top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Supercharge, invasion, and mudcake growth in downhole applications / / Wilson Chin [and four others]
Supercharge, invasion, and mudcake growth in downhole applications / / Wilson Chin [and four others]
Autore Chin Wilson C.
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (502 pages)
Disciplina 622.33819
Collana Advances in Petroleum Engineering
Soggetto topico Oil well drilling - Accidents
ISBN 1-119-28338-8
1-119-28333-7
1-119-28340-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830685303321
Chin Wilson C.  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wave propagation in drilling, well logging, and reservoir applications / / Wilson C. Chin ; Kris Hackerott, cover design
Wave propagation in drilling, well logging, and reservoir applications / / Wilson C. Chin ; Kris Hackerott, cover design
Autore Chin Wilson C.
Pubbl/distr/stampa Hoboken, New Jersey : , : Scrivener Publishing, , 2014
Descrizione fisica 1 online resource (458 p.)
Disciplina 622/.1828
Collana Advances in Petroleum Engineering
Soggetto topico Geophysical well logging
Seismic reflection method
Wave-motion, Theory of
ISBN 1-118-92593-9
1-118-92590-4
1-118-92591-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Contents; Preface; Acknowledgements; 1 Overview and Fundamental Ideas; 1.1 The Classical Wave Equation; 1.1.1 Fundamental properties; 1.1.2 Reflection properties; 1.1.2.1 Example 1-1. Rigid end termination; 1.1.2.2 Example 1-2. Stress-free end; 1.1.2.3 Note on acoustics; 1.2 Fundamental Representation; 1.2.1 Taylor series; 1.2.2 Fourier series; 1.3 Separation of Variables and Eigenfunction Expansions; 1.3.1 Example 1-3. String with pinned ends and general initial conditions; 1.3.2 Example 1-4. String with distributed forces
1.3.3 Example 1-5. Alternative boundary conditions1.3.4 Example 1-6. Mixed boundary conditions; 1.3.5 Example 1-7. Problems without initial conditions; 1.3.5.1 Example 1-7a. Naive approach; 1.3.5.2 Example 1-7b. Correct approach; 1.3.5.3 Example 1-7c. Faster approach; 1.3.6 Example 1-8. Dissipative wave solution; 1.4 Standing Versus Propagating Waves; 1.4.1 Standing waves; 1.4.2 Propagating waves; 1.4.3 Combined standing and propagating waves; 1.4.4 Characterizing propagating waves; 1.5 Laplace Transforms; 1.5.1 Wave equation derivation; 1.5.2 Example 1-9. String falling under its own weight
1.5.3 Example 1-10. Semi-infinite string with a general end support1.5.3.1 Example 1-10a. Rectangular pulse; 1.5.3.2 Example 1-10b. Impulse response; 1.5.3.3 Example 1-10c. Incident sinusoidal wavetrain; 1.6 Fourier Transforms; 1.6.1 Example 1-11. Propagation of an initially static disturbance; 1.6.2 Example 1-12. Directional properties, special wave; 1.7 External Forces Versus Boundary Conditions; 1.7.1 Single point force; 1.7.2 Properties of point loads; 1.7.2.1 Example 1-13. Boundary conditions versus forces; 1.7.2.2 Couples or dipoles; 1.7.2.3 Multiple forces and higher order moments
1.7.2.4 Symmetries and anti-symmetries1.7.2.5 Impulse response; 1.7.2.6 On the subtle meaning of impulse; 1.7.2.7 Example 1-14. Incorrect use of impulse response; 1.7.2.8 Additional models; 1.7.2.9 Other delta function properties; 1.8 Point Force and Dipole Wave Excitation; 1.8.1 Example 1-15. Finite string excited by a time-varying concentrated point force; 1.8.2 Example 1-16. Finite string excited by a time-varying point dipole (i.e., a force couple); 1.8.3 Example 1-17. Splitting of an applied initial disturbance; 1.9 First-Order Partial Differential Equations; 1.10 References
2 Kinematic Wave Theory2.1 Whitham's Theory in Nondissipative Media; 2.1.1 Uniform media; 2.1.2 Example 2-1. Transverse beam vibrations; 2.1.3 Example 2-2. Simple longitudinal oscillations; 2.1.4 Example 2-3. Asymptotic stationary phase expansion; 2.1.5 Simple consequences of KWT; 2.1.6 Nonuniform media; 2.1.7 Example 2-4. Numerical integration; 2.1.8 Ease of use is important to practical engineering; 2.2 Simple Attenuation Modeling; 2.2.1 The Q-model; 2.2.2 Relating Q to amplitude in space; 2.2.3 Relating Q to standing wave decay; 2.2.4 Kinematic wave generalization
2.3 KWT in Homogeneous Dissipative Media
Record Nr. UNISA-996203494803316
Chin Wilson C.  
Hoboken, New Jersey : , : Scrivener Publishing, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Wave propagation in drilling, well logging, and reservoir applications / / Wilson C. Chin ; Kris Hackerott, cover design
Wave propagation in drilling, well logging, and reservoir applications / / Wilson C. Chin ; Kris Hackerott, cover design
Autore Chin Wilson C.
Pubbl/distr/stampa Hoboken, New Jersey : , : Scrivener Publishing, , 2014
Descrizione fisica 1 online resource (458 p.)
Disciplina 622/.1828
Collana Advances in Petroleum Engineering
Soggetto topico Geophysical well logging
Seismic reflection method
Wave-motion, Theory of
ISBN 1-118-92593-9
1-118-92590-4
1-118-92591-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Contents; Preface; Acknowledgements; 1 Overview and Fundamental Ideas; 1.1 The Classical Wave Equation; 1.1.1 Fundamental properties; 1.1.2 Reflection properties; 1.1.2.1 Example 1-1. Rigid end termination; 1.1.2.2 Example 1-2. Stress-free end; 1.1.2.3 Note on acoustics; 1.2 Fundamental Representation; 1.2.1 Taylor series; 1.2.2 Fourier series; 1.3 Separation of Variables and Eigenfunction Expansions; 1.3.1 Example 1-3. String with pinned ends and general initial conditions; 1.3.2 Example 1-4. String with distributed forces
1.3.3 Example 1-5. Alternative boundary conditions1.3.4 Example 1-6. Mixed boundary conditions; 1.3.5 Example 1-7. Problems without initial conditions; 1.3.5.1 Example 1-7a. Naive approach; 1.3.5.2 Example 1-7b. Correct approach; 1.3.5.3 Example 1-7c. Faster approach; 1.3.6 Example 1-8. Dissipative wave solution; 1.4 Standing Versus Propagating Waves; 1.4.1 Standing waves; 1.4.2 Propagating waves; 1.4.3 Combined standing and propagating waves; 1.4.4 Characterizing propagating waves; 1.5 Laplace Transforms; 1.5.1 Wave equation derivation; 1.5.2 Example 1-9. String falling under its own weight
1.5.3 Example 1-10. Semi-infinite string with a general end support1.5.3.1 Example 1-10a. Rectangular pulse; 1.5.3.2 Example 1-10b. Impulse response; 1.5.3.3 Example 1-10c. Incident sinusoidal wavetrain; 1.6 Fourier Transforms; 1.6.1 Example 1-11. Propagation of an initially static disturbance; 1.6.2 Example 1-12. Directional properties, special wave; 1.7 External Forces Versus Boundary Conditions; 1.7.1 Single point force; 1.7.2 Properties of point loads; 1.7.2.1 Example 1-13. Boundary conditions versus forces; 1.7.2.2 Couples or dipoles; 1.7.2.3 Multiple forces and higher order moments
1.7.2.4 Symmetries and anti-symmetries1.7.2.5 Impulse response; 1.7.2.6 On the subtle meaning of impulse; 1.7.2.7 Example 1-14. Incorrect use of impulse response; 1.7.2.8 Additional models; 1.7.2.9 Other delta function properties; 1.8 Point Force and Dipole Wave Excitation; 1.8.1 Example 1-15. Finite string excited by a time-varying concentrated point force; 1.8.2 Example 1-16. Finite string excited by a time-varying point dipole (i.e., a force couple); 1.8.3 Example 1-17. Splitting of an applied initial disturbance; 1.9 First-Order Partial Differential Equations; 1.10 References
2 Kinematic Wave Theory2.1 Whitham's Theory in Nondissipative Media; 2.1.1 Uniform media; 2.1.2 Example 2-1. Transverse beam vibrations; 2.1.3 Example 2-2. Simple longitudinal oscillations; 2.1.4 Example 2-3. Asymptotic stationary phase expansion; 2.1.5 Simple consequences of KWT; 2.1.6 Nonuniform media; 2.1.7 Example 2-4. Numerical integration; 2.1.8 Ease of use is important to practical engineering; 2.2 Simple Attenuation Modeling; 2.2.1 The Q-model; 2.2.2 Relating Q to amplitude in space; 2.2.3 Relating Q to standing wave decay; 2.2.4 Kinematic wave generalization
2.3 KWT in Homogeneous Dissipative Media
Record Nr. UNINA-9910140506103321
Chin Wilson C.  
Hoboken, New Jersey : , : Scrivener Publishing, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wave propagation in drilling, well logging, and reservoir applications / / Wilson C. Chin ; Kris Hackerott, cover design
Wave propagation in drilling, well logging, and reservoir applications / / Wilson C. Chin ; Kris Hackerott, cover design
Autore Chin Wilson C.
Pubbl/distr/stampa Hoboken, New Jersey : , : Scrivener Publishing, , 2014
Descrizione fisica 1 online resource (458 p.)
Disciplina 622/.1828
Collana Advances in Petroleum Engineering
Soggetto topico Geophysical well logging
Seismic reflection method
Wave-motion, Theory of
ISBN 1-118-92593-9
1-118-92590-4
1-118-92591-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Contents; Preface; Acknowledgements; 1 Overview and Fundamental Ideas; 1.1 The Classical Wave Equation; 1.1.1 Fundamental properties; 1.1.2 Reflection properties; 1.1.2.1 Example 1-1. Rigid end termination; 1.1.2.2 Example 1-2. Stress-free end; 1.1.2.3 Note on acoustics; 1.2 Fundamental Representation; 1.2.1 Taylor series; 1.2.2 Fourier series; 1.3 Separation of Variables and Eigenfunction Expansions; 1.3.1 Example 1-3. String with pinned ends and general initial conditions; 1.3.2 Example 1-4. String with distributed forces
1.3.3 Example 1-5. Alternative boundary conditions1.3.4 Example 1-6. Mixed boundary conditions; 1.3.5 Example 1-7. Problems without initial conditions; 1.3.5.1 Example 1-7a. Naive approach; 1.3.5.2 Example 1-7b. Correct approach; 1.3.5.3 Example 1-7c. Faster approach; 1.3.6 Example 1-8. Dissipative wave solution; 1.4 Standing Versus Propagating Waves; 1.4.1 Standing waves; 1.4.2 Propagating waves; 1.4.3 Combined standing and propagating waves; 1.4.4 Characterizing propagating waves; 1.5 Laplace Transforms; 1.5.1 Wave equation derivation; 1.5.2 Example 1-9. String falling under its own weight
1.5.3 Example 1-10. Semi-infinite string with a general end support1.5.3.1 Example 1-10a. Rectangular pulse; 1.5.3.2 Example 1-10b. Impulse response; 1.5.3.3 Example 1-10c. Incident sinusoidal wavetrain; 1.6 Fourier Transforms; 1.6.1 Example 1-11. Propagation of an initially static disturbance; 1.6.2 Example 1-12. Directional properties, special wave; 1.7 External Forces Versus Boundary Conditions; 1.7.1 Single point force; 1.7.2 Properties of point loads; 1.7.2.1 Example 1-13. Boundary conditions versus forces; 1.7.2.2 Couples or dipoles; 1.7.2.3 Multiple forces and higher order moments
1.7.2.4 Symmetries and anti-symmetries1.7.2.5 Impulse response; 1.7.2.6 On the subtle meaning of impulse; 1.7.2.7 Example 1-14. Incorrect use of impulse response; 1.7.2.8 Additional models; 1.7.2.9 Other delta function properties; 1.8 Point Force and Dipole Wave Excitation; 1.8.1 Example 1-15. Finite string excited by a time-varying concentrated point force; 1.8.2 Example 1-16. Finite string excited by a time-varying point dipole (i.e., a force couple); 1.8.3 Example 1-17. Splitting of an applied initial disturbance; 1.9 First-Order Partial Differential Equations; 1.10 References
2 Kinematic Wave Theory2.1 Whitham's Theory in Nondissipative Media; 2.1.1 Uniform media; 2.1.2 Example 2-1. Transverse beam vibrations; 2.1.3 Example 2-2. Simple longitudinal oscillations; 2.1.4 Example 2-3. Asymptotic stationary phase expansion; 2.1.5 Simple consequences of KWT; 2.1.6 Nonuniform media; 2.1.7 Example 2-4. Numerical integration; 2.1.8 Ease of use is important to practical engineering; 2.2 Simple Attenuation Modeling; 2.2.1 The Q-model; 2.2.2 Relating Q to amplitude in space; 2.2.3 Relating Q to standing wave decay; 2.2.4 Kinematic wave generalization
2.3 KWT in Homogeneous Dissipative Media
Record Nr. UNINA-9910822282503321
Chin Wilson C.  
Hoboken, New Jersey : , : Scrivener Publishing, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui