Vai al contenuto principale della pagina

Potential Theory on Sierpiński Carpets [[electronic resource] ] : With Applications to Uniformization / / by Dimitrios Ntalampekos



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ntalampekos Dimitrios Visualizza persona
Titolo: Potential Theory on Sierpiński Carpets [[electronic resource] ] : With Applications to Uniformization / / by Dimitrios Ntalampekos Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (X, 186 p. 10 illus., 4 illus. in color.)
Disciplina: 515.96
Soggetto topico: Functions of complex variables
Potential theory (Mathematics)
Functional analysis
Measure theory
Mathematical analysis
Functions of a Complex Variable
Potential Theory
Functional Analysis
Measure and Integration
Analysis
Nota di bibliografia: Includes bibliographical references and index.
Sommario/riassunto: This self-contained book lays the foundations for a systematic understanding of potential theoretic and uniformization problems on fractal Sierpiński carpets, and proposes a theory based on the latest developments in the field of analysis on metric spaces. The first part focuses on the development of an innovative theory of harmonic functions that is suitable for Sierpiński carpets but differs from the classical approach of potential theory in metric spaces. The second part describes how this theory is utilized to prove a uniformization result for Sierpiński carpets. This book is intended for researchers in the fields of potential theory, quasiconformal geometry, geometric group theory, complex dynamics, geometric function theory and PDEs.
Titolo autorizzato: Potential Theory on Sierpiński Carpets  Visualizza cluster
ISBN: 3-030-50805-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996418265203316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture notes in mathematics (Springer-Verlag) ; ; 2268