrizione fisica 1 online resource (619 p.)
Disciplina 620.1/92
Soggetto topico Rheology
Plasticity
Polymers
Nanocomposites (Materials)
ISBN 1-118-96982-0
1-118-96981-2
1-118-96980-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Contributors; Chapter 1 Materials for Polymer Nanocomposites; 1.1 Introduction; 1.2 Nanocomposite Framework; 1.2.1 Nanoscale Fillers; 1.2.2 Choice of Polymeric Matrices; 1.3 Recent Developments and Opportunities in the Area of Polymer Nanocomposites; 1.4 Challenges in the Area of Polymer Nanocomposites; 1.5 Relationships of Macroscopic Rheological Properties to Nanoscale Structural Variables; 1.6 Conclusion; Acknowledgments; References; Chapter 2 Manufacturing Polymer Nanocomposites; 2.1 Introduction; 2.2 Nanofillers
2.2.1 Structure and Properties of Clay2.2.2 Structure and Properties of Organically Modified Clay; 2.2.3 Structure and Properties of CNTs; 2.3 Polymer Matrices; 2.4 Preparation of Nanocomposites; 2.4.1 In Situ Polymerization; 2.4.2 Solution Blending; 2.4.3 Melt Compounding; 2.4.4 Other Methods; 2.4.5 Supercritical CO2 Assisted Compounding; 2.5 Characterization; 2.6 Conclusions; References; Chapter 3 Rheology and Processing of Polymer Nanocomposites: Theory, Practice, and New Challenges; 3.1 Introduction; 3.2 Viscoelasticity of Nanocomposites; 3.2.1 General Trends; 3.2.2 Percolation Treshold
3.2.3 Equilibrium Shear Modulus3.2.4 Validity of TTS Principle; 3.2.5 Quantifying Dispersion via Melt Rheology; 3.2.6 Payne Effect; 3.3 Flow Properties of Nanocomposites; 3.3.1 Steady-State Flow Curves: Relative Viscosity and Normal Stress Difference; 3.3.2 Flow-Induced Structure in Nanocomposites; 3.3.3 Elongational Flow; 3.4 Theory and Modeling of Nanocomposites Rheology; 3.4.1 Steady-State Viscosity; 3.4.2 Dynamic Rheology; 3.4.3 Elongational Rheology; 3.4.4 Payne Effect; 3.5 Processing of Nanocomposites; 3.5.1 Influence of Blending Procedure; 3.5.2 Usual Processing Methods
3.5.3 New Processing Routes3.6 Conclusion and Futures Challenges; Acknowledgments; References; Chapter 4 Mixing of Polymers Using the Elongational Flow Mixer (RMX®); 4.1 Introduction; 4.2 Polymer Blends; 4.2.1 Capillary Number, Ca; 4.2.2 Rheology and Processing of Polymer Blends; 4.3 Polymer Nanocomposites; 4.3.1 Dispersion of Solid Additives; 4.4 Elongational Flow Mixer (RMX®); 4.4.1 RMX® Assembly and Operating Principles; 4.4.2 RMX® Flow Analysis by Numeric Simulation; 4.4.3 Estimation of Rheological Parameters in the RMX® via Capillary Rheometry; 4.5 RMX® Mixing of Polymer Blends
4.5.1 Influence of the RMX® Parameters on Mixing4.5.2 Influence of the Viscosity Ratio, p; 4.5.3 Energy of Mixing: Performance Comparison; 4.5.4 Viscous Heating; 4.5.5 Effect of a Compatibilizer; 4.5.6 Rheology/Morphology Relationship; 4.6 Mixing of Polymer Nanocomposites; 4.7 Concluding Remarks; References; Chapter 5 Rheology and Processing of Polymer/Layered Silicate Nanocomposites; 5.1 Introduction; 5.2 Nanostructure Development; 5.2.1 Melt Intercalation; 5.2.2 Interlayer Structure of OMLFs and Intercalation; 5.3 Novel Compounding Methods for Delamination of OMLFs
5.3.1 Solid-State Shear Processing
Record Nr. UNINA-9910815877703321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui