Vai al contenuto principale della pagina
| Titolo: |
Advances in Artificial Intelligence and Its Applications [[electronic resource] ] : 14th Mexican International Conference on Artificial Intelligence, MICAI 2015, Cuernavaca, Morelos, Mexico, October 25-31, 2015, Proceedings, Part II / / edited by Obdulia Pichardo Lagunas, Oscar Herrera Alcántara, Gustavo Arroyo Figueroa
|
| Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
| Edizione: | 1st ed. 2015. |
| Descrizione fisica: | 1 online resource (XXIX, 619 p. 197 illus. in color.) |
| Disciplina: | 006.3 |
| Soggetto topico: | Artificial intelligence |
| Optical data processing | |
| Health informatics | |
| Application software | |
| Information storage and retrieval | |
| Algorithms | |
| Artificial Intelligence | |
| Computer Imaging, Vision, Pattern Recognition and Graphics | |
| Health Informatics | |
| Information Systems Applications (incl. Internet) | |
| Information Storage and Retrieval | |
| Algorithm Analysis and Problem Complexity | |
| Persona (resp. second.): | Pichardo LagunasObdulia |
| Herrera AlcántaraOscar | |
| Arroyo FigueroaGustavo | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di contenuto: | Intro -- Preface -- Conference Organization -- Contents - Part II -- Contents - Part I -- Invited Papers -- Measuring Non-compositionality of Verb-Noun Collocations Using Lexical Functions and WordNet Hypernyms -- Abstract -- 1 Introduction -- 2 Related Work on Non-compositionality of Collocations -- 3 Lexical Functions as a Concept of the Meaning-Text Theory -- 3.1 Meaning-Text Theory (MTT) -- 3.2 Lexical Function -- 3.3 Lexical Functions in Verb-Noun Collocations -- 4 Non-compositionality in Terms of Lexical Function Detection Using WordNet Hypernyms -- 5 Experiments -- 6 Results and Discussion -- 7 Conclusions and Future Work -- Acknowledgements -- References -- Fuzzy-Probabilistic Estimation of the Electric Vehicles Energy Consumption -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 Framework -- 2.2 Fuzzy-Probabilistic Methodology -- 3 Numerical Example -- 4 Conclusions -- References -- Natural Language Processing Applications -- Data-Driven Unsupervised Evaluation of Automatic Text Summarization Systems -- Abstract -- 1 Introduction -- 2 Related Work -- 3 Our Approach -- 4 Data -- 5 Experiments. Results. Discussion -- 5.1 Experiment with Informants -- 5.2 Preliminary Evaluation of the Summaries -- 5.3 Automatic Keywords Extraction -- 5.4 Comparison of Keywords Given by Different Groups of Informants -- 6 Conclusion and Future Work -- Acknowledgements -- References -- Extractive Single-Document Summarization Based on Global-Best Harmony Search and a Greedy Local Optimizer -- Abstract -- 1 Introduction -- 2 Problem Statement and Its Mathematical Formulation -- 3 The Proposed Memetic Algorithm -- 3.1 Greedy Local Optimizer -- 4 Experiment and Evaluation -- 4.1 Parameter Tuning -- 4.2 Results -- 5 Conclusions and Future Work -- Acknowledgments -- References -- SVD-LDA: Topic Modeling for Full-Text Recommender Systems -- 1 Introduction. |
| 2 LDA and sLDA -- 2.1 Latent Dirichlet Allocation -- 2.2 Supervised LDA -- 3 SVD in Recommender Systems -- 3.1 Basic SVD Model in Collaborative Filtering -- 3.2 Cold Start, Additional Information, and Content -- 4 SVD-LDA -- 4.1 SVD-LDA: Exact Sampling -- 4.2 SVD-LDA: First Order Approximation -- 4.3 Variations of SVD-LDA -- 5 Evaluation -- 5.1 Dataset -- 5.2 RMSE Improves with LDA Training -- 5.3 SVD-LDA Recommends Better Than SVD -- 5.4 Predictors for Demographic Clusters -- 6 Conclusion -- References -- Movies Recommendation Based on Opinion Mining in Twitter -- 1 Introduction -- 2 Classification Models for Opinion Mining -- 2.1 Tokenization -- 2.2 Pre-processing -- 2.3 Classification Models -- 3 Experimental Results -- 3.1 Data Collection -- 3.2 Tokenization Strategies -- 3.3 Pre-processing Strategies -- 3.4 Movies Recommendation -- 4 Related Work -- 5 Conclusions and Future Work -- References -- Inferring Sentiment-Based Priors in Topic Models -- 1 Introduction -- 2 Latent Dirichlet Allocation -- 2.1 Notation and the Basic LDA Model -- 2.2 LDA Extensions -- 2.3 Topic Models for Sentiment Analysis -- 3 Learning Sentiment Priors with the EM Algorithm -- 4 Experimental Results -- 5 Conclusion -- References -- Analysis of Negation Cues for Semantic Orientation Classification of Reviews in Spanish -- Abstract -- 1 Introduction -- 2 Related Work -- 3 Corpus and Linguistic Knowledge -- 3.1 Review Texts Corpus -- 3.2 Linguistic Knowledge -- 3.3 Negation -- 4 Methods for Semantic Orientation Classification -- 4.1 Unsupervised Method -- 4.2 Supervised Method -- 5 Results and Discussion -- 5.1 Unsupervised Method -- 5.2 Supervised Method -- 5.3 Discussion -- 6 Conclusions -- Acknowledgments -- References -- Detecting Social Spammers in Colombia 2014 Presidential Election -- 1 Introduction -- 2 Related Work -- 3 Background on the Colombian Election. | |
| 4 Data Collection and Ground Truth Creation -- 4.1 Dataset -- 4.2 Ground Truth -- 5 Detecting Social Spammers -- 5.1 Features -- 5.2 Semi-Supervised Detection -- 5.3 Supervised Detection -- 6 Discussion -- 7 Conclusions and Future Work -- References -- NLP Methodology as Guidance and Verification of the Data Mining of Survey ENSANUT 2012 -- Abstract -- 1 Introduction -- 2 Data -- 3 NLP Pipeline -- 3.1 Text Annotation -- 3.2 Lemma Classification by Collocation -- 3.3 Merging Lists of Lemmas and Adding Intentionality -- 3.4 Corpus Division for Focused Queries -- 3.5 Feature Extraction -- 4 Model and Results -- 4.1 Pre-processing Data Using the Selected Features -- 4.2 Frequency Histograms -- 4.3 Epsilon and Scores -- 4.4 Testing the Classifier -- 4.5 Confusion Matrix of the Test Set -- 5 Conclusion -- Acknowledgments -- References -- Educational Applications -- A Comparative Framework to Evaluate Recommender Systems in Technology Enhanced Learning: a Case Study -- 1 Introduction -- 2 Background -- 3 The Proposed Comparative Framework -- 4 The Framework in Action: A Case Study -- 4.1 Brief Overview of Subject Systems -- 5 Performance Analysis -- 5.1 Google -- 5.2 Slideshare -- 5.3 Youtube -- 5.4 Connexions -- 5.5 MERLOT and ARIADNE -- 6 Summarising the Results: Comparative Analysis -- 6.1 Limitations of the Experiment -- 7 Conclusions and Future Work -- References -- An Affective and Cognitive Tutoring System for Learning Programming -- Abstract -- 1 Introduction -- 2 Related Work -- 3 Java Sensei Architecture -- 4 Affective Recognition and Feedback -- 5 Experiments and Results -- 6 Conclusions and Future Work -- Funding -- References -- Strategic Learning Meta-Model (SLM): Architecture of the Personalized Virtual Learning Environment (PVLE) Based on the Cloud Computing -- Abstract -- 1 Introduction -- 1.1 Conceptual Framework. | |
| 1.2 Learning Evaluation and Learning Styles -- 1.3 Personalization of Learning Assessment -- 1.4 Research Focused in Evaluation of E-Learning -- 1.5 Research Based on the Design and Application of Ontologies -- 1.6 Researches Focused on Learning Personalization and Teaching -- 1.7 Ontology for Personalized Learning Activities Based on a Cognitive Theory -- 2 Methodology -- 3 Personalized Virtual Learning Environment (PVLE) with a Ontological Model (OM) -- 3.1 LMS Architecture -- 3.2 VLE Architecture -- 3.3 Ontological Model (OM) Architecture -- 4 Study Case -- 4.1 Design of the Ontology Using the Methodology GODeM and OntoDesign Graphics Notation -- 4.2 Implementation of the Ontology Prot00E9g00E9 -- 4.3 Results -- 5 Conclusions -- References -- Open Student Model for Blended Training in the Electrical Tests Domain -- Abstract -- 1 Introduction -- 2 Related Work -- 3 Blended Training Model -- 3.1 VRS for Electrical Test Training -- 4 Trainee Model -- 5 Conclusions and Future Work -- References -- Applying Data Mining Techniques to Identify Success Factors in Students Enrolled in Distance Learning: A Case Study -- Abstract -- 1 Introduction -- 2 Methodology -- 3 Data Collection -- 4 Results and Interpretation -- 5 Conclusions -- References -- Automatic Evaluation of Music Students -- 1 Introduction -- 2 Feature Extraction -- 2.1 The Constant Q Transform -- 3 Aligning Techniques -- 3.1 Dynamic Time Warping (DTW) -- 3.2 Levenshtein Distance -- 3.3 The LCS Distance -- 4 Description of the Automatic Evaluation System -- 4.1 Front-End Module -- 4.2 Evaluation Module -- 5 Experiments -- 6 Conclusions and Future Work -- References -- On the Extended Specific Objectivity of Some Pseudo--Rasch Models Applied in Testing Scenarios -- 1 Introduction -- 1.1 Standard Psychometric Models and Specific Objectivity -- 1.2 Generalized Models. | |
| 2 Analysis of the Proposed Models -- 2.1 Behavior of the Extended 6PL Rasch's Model -- 2.2 The Extended 6PL Rasch's Model and Specific Objectivity -- 2.3 An Improved and More Flexible 6PL Model -- 2.4 The Flexible 6PL Model and Specific Objectivity -- 3 Simulation Results -- 3.1 Complete Simulation Process -- 3.2 Partial Simulation Process -- 3.3 Presentation of Experimental Results -- 3.4 Computation of Item's Discriminant -- 3.5 Abilities and Parameters Estimation -- 4 Conclusion -- References -- Algorithms and Machine Learning Techniques in Collaborative Group Formation -- Abstract -- 1 Introduction -- 2 Applied Approches in Collaborative Group Formation -- 3 Analysis and Comparison of the Applied Approaches -- 4 Conclusions -- Acknowledgements -- References -- Biomedical Applications -- An Architecture Proposal Based in Intelligent Algorithms for Motifs Discovery in Genetic Expressions -- Abstract -- 1 Introduction -- 2 Motifs -- 2.1 Deterministic Model -- 2.2 Probabilistic Model -- 2.3 Motif Recognition -- 3 Implementation of the Architecture -- 3.1 Genetic Algorithm -- 3.2 BlastP -- 3.3 Conversion .XML to .FASTA -- 3.4 CD-Hit -- 3.5 MUSCLE -- 3.6 HMMER -- 4 Conclusion and Future Work -- References -- A Kernel-Based Predictive Model for Guillain-Barré Syndrome -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data -- 2.2 Multiclass Classification -- 2.3 Support Vector Machines (SVM) -- 2.4 Performance Measures -- 3 Experimental Design -- 3.1 10-FCV -- 3.2 Train-Test -- 3.3 C4.5 -- 3.4 SVM Parameter Optimization -- 4 Results and Discussion -- 5 Conclusions -- References -- Feature Selection in Spectroscopy Brain Cancer Data -- 1 Introduction -- 2 Literature Review -- 3 Class-Separability Feature Selection -- 4 Block-Contiguous Feature Selection -- 5 Experimental Settings -- 6 Experimental Results -- 6.1 CSFS Results -- 6.2 BCFS Results. | |
| 6.3 Metabolic Interpretation. | |
| Sommario/riassunto: | The two volume set LNAI 9413 + 9414 constitutes the proceedings of the 14th Mexican International Conference on Artificial Intelligence, MICAI 2015, held in Cuernavaca,. Morelos, Mexico, in October 2015. The total of 98 papers presented in these proceedings was carefully reviewed and selected from 297 submissions. They were organized in topical sections named: natural language processing; logic and multi-agent systems; bioinspired algorithms; neural networks; evolutionary algorithms; fuzzy logic; machine learning and data mining; natural language processing applications; educational applications; biomedical applications; image processing and computer vision; search and optimization; forecasting; and intelligent applications. . |
| Titolo autorizzato: | Advances in Artificial Intelligence and Its Applications ![]() |
| ISBN: | 3-319-27101-6 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996466233703316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |