Vai al contenuto principale della pagina
Autore: | Li Wen-Wei |
Titolo: | Zeta Integrals, Schwartz Spaces and Local Functional Equations [[electronic resource] /] / by Wen-Wei Li |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Edizione: | 1st ed. 2018. |
Descrizione fisica: | 1 online resource (VIII, 141 p. 30 illus., 2 illus. in color.) |
Disciplina: | 515.75 |
Soggetto topico: | Topological groups |
Lie groups | |
Harmonic analysis | |
Number theory | |
Topological Groups, Lie Groups | |
Abstract Harmonic Analysis | |
Number Theory | |
Nota di contenuto: | Introduction -- Geometric Background -- Analytic Background -- Schwartz Spaces and Zeta Integrals -- Convergence of Some Zeta Integrals -- Prehomogeneous Vector Spaces -- The Doubling Method -- Speculation on the Global Integrals. |
Sommario/riassunto: | This book focuses on a conjectural class of zeta integrals which arose from a program born in the work of Braverman and Kazhdan around the year 2000, the eventual goal being to prove the analytic continuation and functional equation of automorphic L-functions. Developing a general framework that could accommodate Schwartz spaces and the corresponding zeta integrals, the author establishes a formalism, states desiderata and conjectures, draws implications from these assumptions, and shows how known examples fit into this framework, supporting Sakellaridis' vision of the subject. The collected results, both old and new, and the included extensive bibliography, will be valuable to anyone who wishes to understand this program, and to those who are already working on it and want to overcome certain frequently occurring technical difficulties. |
Titolo autorizzato: | Zeta integrals, Schwartz spaces and local functional equations |
ISBN: | 3-030-01288-3 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 996466594903316 |
Lo trovi qui: | Univ. di Salerno |
Opac: | Controlla la disponibilità qui |