Vai al contenuto principale della pagina

Deep Learning in Computational Mechanics : An Introductory Course / / by Leon Herrmann, Moritz Jokeit, Oliver Weeger, Stefan Kollmannsberger



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Herrmann Léon Visualizza persona
Titolo: Deep Learning in Computational Mechanics : An Introductory Course / / by Leon Herrmann, Moritz Jokeit, Oliver Weeger, Stefan Kollmannsberger Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 2nd ed. 2025.
Descrizione fisica: 1 online resource (690 pages)
Disciplina: 620.1
Soggetto topico: Computational intelligence
Machine learning
Thermodynamics
Heat engineering
Heat - Transmission
Mass transfer
Computational Intelligence
Machine Learning
Engineering Thermodynamics, Heat and Mass Transfer
Nota di contenuto: Computational Mechanics Meets Artificial Intelligence -- Neural Networks -- Machine Learning in Computational Mechanics -- Methodological Overview of Deep Learning in Computational Mechanics -- Index.
Sommario/riassunto: This book provides a first course without requiring prerequisite knowledge. Fundamental concepts of machine learning are introduced before explaining neural networks. With this knowledge, prominent topics in deep learning for simulation are explored. These include surrogate modeling, physics-informed neural networks, generative artificial intelligence, Hamiltonian/Lagrangian neural networks, input convex neural networks, and more general machine learning techniques. The idea of the book is to provide basic concepts as simple as possible but in a mathematically sound manner. Starting point are one-dimensional examples including elasticity, plasticity, heat evolution, or wave propagation. The concepts are then expanded to state-of-the-art applications in material modeling, generative artificial intelligence, topology optimization, defect detection, and inverse problems.
Titolo autorizzato: Deep Learning in Computational Mechanics  Visualizza cluster
ISBN: 3-031-89529-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911047824203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĆ  qui
Serie: Intelligent Technologies and Robotics Series