top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Sustainable Materials for Electrochemcial Capacitors
Sustainable Materials for Electrochemcial Capacitors
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.31/5
Altri autori (Persone) AltalhiTariq
AdnanSayed Mohammed
Soggetto topico Capacitors - Materials
ISBN 1-394-16710-5
1-394-16709-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Sustainable Materials for Electrochemical Supercapacitors: Eco Materials -- 1.1 Introduction -- 1.2 Eco-Carbon-Based Electrode Materials -- 1.3 Eco-Metal Oxide-Based Electrode Materials -- 1.4 Eco-Carbon-Based Material/Metal Oxide Composite Electrode Materials -- 1.5 Conclusion -- References -- Chapter 2 Solid Waste-Derived Carbon Materials for Electrochemical Capacitors -- 2.1 Introduction -- 2.2 Solid Waste as a Source of CNS -- 2.3 Preparation and Activation Methods of Solid Waste-Derived CNS -- 2.4 Effect of Structural and Morphological Diversities on Electrochemical Performance -- 2.5 Environmental Trash-Derived CNS in Electrochemical Capacitors -- 2.6 Challenges and Future Prospects -- 2.7 Conclusions -- References -- Chapter 3 Metal Hydroxides -- 3.1 Introduction -- 3.2 Method to Fabricate Metal Hydroxide -- 3.2.1 Precipitation Strategy -- 3.2.2 Post-Uniting and Metal Cation Consolidation Strategy -- 3.2.3 Ion Exchange Method -- 3.2.4 Sonochemical Method -- 3.2.5 Hydrothermal Method -- 3.2.6 Polyol Synthesis -- 3.3 Properties and Applications of MOHs -- 3.3.1 MOH Flame Retardants -- 3.3.1.1 Alumina Tri-Hydrate (ATH) and Milk of Magnesia -- 3.3.1.2 Utilization of Mg(OH)2 as a Flame Resistance in Plastics -- 3.3.2 MOHs Sludge Can Be Used as Latest Adsorbent -- 3.3.3 Metal Hydroxide MOH Nanostructures -- 3.3.4 MOHs for Supercapacitor Electrode Materials -- 3.3.5 Drugs or Pharmaceutical Applications -- 3.3.5.1 Ca(OH)2 Used in Dental Practice -- 3.3.6 Removal of Toxins from the Water -- 3.3.6.1 Water's Physical and Chemical Characteristics -- 3.3.6.2 Types of Wastewater -- 3.3.6.3 Treatment Techniques of Wastewater -- 3.3.6.4 Metal Hydroxide for Treatment of Wastewater -- 3.4 Examples of Metal Hydroxide -- 3.4.1 Calcium Hydroxide Ca(OH)2.
3.4.1.1 Utilizations of Ca(OH)2 in Dental Detailing of Ca(OH)2 (Glues) -- 3.4.1.2 Materials for Setting the Therapeutic Effect -- 3.4.1.3 Covering of Pits -- 3.4.2 Magnesium Hydroxide Mg(OH)2 -- 3.4.3 Copper Hydroxide -- 3.4.4 Graphene Hydroxide -- 3.4.5 Nickel Hydroxides -- 3.4.6 Aluminum Hydroxide -- 3.4.6.1 Sources of Human Exposure in the Environment -- 3.4.6.2 Natural Levels and Exposure to the Environment and Humans -- 3.4.6.3 Kinetics and Metabolism in Humans -- 3.4.6.4 Animals -- 3.5 Conclusions -- References -- Chapter 4 Porous Organic Polymers: Genres, Chemistry, Synthetic Strategies, and Diversified Applications -- 4.1 Introduction -- 4.2 Family of Porous Organic Materials -- 4.2.1 Covalent Organic Frameworks (COFs) -- 4.2.1.1 Historical Development of Covalent Organic Frameworks COFs -- 4.2.1.2 Chemistry of Covalent Organic Frameworks (COFs) -- 4.2.1.3 Classifications of COFs -- 4.2.1.4 Synthetic Strategy Adopted for COFs Formation -- 4.2.1.5 Characterization COF -- 4.2.1.6 Applications of COF -- 4.2.2 Covalent Triazine Frameworks (CTF) -- 4.2.2.1 Historical Development of CTF -- 4.2.2.2 Chemistry of CTFs -- 4.2.2.3 Synthesize of CTFs -- 4.2.2.4 Characterizations of CTFs -- 4.2.2.5 Applications of CTF -- 4.2.3 Hyper-Cross-Linked Polymers (HCPs) -- 4.2.3.1 Historical Development -- 4.2.3.2 Chemistry of HCPs -- 4.2.3.3 Synthesis of HCPs -- 4.2.3.4 Characterization and Applications of HCP -- 4.2.3.5 Applications of HCPs -- 4.2.4 Conjugated Micro Porous Polymers (CMP) -- 4.2.4.1 Historical Development and Selected Advances of Conjugated Micro Porous Polymers -- 4.2.4.2 Design and Synthetic Strategy Adopted for Synthesizing CMPs -- 4.2.4.3 Characterization of Conjugated Microporous Polymers (CMP) -- 4.2.4.4 Applications of CMPs -- 4.2.5 Porous Aromatic Frameworks (PAFs) -- 4.2.5.1 Historical Development of PAF -- 4.2.5.2 Chemistry of PAF.
4.2.5.3 Design Principles and Synthetic Strategy Adopted to Synthesize PAFs -- 4.2.5.4 Synthesize of PAFs -- 4.2.5.5 PAF Characterization -- 4.2.5.6 Applications -- 4.2.6 Porous Organic Cages -- 4.2.6.1 Characterization of Organic Cages -- 4.3 Conclusions and Perspectives -- References -- Chapter 5 Gel-Type Natural Polymers as Electroconductive Materials -- 5.1 Introduction -- 5.2 Natural Polymers -- 5.2.1 Hydrogels -- 5.2.2 Classification of Hydrogels -- 5.2.3 Composition of Hydrogels -- 5.2.4 Natural Polymers Derived Hydrogels -- 5.2.5 Cellulose-Based Hydrogels -- 5.2.6 Chitosan-Based Hydrogels -- 5.2.7 Xanthan Gum-Based Hydrogels -- 5.2.8 Sea Weed-Derived Polysaccharide-Based Hydrogels -- 5.2.9 Protein-Based Hydrogels -- 5.2.10 DNA-Based Hydrogels -- 5.3 Synthesis Methods for Fabrication of Natural Polymer-Based Hydrogels -- 5.3.1 Natural Polymer-Based Chemically Cross-Linked Hydrogels -- 5.3.2 Grafting Method -- 5.3.3 Radical Polymerization Method -- 5.3.4 Irradiation Method -- 5.3.5 Enzymatic Reaction Method -- 5.4 Natural Polymer-Based Physically Cross-Linked Hydrogels -- 5.4.1 By Freezing and Thawing Cycles -- 5.4.2 By Hydrogen Bonding -- 5.4.3 By Ionic Interactions -- 5.5 Properties of Natural Polymer-Based Hydrogels -- 5.5.1 Mechanical Properties -- 5.5.2 Biodegradability -- 5.5.3 Swelling Characteristics -- 5.6 Stimuli Sensitivity of Hydrogels -- 5.7 Application of Hydrogels as Electrochemical Supercapacitors -- 5.7.1 Types of Supercapacitors -- 5.7.2 Electrochemical Double-Layer Capacitor (EDLC) -- 5.7.3 Pseudo Capacitor -- 5.7.4 Asymmetric or Hybrid Supercapacitors -- 5.8 Conducting Polymer Hydrogels as Electrode Materials -- 5.9 Conducting Polymer Hydrogels as Electrolyte Materials -- 5.10 Conclusion -- References -- Chapter 6 Ionic Liquids for Supercapacitors -- 6.1 Introduction -- 6.2 Brief Introduction of Supercapacitor.
6.2.1 Supercapacitor and Its Classification -- 6.2.2 Electrolyte of Supercapacitor -- 6.3 Ionic Liquids and Its Unique Properties -- 6.4 Application of Ionic Liquids in Supercapacitors -- 6.4.1 Pure Ionic Liquid as Electrolyte -- 6.4.1.1 Aprotic Ionic Liquids -- 6.4.1.2 Proton Ionic Liquids -- 6.4.1.3 Functionalized Ionic Liquids -- 6.4.2 Mixture Electrolyte of Ionic Liquids -- 6.4.2.1 Binary of Ionic Liquids -- 6.4.2.2 Mixed Electrolyte of Organic Solvent and Ionic Liquids -- 6.4.2.3 Mixed Electrolyte of Ionic Liquid and Ionic Salt -- 6.5 Conclusion and Prospective -- Acknowledgments -- References -- Chapter 7 Functional Binders for Electrochemical Capacitors -- 7.1 Introduction -- 7.2 Characteristics of Binder -- 7.3 Method of Fabricating Supercapacitor Electrode -- 7.4 Mechanism of Binding Process -- 7.5 Classification of Binders -- 7.5.1 On the Basis of Origin -- 7.5.2 On the Basis of Reactivity -- 7.6 Characterization Techniques -- 7.7 Conventional Binders and Related Issues -- 7.8 Sustainable Binders -- 7.9 Conclusion -- References -- Chapter 8 Sustainable Substitutes for Fluorinated Electrolytes in Electrochemical Capacitors -- 8.1 Introduction -- 8.2 Fluorinated Electrolytes -- 8.3 Sustainable Substitutes for Fluorinated Electrolytes -- 8.3.1 Aqueous Electrolytes -- 8.3.1.1 Seawater -- 8.3.1.2 Aqueous Solution of Redox-Active Ligands as Electrolytes -- 8.3.2 Organic Electrolytes -- 8.3.3 Solid-State Electrolytes -- 8.4 Performance of Sustainable Electrolytes Compared to Fluorinated Electrolytes -- 8.4.1 Strongly Acidic Electrolytes -- 8.4.2 Strong Alkaline Electrolytes -- 8.4.3 Neutral Electrolytes -- 8.4.4 Organic Electrolytes -- 8.5 Final Remarks -- References -- Chapter 9 Aqueous Redox-Active Electrolytes -- 9.1 Introduction -- 9.2 Effect of the Electrolyte on Supercapacitor Performance -- 9.3 Aqueous Electrolytes.
9.4 Acidic Electrolytes -- 9.4.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 9.4.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 9.5 Alkaline Electrolytes -- 9.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 9.5.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 9.6 Neutral Electrolyte -- 9.6.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 9.6.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 9.7 Conclusion and Future Research Directions -- References -- Chapter 10 Biodegradable Electrolytes -- 10.1 Introduction -- 10.2 Classification of Biodegradable Electrolytes -- 10.2.1 Solid Polymer Electrolytes -- 10.2.2 Gel Polymer Electrolytes -- 10.2.3 Composite Polymer Electrolytes -- 10.3 Preparation of Biodegradable Electrolytes -- 10.4 Some Defined Ways to Increase the Ionic Conductivity -- 10.4.1 Polymer Blending -- 10.4.2 Incorporation of Additives -- 10.5 Factors Affecting Ion Conduction of Biodegradable Polymer Electrolytes -- 10.6 Properties of Ideal Biodegradable Electrolyte System -- 10.7 Applications of Biodegradable Electrolytes -- 10.7.1 Biodegradable Electrolytes in Fuel Cells -- 10.7.2 Biodegradable Electrolytes and Batteries -- 10.7.3 Supercapacitors in Terms of Biodegradable Electrolytes -- 10.7.4 Biodegradable Electrolytes in Dye Sensitized Solar Cells -- 10.8 Conclusion -- References -- Chapter 11 Supercapattery: An Electrochemical Energy Storage Device -- 11.1 Introduction -- 11.2 Batteries and Capacitors -- 11.3 Supercapattery Device and Electrode Materials -- 11.3.1 Metal-Based Materials and Their Composites -- 11.3.2 Polymers and their Composites -- 11.3.3 Carbon Materials and Their Composites -- 11.4 Advantages and Challenges of Supercapatteries -- 11.5 Conclusions -- References -- Chapter 12 Ceramic Multilayers and Films for High.Performance Supercapacitors -- 12.1 Introduction.
12.2 Different Types of Ceramic Materials.
Record Nr. UNINA-9910840587803321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui