top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications of nanocomposite materials in orthopedics / / edited by Inamuddin, Abdullah M. Asiri, Ali Mohammad
Applications of nanocomposite materials in orthopedics / / edited by Inamuddin, Abdullah M. Asiri, Ali Mohammad
Pubbl/distr/stampa Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019]
Descrizione fisica 1 online resource (332 pages)
Disciplina 617.3
Collana Woodhead Publishing series in biomaterials
Soggetto topico Orthopedics
Nanocomposites (Materials)
Nanocomposites (Materials) - Therapeutic use
ISBN 0-12-813757-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Applications of Nanocomposite Materials in Orthopedics -- Copyright -- Contents -- List of contributors -- Preface -- 1: Biodegradable polymer matrix nanocomposites for bone tissue engineering -- 1.1 Introduction -- 1.2 Tissue engineering -- 1.3 Bone tissue engineering -- 1.4 Biodegradable polymers used in the design of nanocomposites for bone tissue engineering -- 1.4.1 Natural biodegradable polymers -- 1.4.1.1 Chitosan -- 1.4.1.2 Alginates -- 1.4.1.3 Starches -- 1.4.1.4 Cellulose -- 1.4.1.5 Collagen -- 1.4.1.6 Gelatin -- 1.4.1.7 Hyaluronic acid (HA) -- 1.4.1.8 Dextran -- 1.4.2 Synthetic biodegradable polymers -- 1.4.2.1 Polylactic acid (PLA) -- 1.4.2.2 Poly(lactic-co-glycolic acid) (PLGA) -- 1.4.2.3 Poly(propylene fumarate) (PPF) -- 1.4.2.4 Poly(ε-caprolactone) (PCL) -- 1.5 Conclusion -- References -- 2: Electrospun hydrogels composites for bone tissue engineering -- 2.1 Introduction -- 2.1.1 General principles of electrospinning -- 2.2 Electrospun nanocomposites for medical applications -- 2.2.1 Electrospun nanocomposite for bone tissues regeneration via osteoconduction, osteoinduction, and osteogenesis -- 2.2.1.1 The effect of osteogenesis and osteoinduction on osteoconductive electrospun scaffolds -- 2.3 Electrospun biomaterials for bone tissue engineering -- 2.3.1 Electrospun nanofiber-reinforced hydrogels -- 2.3.2 Electrospun hydrogels with biological electrospray cells -- 2.3.3 Electrospun hydrogels with antimicrobial activity -- 2.4 Impact of various parameters on the electrospinning process for nanofiber morphology -- 2.4.1 Polymer solution parameters -- 2.4.2 Processing parameters -- 2.4.3 Ambient parameters -- 2.5 Inventions related to electrospun hydrogels for bone tissue engineering -- 2.6 Future applications of electrospun hydrogels -- 2.7 Conclusion -- References -- Further Reading.
3: Fabrication and applications of hydroxyapatite-based nanocomposites coating for bone tissue engineering -- 3.1 Introduction -- 3.2 Hydroxyapatite: Structure and properties -- 3.3 Conventional orthopedic implants -- 3.3.1 Metallic implants -- 3.3.2 Nonmetallic implants -- 3.4 Composites of hydroxyapatite with ceramics -- 3.4.1 Hydroxyapatite-Al2O3 composites -- 3.4.2 Hydroxyapatite-glass nanocomposites -- 3.4.3 Hydroxyapatite-mullite composites -- 3.4.4 Hydroxyapatite-YSZ nanocomposites -- 3.5 Composites of hydroxyapatite with metals -- 3.5.1 Hydroxyapatite-Pt nanocomposites -- 3.5.2 Hydroxyapatite-Ti nanocomposites -- 3.6 Composites of hydroxyapatite with polymers -- 3.6.1 Hydroxyapatite-epoxy composites -- 3.6.2 Hydroxyapatite-PVA nanocomposites -- 3.6.3 Hydroxyapatite-polyamide nanocomposites -- 3.6.4 Hydroxyapatite-PMMA composites -- 3.6.5 Hydroxyapatite-polylactide composites -- 3.6.6 Hydroxyapatite-PS composites -- 3.6.7 Hydroxyapatite-PE nanocomposites -- 3.6.8 Hydroxyapatite-collagen nanocomposites -- 3.6.9 Hydroxyapatite-PEEK nanocomposites -- 3.7 Conclusion -- References -- 4: Magnesium-based alloys and nanocomposites for biomedical application -- 4.1 Introduction -- 4.2 Magnesium-based biomaterials -- 4.2.1 Why magnesium and magnesium alloys? -- 4.2.2 Corrosion behavior of medical implants -- 4.2.2.1 Magnesium-Corrosion mechanism -- 4.2.3 Current research to overcome the challenges in Mg-based biomaterials -- 4.2.3.1 Corrosion -- 4.2.3.2 Effect of alloying elements on corrosion behavior of Mg materials -- 4.3 Magnesium for cardiovascular application -- 4.3.1 Limitations of bare metal stents and drug eluting stents -- 4.3.2 Biodegradable stents -- 4.3.2.1 Magnesium alloy biodegradable stents -- 4.4 Magnesium for orthopedic application.
4.4.1 Current status of Mg-based materials for orthopedic application -- 4.4.1.1 In vitro testing of Mg-based orthopedic biomaterials -- 4.4.1.2 Preclinical studies of Mg or its alloys for orthopedic application -- 4.5 Magnesium-based nanocomposites -- 4.5.1 Disintegrated melt deposition (DMD) technique -- 4.5.2 Electrochemical behavior of Mg nanocomposites -- 4.5.2.1 Potentiodynamic polarization -- 4.6 Surface modification of Mg alloys -- 4.6.1 Effect of surface modification -- 4.6.1.1 Functional coatings -- 4.6.1.2 Conversion coatings -- 4.6.1.3 Surface coating processes -- 4.7 Future aspects -- References -- 5: Multiwalled carbon nanotube-based nanocomposites for artificial bone grafting -- 5.1 Introduction -- 5.2 Artificial bone grafting -- 5.2.1 Strategies for artificial bone grafting -- 5.3 Carbon nanotube -- 5.4 Multiwalled CNT composite biomaterials for artificial bone grafting -- 5.4.1 Multiwalled CNT-polymer nanocomposite -- 5.4.2 CNT coating on the polymeric surface -- 5.4.3 Multiwalled CNT-collagen nanocomposite -- 5.4.4 Multiwalled CNT-polylactic acid nanocomposite -- 5.4.5 Multiwalled CNT-chitosan nanocomposite -- 5.4.6 Multiwalled CNT-polycaprolactone nanocomposites -- 5.4.7 CNT-HA nanocomposite -- 5.4.8 CNT-bioglass nanocomposite -- 5.5 Challenges and future directions -- 5.6 Conclusions -- Acknowledgments -- References -- 7: Nanocomposite materials for prosthetic devices -- 6.1 Introduction -- 6.2 Preparation of nanocomposites -- 6.3 Classification of nanocomposites -- 6.3.1 Nonpolymer-based nanocomposites -- 6.3.1.1 Metal-metal nanocomposites -- 6.3.1.2 Metal-ceramic nanocomposites -- 6.3.1.3 Ceramic-ceramic nanocomposites -- 6.3.2 Polymer-based nanocomposites -- 6.4 Application of nanocomposites -- 6.5 Prosthetics -- 6.5.1 Types of prosthetics -- 6.5.2 Limb prosthetics.
6.5.3 Patient course of action -- 6.5.4 Current innovation and assembling -- 6.5.5 Body-controlled arms -- 6.5.6 Lower-extremity prosthetics -- 6.5.6.1 Hands, hips, and knees -- 6.5.6.2 Socket -- 6.5.6.3 Shank and connectors -- 6.5.6.4 Foot -- 6.5.6.5 Knee joint -- 6.5.6.6 Microprocessor control -- 6.5.7 Myoelectric prosthetics -- 6.5.8 Orthopedic prosthetics -- 6.5.9 Robotic prostheses -- 6.6 Conclusion -- References -- 7: Nanocomposites for improved orthopedic and bone tissue engineering applications -- 7.1 Introduction -- 7.2 Biomedical nanocomposites -- 7.3 Nanocomposites in orthopedic drug delivery applications -- 7.4 Nanocomposites in bone tissue engineering applications -- 7.5 Conclusion -- References -- 8: Tailoring surface properties from nanotubes and anodic layers of titanium for biomedical applications -- 8.1 Introduction -- 8.1.1 Film formation by electrochemical process -- 8.1.1.1 Anodic oxidation and plasma electrolytic oxidation (PEO) -- 8.1.2 Nanotube arrays -- 8.2 Commercial applications -- 8.3 Mechanical stability of anodic layers -- 8.4 Conclusions -- References -- 9: Zirconia-alumina composite for orthopedic implant application -- 9.1 Introduction -- 9.1.1 Evolution of ceramic composite hip prostheses -- 9.2 The toughening mechanism in ceramic composite -- 9.2.1 Influence of platelets to inhibit crack propagation -- 9.2.2 Strengthening additives -- 9.3 Fabrication of ceramic composites -- 9.3.1 Densification process -- 9.3.1.1 Pressureless sintering -- 9.3.1.2 Pressure-assisted sintering -- 9.4 Wear of ceramic composite hip prosthesis -- 9.4.1 In vitro wear under standard conditions -- 9.4.2 In vitro wear under adverse conditions -- 9.5 Fracture-an ultimate challenge -- 9.6 Squeaking-a noise or concern -- 9.7 Clinical performance -- 9.8 Conclusions -- 9.9 Future aspects -- References.
10: Nanocomposites in total hip joint replacements -- 10.1 Introduction -- 10.2 Biomaterials and their essential characteristics -- 10.3 Tribological characteristics, the main issue for joint implant materials -- 10.4 Morphology and importance of hip joint replacements -- 10.5 Implantable material systems for THR -- 10.5.1 Metal-on-polymer -- 10.5.2 Metal on metal -- 10.5.3 Ceramic on ceramic -- 10.6 Nanotechnology, the innovative approach -- 10.7 Nanocomposites -- 10.8 Types of NCs used in hip implants -- 10.8.1 Polymer matrix NC -- 10.8.1.1 Ultrahigh molecular weight polyethylene -- 10.8.1.2 UHMWPE-based composites -- 10.8.1.3 Advanced NCs using graphene and nanocarbon reinforcements -- Graphene/UHMWPE NCs -- CNTs/UHMWPE NCs -- 10.8.2 Metal matrix NCs -- 10.8.2.1 Co-Cr based NCs -- 10.8.2.2 Titanium-based NCs -- 10.8.3 Ceramic matrix NCs -- 10.8.3.1 New ceramics NCs with nanocarbon reinforcements -- 10.9 Conclusion -- Acknowledgments -- References -- Further reading -- 11: Chitosan-based nanocomposites for cardiac, liver, and wound healing applications -- 11.1 Introduction -- 11.2 Tissue engineering -- 11.2.1 Chitosan nanocomposites in liver tissue engineering -- 11.2.2 Chitosan nanocomposites in cardiac tissue engineering -- 11.2.3 Chitosan nanocomposite in wound healing applications -- 11.3 Conclusion -- Acknowledgments -- References -- 12: Extracellular matrix: The ideal natural fibrous nanocomposite products -- 12.1 Introduction -- 12.2 ECM-cell interaction: Cell receptors and biochemical cues -- 12.3 ECM-cell interaction: Cell fate and biophysical cues -- 12.3.1 Stiffness and matrix elasticity -- 12.3.2 Tension and compression -- 12.3.3 Fluid shear stress -- 12.4 Cell perception of biophysical cues from the ECM microenvironment -- 12.4.1 Focal adhesions -- 12.4.2 The cytoskeletal.
12.4.3 The primary cilium.
Record Nr. UNINA-9910583012803321
Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of Nanotechnology for Green Synthesis / / edited by Inamuddin, Abdullah M. Asiri
Applications of Nanotechnology for Green Synthesis / / edited by Inamuddin, Abdullah M. Asiri
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (X, 499 p. 375 illus., 110 illus. in color.)
Disciplina 541.2
Collana Nanotechnology in the Life Sciences
Soggetto topico Plant biotechnology
Nanotechnology
Agriculture
Green chemistry
Plants - Development
Plant Biotechnology
Green Chemistry
Plant Development
Nanotecnologia
Química ambiental
Agricultura
Soggetto genere / forma Llibres electrònics
ISBN 3-030-44176-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Sustainable Organic Synthesis in Ionic Liquids -- Industrial Applications of Green Solvents in Organic and Drug Synthesis for Sustainable Development of Chemical Process and Technologies -- Applications of Ionic Liquids in Organic Synthesis -- Water-Mediated Catalyst-Free Organic Transformations -- Modifications on Polymeric Membranes for Isopropanol Dehydration Using Pervaporation: A Review -- Environmentally Benign Organic Synthesis -- Green Aspects of Scale-Up Synthesis of some APIs, Drug Candidates Under Development, or Their Critical Intermediates -- Green Approaches to Synthesize Organic Compounds and Drugs -- Selective Conversion of Glycerol to Lactic Acid Using Porous Multi-Functional Mixed Oxide Catalysts Under Alkaline Environment -- Green Biological Synthesis of Nanoparticles and their Biomedical Applications -- Silver Nanostructures, Chemical Synthesis Methods, and Biomedical Applications -- The Role of Heterogenous Catalysts in Converting Cellulose to Platform Chemicals -- Production of Reduced Graphene Oxide (rGO) from Battery Waste: Green and Sustainable Synthesis and Reduction -- Bio-Catalysis as a Green Approach for Industrial Waste Treatment -- Green Synthesis of Biodiesel Using Microbial Lipases -- Industrial Applications of Green Solvents for Sustainable Development of Technologies in Organic Synthesis -- Index.
Record Nr. UNINA-9910416110903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi
Autore Inamuddin
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
Descrizione fisica 1 online resource (881 pages)
Disciplina 929.374
Soggetto topico Engineering
ISBN 1-119-90530-3
1-119-90528-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Biodegradable Materials in Electronics -- 1.1 Introduction -- 1.2 Biodegradable Materials in Electronics -- 1.2.1 Advantages of Biodegradable Materials -- 1.3 Silk -- 1.4 Polymers -- 1.4.1 Natural Polymers -- 1.4.2 Synthetic Polymers -- 1.5 Cellulose -- 1.6 Paper -- 1.7 Others -- 1.8 Biodegradable Electronic Components -- 1.9 Semiconductors -- 1.10 Substrate -- 1.11 Biodegradable Dielectrics -- 1.12 Insulators and Conductors -- 1.13 Conclusion -- Declaration About Copyright -- References -- 2 Biodegradable Thermoelectric Materials -- 2.1 Introduction -- 2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials -- 2.3 Working Principle of Thermoelectric Materials -- 2.4 Biopolymer Composite for Thermoelectric Application -- 2.4.1 Polylactic Acid-Based Thermoelectric Materials -- 2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials -- 2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials -- 2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials -- 2.4.5 Starch-Based Biocomposites as Thermoelectric Materials -- 2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials -- 2.4.7 Pullulan-Based Composites as Thermoelectric Materials -- 2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials -- 2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials -- 2.6 Conclusions -- References -- 3 Biodegradable Electronics: A Newly Emerging Environmental Technology -- 3.1 Introduction -- 3.2 Properties of Biodegradable Materials in Electronics -- 3.3 Transformational Applications of Biodegradable Materials in Electronics -- 3.3.1 Cellulose -- 3.3.2 Silk -- 3.3.3 Stretchable Hydrogel -- 3.3.4 Conjugated Polymers and Metals -- 3.3.5 Graphene -- 3.3.6 Composites -- 3.4 Biodegradation Mechanisms.
3.5 Conclusions -- Acknowledgements -- References -- 4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials -- 4.1 Introduction -- 4.2 Fishery Chain Industry -- 4.2.1 Evolution of the Fishery Chain Industry -- 4.2.2 Applications of Fish Waste Materials -- 4.3 Films or Coatings Based on Proteins From Fish Waste Materials -- 4.3.1 Films or Coatings for Food Packaging -- 4.3.2 Development of Protein-Based Films or Coatings -- 4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins -- 4.3.2.2 Development of Biodegradable and Bioactive Films or Coating -- 4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers -- 4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications -- 4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers -- 4.4 Conclusion -- References -- 5 Biodegradable Superabsorbent Materials -- 5.1 Introduction -- 5.2 Biohydrogels: Superabsorbent Materials -- 5.3 Polysaccharides: Biopolymers from Renewable Sources -- 5.3.1 Carboxymethylcellulose (CMC) -- 5.3.2 Chitosan (CH) -- 5.3.3 Alginate -- 5.3.4 Carrageenans -- 5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides -- 5.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- 6 Bioplastics in Personal Protective Equipment -- 6.1 Introduction -- 6.2 Conventional Personal Protective Equipment -- 6.2.1 Face Masks -- 6.2.1.1 Surgical Mask -- 6.2.1.2 N95 Face Masks -- 6.2.1.3 KN95 Face Masks -- 6.2.1.4 Cloth Face Masks -- 6.2.1.5 Two-Layered Face Mask (or Hygienic) -- 6.2.2 Gloves -- 6.2.2.1 Latex -- 6.2.2.2 Nitrile -- 6.2.2.3 Vinyl -- 6.2.2.4 Foil (Polyethylene) -- 6.3 Biodegradable and Biobased PPE -- 6.3.1 Face Masks -- 6.3.1.1 Polylactic Acid -- 6.3.1.2 Polybutylene Succinate.
6.3.1.3 Polyvinyl Alcohol -- 6.3.2 Gloves -- 6.3.2.1 Butadiene Rubber (BR) -- 6.3.2.2 Polyisoprene Rubber -- 6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics -- 6.4.1 Source and Raw Materials -- 6.4.2 End of Life Scenarios -- 6.4.3 Remarks on Biodegradability -- 6.5 International Standards Applied to Biodegradable Plastics and Bioplastics -- 6.6 Conclusions -- References -- 7 Biodegradable Protective Films -- 7.1 Introduction -- 7.1.1 Types of Protective Films -- 7.2 Biodegradable Protective Films -- 7.2.1 Processing of Biodegradable Protective Films -- 7.2.2 Limitations Faced by Biodegradable Protective Films -- References -- 8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection -- 8.1 Introduction -- 8.2 Bioplastics -- 8.3 Biodegradation of Bioplastics -- 8.4 Production of Bioplastics from Plant Sources -- 8.5 Production of Bioplastics from Microbial Resources -- 8.6 What Are PPEs Made Off? -- 8.6.1 Face Masks -- 8.6.2 Face and Eye Shields -- 8.6.3 Gloves -- 8.7 Biodegradable Materials for PPE -- 8.8 Conclusion and Future Perspectives -- References -- 9 Biodegradable Materials in Dentistry -- 9.1 Introduction -- 9.2 Biodegradable Materials -- 9.2.1 Synthetic Polymers -- 9.2.2 Natural Polymers -- 9.2.3 Biodegradable Ceramics -- 9.2.4 Bioactive Glass -- 9.2.5 Biodegradable Metals -- 9.3 Biodegradable Materials in Suturing -- 9.4 Biodegradable Materials in Imaging and Diagnostics -- 9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery -- 9.6 Biodegradable Materials in Resorbable Plate and Screw System -- 9.7 Biodegradable Materials in Alveolar Ridge Preservation -- 9.8 Biodegradable Materials of Nanotopography in Cancer Therapy -- 9.9 Biodegradable Materials in Endodontics -- 9.10 Biodegradable Materials in Orthodontics.
9.11 Biodegradable Materials in Periodontics -- 9.12 Conclusion -- References -- 10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications -- 10.1 Introduction -- 10.2 Polysaccharides -- 10.2.1 Chitosan -- 10.2.2 Cellulose -- 10.2.3 Starch -- 10.2.4 Alginate -- 10.2.5 Hyaluronic Acid (HA) -- 10.3 Proteins -- 10.3.1 Collagen -- 10.3.2 Fibrin -- 10.3.3 Elastin -- 10.3.4 Gelatins -- 10.3.5 Silk -- 10.4 Biopolyesters -- 10.4.1 Poly (Glycolic Acid) (PGA) -- 10.4.2 Poly (Lactic Acid) PLA -- 10.4.3 Poly (Lactide-co-Glycolide) (PLGA) -- 10.4.4 Polycaprolactone -- 10.4.5 Poly (Propylene Fumarate) -- 10.5 Conclusion -- References -- 11 Biodegradable Biomaterials in Bone Tissue Engineering -- 11.1 Introduction -- 11.2 Essential Characteristics and Considerations in Bone Scaffold Design -- 11.3 Fabrication Technologies -- 11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication -- 11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation -- 11.6 Biodegradation of Calcium Phosphate Biomaterials -- 11.7 Biodegradation of Polymeric Biomaterials -- 11.8 Importance of Bone Remodeling -- 11.9 Conclusion -- References -- 12 Biodegradable Elastomer -- 12.1 Introduction -- 12.2 Biodegradation Testing -- 12.3 Biodegradable Elastomers: An Overview -- 12.3.1 Preparation Strategies -- 12.3.2 Biodegradation and Erosion -- 12.4 Application of Biodegradable Elastomers -- 12.4.1 Drug Delivery -- 12.4.2 Tissue Engineering -- 12.4.2.1 Neural and Retinal Applications -- 12.4.2.2 Cardiovascular Applications -- 12.4.2.3 Orthopedic Applications -- 12.5 Conclusions and Perspectives -- References -- 13 Biodegradable Implant Materials -- 13.1 Introduction -- 13.2 Medical Implants -- 13.3 Biomaterials -- 13.3.1 Biomaterial Types -- 13.3.1.1 Polymer Biomaterials -- 13.3.1.2 Metallic Biomaterials -- 13.3.1.3 Ceramic Biomaterials.
13.4 Biodegradable Implant Materials -- 13.4.1 Biodegradable Metals -- 13.4.1.1 Magnesium-Based Biodegradable Materials -- 13.4.1.2 Iron-Based Biodegradable Materials -- 13.4.2 Biodegradable Polymers -- 13.4.2.1 Polyesters -- 13.4.2.2 Polycarbonates -- 13.4.2.3 Polyanhydrides -- 13.4.2.4 Poly(ortho esters) -- 13.4.2.5 Poly(propylene fumarate) -- 13.4.2.6 Poly(phosphazenes) -- 13.4.2.7 Polyphosphoesters -- 13.4.2.8 Polyurethanes -- 13.5 Conclusion -- References -- 14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials -- 14.1 Introduction -- 14.2 Biodegradable Materials in Dental Pulp Regeneration -- 14.2.1 Collagen-Based Gels -- 14.2.2 Platelet-Rich Plasma -- 14.2.3 Plasma-Rich Fibrin -- 14.2.4 Gelatin -- 14.2.5 Fibrin -- 14.2.6 Alginate -- 14.2.7 Chitosan -- 14.2.8 Amino Acid Polymers -- 14.2.9 Polymers of Lactic Acid -- 14.2.10 Composite Polymer Scaffolds -- 14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium -- 14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering -- 14.4.1 Stem Cells Applications in Periodontal Regeneration -- 14.4.2 Bioactive Molecules for Periodontal Regeneration -- 14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration -- 14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials -- 14.5.1 PDL Regeneration -- 14.5.2 Cementum and Alveolar Bone Regeneration -- 14.5.3 Integrated Regeneration of Periodontal Complex Structures -- 14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials -- 14.6.1 Laser Application in Periodontium Regeneration -- 14.6.2 Gene Therapy in Periodontal Regeneration -- 14.7 Conclusion and Future Remarks -- References.
15 A Review on Health Care Applications of Biopolymers.
Record Nr. UNINA-9910643862603321
Inamuddin  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi
Biodegradable materials and their applications / / Inamuddin and Tariq A. Altalhi
Autore Inamuddin
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
Descrizione fisica 1 online resource (881 pages)
Disciplina 929.374
Soggetto topico Engineering
ISBN 1-119-90530-3
1-119-90528-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Biodegradable Materials in Electronics -- 1.1 Introduction -- 1.2 Biodegradable Materials in Electronics -- 1.2.1 Advantages of Biodegradable Materials -- 1.3 Silk -- 1.4 Polymers -- 1.4.1 Natural Polymers -- 1.4.2 Synthetic Polymers -- 1.5 Cellulose -- 1.6 Paper -- 1.7 Others -- 1.8 Biodegradable Electronic Components -- 1.9 Semiconductors -- 1.10 Substrate -- 1.11 Biodegradable Dielectrics -- 1.12 Insulators and Conductors -- 1.13 Conclusion -- Declaration About Copyright -- References -- 2 Biodegradable Thermoelectric Materials -- 2.1 Introduction -- 2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials -- 2.3 Working Principle of Thermoelectric Materials -- 2.4 Biopolymer Composite for Thermoelectric Application -- 2.4.1 Polylactic Acid-Based Thermoelectric Materials -- 2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials -- 2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials -- 2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials -- 2.4.5 Starch-Based Biocomposites as Thermoelectric Materials -- 2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials -- 2.4.7 Pullulan-Based Composites as Thermoelectric Materials -- 2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials -- 2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials -- 2.6 Conclusions -- References -- 3 Biodegradable Electronics: A Newly Emerging Environmental Technology -- 3.1 Introduction -- 3.2 Properties of Biodegradable Materials in Electronics -- 3.3 Transformational Applications of Biodegradable Materials in Electronics -- 3.3.1 Cellulose -- 3.3.2 Silk -- 3.3.3 Stretchable Hydrogel -- 3.3.4 Conjugated Polymers and Metals -- 3.3.5 Graphene -- 3.3.6 Composites -- 3.4 Biodegradation Mechanisms.
3.5 Conclusions -- Acknowledgements -- References -- 4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials -- 4.1 Introduction -- 4.2 Fishery Chain Industry -- 4.2.1 Evolution of the Fishery Chain Industry -- 4.2.2 Applications of Fish Waste Materials -- 4.3 Films or Coatings Based on Proteins From Fish Waste Materials -- 4.3.1 Films or Coatings for Food Packaging -- 4.3.2 Development of Protein-Based Films or Coatings -- 4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins -- 4.3.2.2 Development of Biodegradable and Bioactive Films or Coating -- 4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers -- 4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications -- 4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers -- 4.4 Conclusion -- References -- 5 Biodegradable Superabsorbent Materials -- 5.1 Introduction -- 5.2 Biohydrogels: Superabsorbent Materials -- 5.3 Polysaccharides: Biopolymers from Renewable Sources -- 5.3.1 Carboxymethylcellulose (CMC) -- 5.3.2 Chitosan (CH) -- 5.3.3 Alginate -- 5.3.4 Carrageenans -- 5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides -- 5.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- 6 Bioplastics in Personal Protective Equipment -- 6.1 Introduction -- 6.2 Conventional Personal Protective Equipment -- 6.2.1 Face Masks -- 6.2.1.1 Surgical Mask -- 6.2.1.2 N95 Face Masks -- 6.2.1.3 KN95 Face Masks -- 6.2.1.4 Cloth Face Masks -- 6.2.1.5 Two-Layered Face Mask (or Hygienic) -- 6.2.2 Gloves -- 6.2.2.1 Latex -- 6.2.2.2 Nitrile -- 6.2.2.3 Vinyl -- 6.2.2.4 Foil (Polyethylene) -- 6.3 Biodegradable and Biobased PPE -- 6.3.1 Face Masks -- 6.3.1.1 Polylactic Acid -- 6.3.1.2 Polybutylene Succinate.
6.3.1.3 Polyvinyl Alcohol -- 6.3.2 Gloves -- 6.3.2.1 Butadiene Rubber (BR) -- 6.3.2.2 Polyisoprene Rubber -- 6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics -- 6.4.1 Source and Raw Materials -- 6.4.2 End of Life Scenarios -- 6.4.3 Remarks on Biodegradability -- 6.5 International Standards Applied to Biodegradable Plastics and Bioplastics -- 6.6 Conclusions -- References -- 7 Biodegradable Protective Films -- 7.1 Introduction -- 7.1.1 Types of Protective Films -- 7.2 Biodegradable Protective Films -- 7.2.1 Processing of Biodegradable Protective Films -- 7.2.2 Limitations Faced by Biodegradable Protective Films -- References -- 8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection -- 8.1 Introduction -- 8.2 Bioplastics -- 8.3 Biodegradation of Bioplastics -- 8.4 Production of Bioplastics from Plant Sources -- 8.5 Production of Bioplastics from Microbial Resources -- 8.6 What Are PPEs Made Off? -- 8.6.1 Face Masks -- 8.6.2 Face and Eye Shields -- 8.6.3 Gloves -- 8.7 Biodegradable Materials for PPE -- 8.8 Conclusion and Future Perspectives -- References -- 9 Biodegradable Materials in Dentistry -- 9.1 Introduction -- 9.2 Biodegradable Materials -- 9.2.1 Synthetic Polymers -- 9.2.2 Natural Polymers -- 9.2.3 Biodegradable Ceramics -- 9.2.4 Bioactive Glass -- 9.2.5 Biodegradable Metals -- 9.3 Biodegradable Materials in Suturing -- 9.4 Biodegradable Materials in Imaging and Diagnostics -- 9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery -- 9.6 Biodegradable Materials in Resorbable Plate and Screw System -- 9.7 Biodegradable Materials in Alveolar Ridge Preservation -- 9.8 Biodegradable Materials of Nanotopography in Cancer Therapy -- 9.9 Biodegradable Materials in Endodontics -- 9.10 Biodegradable Materials in Orthodontics.
9.11 Biodegradable Materials in Periodontics -- 9.12 Conclusion -- References -- 10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications -- 10.1 Introduction -- 10.2 Polysaccharides -- 10.2.1 Chitosan -- 10.2.2 Cellulose -- 10.2.3 Starch -- 10.2.4 Alginate -- 10.2.5 Hyaluronic Acid (HA) -- 10.3 Proteins -- 10.3.1 Collagen -- 10.3.2 Fibrin -- 10.3.3 Elastin -- 10.3.4 Gelatins -- 10.3.5 Silk -- 10.4 Biopolyesters -- 10.4.1 Poly (Glycolic Acid) (PGA) -- 10.4.2 Poly (Lactic Acid) PLA -- 10.4.3 Poly (Lactide-co-Glycolide) (PLGA) -- 10.4.4 Polycaprolactone -- 10.4.5 Poly (Propylene Fumarate) -- 10.5 Conclusion -- References -- 11 Biodegradable Biomaterials in Bone Tissue Engineering -- 11.1 Introduction -- 11.2 Essential Characteristics and Considerations in Bone Scaffold Design -- 11.3 Fabrication Technologies -- 11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication -- 11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation -- 11.6 Biodegradation of Calcium Phosphate Biomaterials -- 11.7 Biodegradation of Polymeric Biomaterials -- 11.8 Importance of Bone Remodeling -- 11.9 Conclusion -- References -- 12 Biodegradable Elastomer -- 12.1 Introduction -- 12.2 Biodegradation Testing -- 12.3 Biodegradable Elastomers: An Overview -- 12.3.1 Preparation Strategies -- 12.3.2 Biodegradation and Erosion -- 12.4 Application of Biodegradable Elastomers -- 12.4.1 Drug Delivery -- 12.4.2 Tissue Engineering -- 12.4.2.1 Neural and Retinal Applications -- 12.4.2.2 Cardiovascular Applications -- 12.4.2.3 Orthopedic Applications -- 12.5 Conclusions and Perspectives -- References -- 13 Biodegradable Implant Materials -- 13.1 Introduction -- 13.2 Medical Implants -- 13.3 Biomaterials -- 13.3.1 Biomaterial Types -- 13.3.1.1 Polymer Biomaterials -- 13.3.1.2 Metallic Biomaterials -- 13.3.1.3 Ceramic Biomaterials.
13.4 Biodegradable Implant Materials -- 13.4.1 Biodegradable Metals -- 13.4.1.1 Magnesium-Based Biodegradable Materials -- 13.4.1.2 Iron-Based Biodegradable Materials -- 13.4.2 Biodegradable Polymers -- 13.4.2.1 Polyesters -- 13.4.2.2 Polycarbonates -- 13.4.2.3 Polyanhydrides -- 13.4.2.4 Poly(ortho esters) -- 13.4.2.5 Poly(propylene fumarate) -- 13.4.2.6 Poly(phosphazenes) -- 13.4.2.7 Polyphosphoesters -- 13.4.2.8 Polyurethanes -- 13.5 Conclusion -- References -- 14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials -- 14.1 Introduction -- 14.2 Biodegradable Materials in Dental Pulp Regeneration -- 14.2.1 Collagen-Based Gels -- 14.2.2 Platelet-Rich Plasma -- 14.2.3 Plasma-Rich Fibrin -- 14.2.4 Gelatin -- 14.2.5 Fibrin -- 14.2.6 Alginate -- 14.2.7 Chitosan -- 14.2.8 Amino Acid Polymers -- 14.2.9 Polymers of Lactic Acid -- 14.2.10 Composite Polymer Scaffolds -- 14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium -- 14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering -- 14.4.1 Stem Cells Applications in Periodontal Regeneration -- 14.4.2 Bioactive Molecules for Periodontal Regeneration -- 14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration -- 14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials -- 14.5.1 PDL Regeneration -- 14.5.2 Cementum and Alveolar Bone Regeneration -- 14.5.3 Integrated Regeneration of Periodontal Complex Structures -- 14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials -- 14.6.1 Laser Application in Periodontium Regeneration -- 14.6.2 Gene Therapy in Periodontal Regeneration -- 14.7 Conclusion and Future Remarks -- References.
15 A Review on Health Care Applications of Biopolymers.
Record Nr. UNINA-9910678118103321
Inamuddin  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodiesel technology and applications / / edited by Inamuddin [and three others]
Biodiesel technology and applications / / edited by Inamuddin [and three others]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (458 pages)
Disciplina 665.37
Soggetto topico Biodiesel fuels
Soggetto genere / forma Electronic books.
ISBN 1-5231-4323-1
1-119-72496-1
1-119-72493-7
1-119-72495-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Title page -- Copyright -- Preface -- 1 Biocatalytic Processes for Biodiesel Production -- 1.1 Introduction and Background -- 1.2 Importance of Biodiesel Over Conventional Diesel Fuel -- 1.3 Substrates for Biodiesel Production -- 1.4 Methods in Biodiesel Production -- 1.5 Types of Catalysts Involved in Biodiesel Production -- 1.6 Factors Affecting Enzymatic Transesterification Reaction -- 1.7 Lipases as Biocatalysts for Biodiesel Production -- 1.8 Comparative Analysis of Intracellular and Extracellular Lipases for Biodiesel Production -- 1.9 Recombinant Lipases for Cost-Effective Biodiesel Production -- 1.10 Immobilization of Lipases for Better Biodiesel Production -- 1.11 Recent Strategies to Improve Biodiesel Production -- 1.12 Lipase Catalyzed Reaction Modeling and Statistical Approaches for Reaction Optimization -- 1.13 Conclusion and Summary -- References -- 2 Application of Low-Frequency Ultrasound for Intensified Biodiesel Production Process -- 2.1 Current Fossil Fuel Scenario -- 2.2 Biodiesel -- 2.3 Transesterification -- 2.4 Challenges for Improved Biodiesel Production -- 2.5 Homogeneous Catalyst for Biodiesel Production -- 2.6 Heterogeneous Catalyst for Biodiesel Production -- 2.7 Immiscibility of the Reactants -- 2.8 Ultrasound-Assisted Biodiesel Production Process -- 2.9 Conclusions -- Acknowledgement -- References -- 3 Application of Catalysts in Biodiesel Production -- 3.1 Introduction -- 3.2 Homogeneous Catalysis for the Biodiesel Production -- 3.3 Heterogeneous Catalyst -- 3.4 Biocatalysts -- 3.5 Conclusion -- References -- 4 Hydrogenolysis as a Means of Valorization of Biodiesel-Derived Glycerol: A Review -- 4.1 Introduction -- 4.2 Ways of Valorization of Biodiesel-Derived Glycerol -- 4.3 Hydrogenolysis of Glycerol -- 4.4 Conclusion -- References.
5 Current Status, Synthesis, and Characterization of Biodiesel -- 5.1 Introduction -- 5.2 Status of Biodiesel in India -- 5.3 Biodiesel Production in India -- 5.4 Properties of Biodiesel -- 5.5 Analytical Methods -- 5.6 Conclusion -- References -- 6 Commercial Technologies for Biodiesel Production -- Abbreviation -- 6.1 Introduction -- 6.2 Biodiesel Production -- 6.3 Technologies Used for Biodiesel Production -- 6.4 Other Technologies in Use for Biodiesel Production -- 6.5 Feedstock Requirement -- 6.6 Some Problems Facing Commercialization of Biodiesel in Africa -- 6.7 Case Studies/Current Status and Future Potential -- 6.8 Conclusions -- Acknowledgments -- References -- 7 A Global Scenario of Sustainable Technologies and Progress in a Biodiesel Production -- 7.1 Introduction -- 7.2 Current Status of Feedstock for Biodiesel Production Technology -- 7.3 Scenario of Biodiesel in Combustion Engine -- 7.4 Biodiesel Production Technologies -- 7.5 Microwave-Mediated Transesterification -- 7.6 Ultrasound-Mediated Transesterification -- 7.7 Catalysis in Biodiesel Production -- 7.8 The Concept of Biorefinery -- 7.9 Summary and Outlook -- 7.10 Conclusion -- References -- 8 Biodiesel Production Technologies -- 8.1 Introduction -- 8.2 Biodiesel Feedstocks -- 8.3 Biodiesel Production Technologies -- 8.4 Intensification Techniques for Biodiesel Production -- 8.5 Other Techniques of Biodiesel Production -- References -- 9 Methods for Biodiesel Production -- 9.1 Selection of Feedstock for Biodiesel -- 9.2 Methods for Biodiesel Production -- References -- 10 Non-Edible Feedstock for Biodiesel Production -- List of Abbreviations -- 10.1 Introduction -- 10.2 Reports Relevant to Global Warming and Renewable Energy -- 10.3 Biofuels as an Alternative Energy Source -- 10.4 Benefits of Using Biodiesel -- 10.5 Technologies of Biodiesel Production From Non-Edible Feedstock.
10.6 Biodiesel Production by Transesterification -- 10.7 Non-Edible Feedstocks for Biodiesel Production -- 10.8 Fuel Properties of Biodiesel Obtained From Non-Edible Feedstock -- 10.9 Advantages of Non-Edible Feedstocks -- 10.10 Economic Importance of Biodiesel Production -- 10.11 Conclusions -- Acknowledgments -- References -- 11 Oleochemical Resources for Biodiesel Production -- 11.1 Introduction -- 11.2 Definition of Oleochemicals -- 11.3 Oleochemical Types -- 11.4 Production of Biodiesel -- 11.5 Types of Feedstocks -- 11.6 Uses of Oleochemicals -- 11.7 Methyl Ester or Biodiesel Production -- 11.8 Parameters Affecting the Yield of Biodiesel -- 11.9 Optimization of Reactions Conditions for High Yield and Quality of Biodiesel -- 11.10 Oil Recovery -- 11.11 Quality Improvement of Biodiesel -- 11.12 Conclusion -- Abbreviations -- References -- 12 Overview on Different Reactors for Biodiesel Production -- 12.1 Introduction -- 12.2 Biodiesel Production Reactors -- 12.3 Future Prospects -- 12.4 Conclusion -- References -- 13 Patents on Biodiesel -- 13.1 Introduction -- 13.2 Generation of Biodiesel -- 13.3 Development of Catalyst -- 13.4 Method Producing Biodiesel -- 13.5 Reactor's Technology for Biodiesel Production -- 13.6 Conclusion -- References -- 14 Reactions of Carboxylic Acids With an Alcohol Over Acid Materials -- 14.1 Introduction -- 14.2 Zeolites -- 14.3 SO3H as Catalyst -- 14.4 Metal Oxides -- 14.5 Heteropolyacids -- 14.6 Other Materials -- 14.7 Conclusions -- References -- 15 Biodiesel Production From Non-Edible and Waste Lipid Sources -- 15.1 Introduction -- 15.2 Non-Edible Plant-Based Oils -- 15.3 Waste Animal Fats -- 15.4 Expired and Waste Cooking Oils -- 15.5 Algae/Microalgae -- 15.6 Insects as Biodiesel Feedstock -- 15.7 Deacidification -- 15.8 Other Technologies -- 15.9 Conclusion -- References -- 16 Microalgae for Biodiesel Production.
16.1 Introduction -- 16.2 Physicochemical Properties of Biodiesel From Microalgae -- 16.3 Genetic Engineering/Techniques Enhancing Biodiesel Production -- 16.4 Nanotechnology in Microalgae Biodiesel Production -- 16.5 Specific Examples of Biodiesel Production From Microalgae -- 16.6 Methodology Involved in the Extraction of Algae -- 16.7 Conclusion and Future Recommendation to Knowledge -- References -- 17 Biodiesel Production Methods and Feedstocks -- 17.1 Introduction -- 17.2 Biofuel Classification in Terms of Origin and Technological Conversion of Raw Materials -- 17.3 Techniques Capable of Producing Biodiesel on Commercial Scales -- 17.4 Influential Parameters on Biodiesel Production -- 17.5 Biodiesel Markets and Economic Considerations -- 17.6 Challenges Confronting Biodiesel Uptake -- 17.7 Corrosion and Quality Monitoring Issues for Biodiesel -- 17.8 Conclusions -- References -- 18 Application of Nanoparticles for the Enhanced Production of Biodiesel -- 18.1 Introduction -- 18.2 Solid Nanoparticles -- 18.3 Nanobioparticles/Nanobiocatalyst -- 18.4 Magnetic Nanoparticles -- 18.5 How Nanoparticles Enhanced Biodiesel Production? -- 18.6 Conclusion -- References -- Index -- Also of Interest -- Check out these other forthcoming and published titles from Scrivener Publishing -- Books by the same editor from Wiley-Scrivener -- Other books on this subject from Wiley-Scrivener -- End User License Agreement.
Record Nr. UNINA-9910555188503321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biodiesel technology and applications / / edited by Inamuddin [and three others]
Biodiesel technology and applications / / edited by Inamuddin [and three others]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (458 pages)
Disciplina 665.37
Soggetto topico Biodiesel fuels
ISBN 1-5231-4323-1
1-119-72496-1
1-119-72493-7
1-119-72495-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Title page -- Copyright -- Preface -- 1 Biocatalytic Processes for Biodiesel Production -- 1.1 Introduction and Background -- 1.2 Importance of Biodiesel Over Conventional Diesel Fuel -- 1.3 Substrates for Biodiesel Production -- 1.4 Methods in Biodiesel Production -- 1.5 Types of Catalysts Involved in Biodiesel Production -- 1.6 Factors Affecting Enzymatic Transesterification Reaction -- 1.7 Lipases as Biocatalysts for Biodiesel Production -- 1.8 Comparative Analysis of Intracellular and Extracellular Lipases for Biodiesel Production -- 1.9 Recombinant Lipases for Cost-Effective Biodiesel Production -- 1.10 Immobilization of Lipases for Better Biodiesel Production -- 1.11 Recent Strategies to Improve Biodiesel Production -- 1.12 Lipase Catalyzed Reaction Modeling and Statistical Approaches for Reaction Optimization -- 1.13 Conclusion and Summary -- References -- 2 Application of Low-Frequency Ultrasound for Intensified Biodiesel Production Process -- 2.1 Current Fossil Fuel Scenario -- 2.2 Biodiesel -- 2.3 Transesterification -- 2.4 Challenges for Improved Biodiesel Production -- 2.5 Homogeneous Catalyst for Biodiesel Production -- 2.6 Heterogeneous Catalyst for Biodiesel Production -- 2.7 Immiscibility of the Reactants -- 2.8 Ultrasound-Assisted Biodiesel Production Process -- 2.9 Conclusions -- Acknowledgement -- References -- 3 Application of Catalysts in Biodiesel Production -- 3.1 Introduction -- 3.2 Homogeneous Catalysis for the Biodiesel Production -- 3.3 Heterogeneous Catalyst -- 3.4 Biocatalysts -- 3.5 Conclusion -- References -- 4 Hydrogenolysis as a Means of Valorization of Biodiesel-Derived Glycerol: A Review -- 4.1 Introduction -- 4.2 Ways of Valorization of Biodiesel-Derived Glycerol -- 4.3 Hydrogenolysis of Glycerol -- 4.4 Conclusion -- References.
5 Current Status, Synthesis, and Characterization of Biodiesel -- 5.1 Introduction -- 5.2 Status of Biodiesel in India -- 5.3 Biodiesel Production in India -- 5.4 Properties of Biodiesel -- 5.5 Analytical Methods -- 5.6 Conclusion -- References -- 6 Commercial Technologies for Biodiesel Production -- Abbreviation -- 6.1 Introduction -- 6.2 Biodiesel Production -- 6.3 Technologies Used for Biodiesel Production -- 6.4 Other Technologies in Use for Biodiesel Production -- 6.5 Feedstock Requirement -- 6.6 Some Problems Facing Commercialization of Biodiesel in Africa -- 6.7 Case Studies/Current Status and Future Potential -- 6.8 Conclusions -- Acknowledgments -- References -- 7 A Global Scenario of Sustainable Technologies and Progress in a Biodiesel Production -- 7.1 Introduction -- 7.2 Current Status of Feedstock for Biodiesel Production Technology -- 7.3 Scenario of Biodiesel in Combustion Engine -- 7.4 Biodiesel Production Technologies -- 7.5 Microwave-Mediated Transesterification -- 7.6 Ultrasound-Mediated Transesterification -- 7.7 Catalysis in Biodiesel Production -- 7.8 The Concept of Biorefinery -- 7.9 Summary and Outlook -- 7.10 Conclusion -- References -- 8 Biodiesel Production Technologies -- 8.1 Introduction -- 8.2 Biodiesel Feedstocks -- 8.3 Biodiesel Production Technologies -- 8.4 Intensification Techniques for Biodiesel Production -- 8.5 Other Techniques of Biodiesel Production -- References -- 9 Methods for Biodiesel Production -- 9.1 Selection of Feedstock for Biodiesel -- 9.2 Methods for Biodiesel Production -- References -- 10 Non-Edible Feedstock for Biodiesel Production -- List of Abbreviations -- 10.1 Introduction -- 10.2 Reports Relevant to Global Warming and Renewable Energy -- 10.3 Biofuels as an Alternative Energy Source -- 10.4 Benefits of Using Biodiesel -- 10.5 Technologies of Biodiesel Production From Non-Edible Feedstock.
10.6 Biodiesel Production by Transesterification -- 10.7 Non-Edible Feedstocks for Biodiesel Production -- 10.8 Fuel Properties of Biodiesel Obtained From Non-Edible Feedstock -- 10.9 Advantages of Non-Edible Feedstocks -- 10.10 Economic Importance of Biodiesel Production -- 10.11 Conclusions -- Acknowledgments -- References -- 11 Oleochemical Resources for Biodiesel Production -- 11.1 Introduction -- 11.2 Definition of Oleochemicals -- 11.3 Oleochemical Types -- 11.4 Production of Biodiesel -- 11.5 Types of Feedstocks -- 11.6 Uses of Oleochemicals -- 11.7 Methyl Ester or Biodiesel Production -- 11.8 Parameters Affecting the Yield of Biodiesel -- 11.9 Optimization of Reactions Conditions for High Yield and Quality of Biodiesel -- 11.10 Oil Recovery -- 11.11 Quality Improvement of Biodiesel -- 11.12 Conclusion -- Abbreviations -- References -- 12 Overview on Different Reactors for Biodiesel Production -- 12.1 Introduction -- 12.2 Biodiesel Production Reactors -- 12.3 Future Prospects -- 12.4 Conclusion -- References -- 13 Patents on Biodiesel -- 13.1 Introduction -- 13.2 Generation of Biodiesel -- 13.3 Development of Catalyst -- 13.4 Method Producing Biodiesel -- 13.5 Reactor's Technology for Biodiesel Production -- 13.6 Conclusion -- References -- 14 Reactions of Carboxylic Acids With an Alcohol Over Acid Materials -- 14.1 Introduction -- 14.2 Zeolites -- 14.3 SO3H as Catalyst -- 14.4 Metal Oxides -- 14.5 Heteropolyacids -- 14.6 Other Materials -- 14.7 Conclusions -- References -- 15 Biodiesel Production From Non-Edible and Waste Lipid Sources -- 15.1 Introduction -- 15.2 Non-Edible Plant-Based Oils -- 15.3 Waste Animal Fats -- 15.4 Expired and Waste Cooking Oils -- 15.5 Algae/Microalgae -- 15.6 Insects as Biodiesel Feedstock -- 15.7 Deacidification -- 15.8 Other Technologies -- 15.9 Conclusion -- References -- 16 Microalgae for Biodiesel Production.
16.1 Introduction -- 16.2 Physicochemical Properties of Biodiesel From Microalgae -- 16.3 Genetic Engineering/Techniques Enhancing Biodiesel Production -- 16.4 Nanotechnology in Microalgae Biodiesel Production -- 16.5 Specific Examples of Biodiesel Production From Microalgae -- 16.6 Methodology Involved in the Extraction of Algae -- 16.7 Conclusion and Future Recommendation to Knowledge -- References -- 17 Biodiesel Production Methods and Feedstocks -- 17.1 Introduction -- 17.2 Biofuel Classification in Terms of Origin and Technological Conversion of Raw Materials -- 17.3 Techniques Capable of Producing Biodiesel on Commercial Scales -- 17.4 Influential Parameters on Biodiesel Production -- 17.5 Biodiesel Markets and Economic Considerations -- 17.6 Challenges Confronting Biodiesel Uptake -- 17.7 Corrosion and Quality Monitoring Issues for Biodiesel -- 17.8 Conclusions -- References -- 18 Application of Nanoparticles for the Enhanced Production of Biodiesel -- 18.1 Introduction -- 18.2 Solid Nanoparticles -- 18.3 Nanobioparticles/Nanobiocatalyst -- 18.4 Magnetic Nanoparticles -- 18.5 How Nanoparticles Enhanced Biodiesel Production? -- 18.6 Conclusion -- References -- Index -- Also of Interest -- Check out these other forthcoming and published titles from Scrivener Publishing -- Books by the same editor from Wiley-Scrivener -- Other books on this subject from Wiley-Scrivener -- End User License Agreement.
Record Nr. UNINA-9910677560303321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biofertilizers : Study and Impact
Biofertilizers : Study and Impact
Autore Inamuddin
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2021
Descrizione fisica 1 online resource (688 pages)
Altri autori (Persone) AhamedMohd Imran
BoddulaRajender
RezakazemiMashallah
Soggetto genere / forma Electronic books.
ISBN 1-119-72498-8
1-119-72499-6
1-119-72497-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Biofertilizers
Record Nr. UNINA-9910555263903321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biofertilizers : Study and Impact
Biofertilizers : Study and Impact
Autore Inamuddin
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2021
Descrizione fisica 1 online resource (688 pages)
Disciplina 631.86
Altri autori (Persone) AhamedMohd Imran
BoddulaRajender
RezakazemiMashallah
Soggetto topico Biofertilizers
Soggetto non controllato Agriculture
Technology & Engineering
ISBN 1-119-72498-8
1-119-72499-6
1-119-72497-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Biofertilizer Utilization in Forestry / Wendy Ying Ying Liu, Ranjetta Poobathy -- Impact of Biofertilizers on Horticultural Crops / Clement Kiing Fook Wong, Chui-Yao Teh -- N2 Fixation in Biofertilizers / Rekha Sharma, Sapna Nehra, Dinesh Kumar -- Organic Farming by Biofertilizers / Anuradha, Jagvir Singh -- Phosphorus Solubilizing Microorganisms / Rafig Gurbanov, Berkay Kalkanci, Hazel Karadag, Gizem Samgane -- Exophytical and Endophytical Interactions of Plants and Microbial Activities / A Mbotho, D Selikane, JS Sefadi, MJ Mochane -- Biofertilizer Formulations / Sana Saif, Zeeshan Abid, Muhammad Faheem Ashiq, Muhammad Altaf, Raja Shahid Ashraf -- Scoping the Use of Transgenic Microorganisms as Potential Biofertilizers for Sustainable Agriculture and Environmental Safety / Vasavi Rama Karri, Nirmala Nalluri -- Biofertilizer Utilization in Agricultural Sector / Osikemekha Anthony Anani, Charles Oluwaseun Adetunji, Osayomwanbo Osarenotor, Inamuddin -- Azospirillum: A Salient Source for Sustainable Agriculture / Rimjim Gogoi, Sukanya Baruah, Jiban Saikia -- Actinomycetes: Implications and Prospects in Sustainable Agriculture / V Shanthi -- Influence of Growth Pattern of Cyanobacterial Species on Biofertilizer Production / Tejaswi Jasti, Anirudh Kaligotla Venkata Subrahmanya, Lalitha Rishika Majeti, Viswanatha Chaitanya Kolluru, Rajesh K Srivastava -- Biofertilizers Application in Agriculture: A Viable Option to Chemical Fertilizers / Rajesh K Srivastava -- Quality Control of Biofertilizers / Swati Agarwal, Sonu Kumari, Suphiya Khan -- Biofertilizers: Characteristic Features and Applications / Tanushree Chakraborty, Nasim Akhtar -- Fabrication Approaches for Biofertilizers / Andrew N Amenaghawon, Chinedu L Anyalewechi, Heri Septya Kusuma -- Biofertilizers From Waste / Rafaela Basso Sartori, Ihana Aguiar Severo, Alisson Santos de Oliveira, Paola Lasta, Leila Queiroz Zepka, Eduardo Jacob-Lopes -- Biofertilizers Industry Profiles in Market / Kashish Gupta -- Case Study on Biofertilizer Utilization in African Continents / Osikemekha Anthony Anani, Charles Oluwaseun Adetunji -- Biofertilizers: Prospects and Challenges for Future / Tanushree Chakraborty, Nasim Akhtar -- Biofertilizers: Past, Present, and Future / Mukta Sharma, Manoj Sharma -- Algal Biofertilizer / Muhammad Mudassir Iqbal, Gulzar Muhammad, Muhammad Shahbaz Aslam, Muhammad Ajaz Hussain, Zahid Shafiq, Haseeba Razzaq.
Altri titoli varianti Biofertilizers
Record Nr. UNINA-9910677261503321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biofertilizers : Study and Impact
Biofertilizers : Study and Impact
Autore Inamuddin
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2021
Descrizione fisica 1 online resource (688 pages)
Disciplina 631.86
Altri autori (Persone) AhamedMohd Imran
BoddulaRajender
RezakazemiMashallah
Soggetto topico Biofertilizers
Soggetto non controllato Agriculture
Technology & Engineering
ISBN 1-119-72498-8
1-119-72499-6
1-119-72497-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Biofertilizer Utilization in Forestry / Wendy Ying Ying Liu, Ranjetta Poobathy -- Impact of Biofertilizers on Horticultural Crops / Clement Kiing Fook Wong, Chui-Yao Teh -- N2 Fixation in Biofertilizers / Rekha Sharma, Sapna Nehra, Dinesh Kumar -- Organic Farming by Biofertilizers / Anuradha, Jagvir Singh -- Phosphorus Solubilizing Microorganisms / Rafig Gurbanov, Berkay Kalkanci, Hazel Karadag, Gizem Samgane -- Exophytical and Endophytical Interactions of Plants and Microbial Activities / A Mbotho, D Selikane, JS Sefadi, MJ Mochane -- Biofertilizer Formulations / Sana Saif, Zeeshan Abid, Muhammad Faheem Ashiq, Muhammad Altaf, Raja Shahid Ashraf -- Scoping the Use of Transgenic Microorganisms as Potential Biofertilizers for Sustainable Agriculture and Environmental Safety / Vasavi Rama Karri, Nirmala Nalluri -- Biofertilizer Utilization in Agricultural Sector / Osikemekha Anthony Anani, Charles Oluwaseun Adetunji, Osayomwanbo Osarenotor, Inamuddin -- Azospirillum: A Salient Source for Sustainable Agriculture / Rimjim Gogoi, Sukanya Baruah, Jiban Saikia -- Actinomycetes: Implications and Prospects in Sustainable Agriculture / V Shanthi -- Influence of Growth Pattern of Cyanobacterial Species on Biofertilizer Production / Tejaswi Jasti, Anirudh Kaligotla Venkata Subrahmanya, Lalitha Rishika Majeti, Viswanatha Chaitanya Kolluru, Rajesh K Srivastava -- Biofertilizers Application in Agriculture: A Viable Option to Chemical Fertilizers / Rajesh K Srivastava -- Quality Control of Biofertilizers / Swati Agarwal, Sonu Kumari, Suphiya Khan -- Biofertilizers: Characteristic Features and Applications / Tanushree Chakraborty, Nasim Akhtar -- Fabrication Approaches for Biofertilizers / Andrew N Amenaghawon, Chinedu L Anyalewechi, Heri Septya Kusuma -- Biofertilizers From Waste / Rafaela Basso Sartori, Ihana Aguiar Severo, Alisson Santos de Oliveira, Paola Lasta, Leila Queiroz Zepka, Eduardo Jacob-Lopes -- Biofertilizers Industry Profiles in Market / Kashish Gupta -- Case Study on Biofertilizer Utilization in African Continents / Osikemekha Anthony Anani, Charles Oluwaseun Adetunji -- Biofertilizers: Prospects and Challenges for Future / Tanushree Chakraborty, Nasim Akhtar -- Biofertilizers: Past, Present, and Future / Mukta Sharma, Manoj Sharma -- Algal Biofertilizer / Muhammad Mudassir Iqbal, Gulzar Muhammad, Muhammad Shahbaz Aslam, Muhammad Ajaz Hussain, Zahid Shafiq, Haseeba Razzaq.
Altri titoli varianti Biofertilizers
Record Nr. UNINA-9910827047003321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biofuel cells : materials and challenges / / Inamuddin [and three others]
Biofuel cells : materials and challenges / / Inamuddin [and three others]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (528 pages)
Disciplina 662.88
Soggetto topico Microbial fuel cells
Biomass energy - Research
Soggetto genere / forma Electronic books.
ISBN 1-5231-4324-X
1-119-72505-4
1-119-72500-3
1-119-72501-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555138903321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui