Vai al contenuto principale della pagina

Hardy spaces on Ahlfors-regular quasi metric spaces [electronic resource] : a sharp theory / Ryan Alvarado, Marius Mitrea

(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Alvarado, Ryan Visualizza persona
Titolo: Hardy spaces on Ahlfors-regular quasi metric spaces [electronic resource] : a sharp theory / Ryan Alvarado, Marius Mitrea Visualizza cluster
Pubblicazione: Cham [Switzerland] : Springer, 2015
Descrizione fisica: 1 online resource (viii, 486 pages) : illustrations
Disciplina: 515.7
Soggetto topico: Hardy spaces
Quasi-metric spaces
Classificazione: AMS 42B35
AMS 30L05
AMS 35J57
Altri autori: Mitrea, Mariusauthor  
Nota di bibliografia: Includes bibliographical references and indexes
Nota di contenuto: Introduction - Geometry of Quasi-Metric Spaces -- Analysis on Spaces of Homogeneous Type -- Maximal Theory of Hardy Spaces -- Atomic Theory of Hardy Spaces -- Molecular and Ionic Theory of Hardy Spaces -- Further Results -- Boundedness of Linear Operators Defined on Hp(X) -- Besov and Triebel-Lizorkin Spaces on Ahlfors-Regular Quasi-Metric Spaces
Sommario/riassunto: Systematically building an optimal theory, this monograph develops and explores several approaches to Hardy spaces in the setting of Ahlfors-regular quasi-metric spaces. The text is broadly divided into two main parts. The first part gives atomic, molecular, and grand maximal function characterizations of Hardy spaces and formulates sharp versions of basic analytical tools for quasi-metric spaces, such as a Lebesgue differentiation theorem with minimal demands on the underlying measure, a maximally smooth approximation to the identity and a Calderon-Zygmund decomposition for distributions. These results are of independent interest. The second part establishes very general criteria guaranteeing that a linear operator acts continuously from a Hardy space into a topological vector space, emphasizing the role of the action of the operator on atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from Hardy spaces. The tools established in the first part are then used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces. The monograph is largely self-contained and is intended for an audience of mathematicians, graduate students and professionals with a mathematical background who are interested in the interplay between analysis and geometry
ISBN: 9783319181325
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: b14258080
Lo trovi qui: Univ. del Salento
Localizzazioni e accesso elettronico
Opac: Controlla la disponibilità qui
Serie: Lecture notes in mathematics, 1617-9692 ; 2142