Vai al contenuto principale della pagina

Multiple Classifier Systems [[electronic resource] ] : 6th International Workshop, MCS 2005, Seaside, CA, USA, June 13-15, 2005, Proceedings / / edited by Nikunj C. Oza, Robi Polikar, Josef Kittler, Fabio Roli



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Multiple Classifier Systems [[electronic resource] ] : 6th International Workshop, MCS 2005, Seaside, CA, USA, June 13-15, 2005, Proceedings / / edited by Nikunj C. Oza, Robi Polikar, Josef Kittler, Fabio Roli Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2005
Edizione: 1st ed. 2005.
Descrizione fisica: 1 online resource (XII, 432 p.)
Disciplina: 006.3/1
Soggetto topico: Pattern recognition
Optical data processing
Artificial intelligence
Computers
Pattern Recognition
Image Processing and Computer Vision
Artificial Intelligence
Computation by Abstract Devices
Persona (resp. second.): OzaNikunj C
PolikarRobi
KittlerJosef
RoliFabio
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Future Directions -- Semi-supervised Multiple Classifier Systems: Background and Research Directions -- Boosting -- Boosting GMM and Its Two Applications -- Boosting Soft-Margin SVM with Feature Selection for Pedestrian Detection -- Observations on Boosting Feature Selection -- Boosting Multiple Classifiers Constructed by Hybrid Discriminant Analysis -- Combination Methods -- Decoding Rules for Error Correcting Output Code Ensembles -- A Probability Model for Combining Ranks -- EER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks -- Mixture of Gaussian Processes for Combining Multiple Modalities -- Dynamic Classifier Integration Method -- Recursive ECOC for Microarray Data Classification -- Using Dempster-Shafer Theory in MCF Systems to Reject Samples -- Multiple Classifier Fusion Performance in Networked Stochastic Vector Quantisers -- On Deriving the Second-Stage Training Set for Trainable Combiners -- Using Independence Assumption to Improve Multimodal Biometric Fusion -- Design Methods -- Half-Against-Half Multi-class Support Vector Machines -- Combining Feature Subsets in Feature Selection -- ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments -- Using Decision Tree Models and Diversity Measures in the Selection of Ensemble Classification Models -- Ensembles of Classifiers from Spatially Disjoint Data -- Optimising Two-Stage Recognition Systems -- Design of Multiple Classifier Systems for Time Series Data -- Ensemble Learning with Biased Classifiers: The Triskel Algorithm -- Cluster-Based Cumulative Ensembles -- Ensemble of SVMs for Incremental Learning -- Performance Analysis -- Design of a New Classifier Simulator -- Evaluation of Diversity Measures for Binary Classifier Ensembles -- Which Is the Best Multiclass SVM Method? An Empirical Study -- Over-Fitting in Ensembles of Neural Network Classifiers Within ECOC Frameworks -- Between Two Extremes: Examining Decompositions of the Ensemble Objective Function -- Data Partitioning Evaluation Measures for Classifier Ensembles -- Dynamics of Variance Reduction in Bagging and Other Techniques Based on Randomisation -- Ensemble Confidence Estimates Posterior Probability -- Applications -- Using Domain Knowledge in the Random Subspace Method: Application to the Classification of Biomedical Spectra -- An Abnormal ECG Beat Detection Approach for Long-Term Monitoring of Heart Patients Based on Hybrid Kernel Machine Ensemble -- Speaker Verification Using Adapted User-Dependent Multilevel Fusion -- Multi-modal Person Recognition for Vehicular Applications -- Using an Ensemble of Classifiers to Audit a Production Classifier -- Analysis and Modelling of Diversity Contribution to Ensemble-Based Texture Recognition Performance -- Combining Audio-Based and Video-Based Shot Classification Systems for News Videos Segmentation -- Designing Multiple Classifier Systems for Face Recognition -- Exploiting Class Hierarchies for Knowledge Transfer in Hyperspectral Data.
Titolo autorizzato: Multiple Classifier Systems  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466060703316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Image Processing, Computer Vision, Pattern Recognition, and Graphics ; ; 3541