Vai al contenuto principale della pagina
| Autore: |
Bogatin Eric
|
| Titolo: |
Bogatin's Practical Guide to Best Measurement Practices for Digital Oscilloscopes
|
| Pubblicazione: | Norwood : , : Artech House, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (523 pages) |
| Nota di contenuto: | Intro -- Chapter 1 Measurements Are in Your Future -- 1.1 DSO: Sampling Scopes or Real-Time Scopes -- 1.2 The Digital Multimeter -- 1.3 Why an Oscilloscope -- 1.4 Analog Scopes -- 1.5 DSOs Are More Powerful Than Analog Scopes -- 1.6 Internal Structure of ALL DSOs -- 1.7 Turning Measurements into Information and into Action -- 1.8 Signals, Noise, and Artifacts -- 1.9 Best Measurement Practices -- 1.10 Important Consistency Test: Rule #9 -- 1.11 Important Consistency Test: Measure a Known Signal -- 1.12 First Step in Any Measurement -- 1.13 Second Step in Any Measurement -- 1.14 The Bottom Line -- Chapter 2 Four Must-Have Instruments -- 2.1 The DMM -- 2.2 Free PC Sound Card Scope -- 2.3 Multifunction Instruments -- 2.4 A Higher Bandwidth Scope -- 2.5 The Bottom Line -- Chapter 3 Mastering the DMM -- 3.1 Introducing the DMM -- 3.2 How a DMM Measures Voltage -- 3.3 Situational Awareness in DMM Measurements -- 3.4 Reverse Engineering the Input Resistance of a DMM -- 3.5 Reverse Engineering How a DMM Measures Current -- 3.6 Reverse Engineering How a DMM Measures Resistance -- 3.7 How a DMM Measures Continuity -- 3.8 Application: Continuity Testing of a Solderless Breadboard -- 3.9 Application: Is Earth-Ground Connected to Chassis Ground -- 3.10 Reverse Engineering What a DMM Measures as AC Voltage -- 3.11 The Bottom Line -- Chapter 4 Most Important Scope Differentiator: Bandwidth -- 4.1 Consequences of Too Low a Scope Bandwidth -- 4.2 The Bandwidth of a Scope -- 4.3 Scopes with a DSP Filter and Gibbs Ringing -- 4.4 How Much Scope Bandwidth Do You Need? -- 4.5 Scope Bandwidth as a Differentiator -- 4.6 Measuring the Bandwidth of a Scope -- 4.7 Low-End and Mid-Range Scopes -- 4.8 Low-End Scopes -- 4.9 The Bottom Line -- Chapter 5 Common Scope Features -- 5.1 Thirteen Differentiators Between Scopes -- 5.2 Ten Common Features to All Scopes. |
| 5.3 No Substitute for Hands-On Experience -- Chapter 6 Setting Up Two Free Scopes -- 6.1 Turn Your Computer into a Scope -- 6.2 Options for PC Sound Card Scopes -- 6.2.1 The Frequency Response of the Sabrent PC Sound Card -- 6.3 Download Waveforms Software from Digilent -- 6.4 The MAUI Studio Scope Emulator -- 6.4.1 Download and Install the MAUI Studio Scope Emulator -- 6.4.2 Quick Start Guide with the Scope Emulator -- 6.4.3 The Function Generator -- 6.4.4 Experiments to Try -- Chapter 7 Mastering Basic Scope Functions -- 7.1 Shorter Time to Insight -- 7.2 Quick Start Guide to a PC Sound Card Scope -- 7.3 The Standard DSO Functions -- 7.4 Triggering -- 7.4.1 A Trigger Event -- 7.4.2 Looking Back or Forward in Time -- 7.4.3 Normal and Auto Mode -- 7.4.4 Run and Stop Modes -- 7.4.5 Types of Signals and Their Trigger Settings -- 7.4.6 Roll or Strip Chart Mode -- 7.4.7 Summary of the Recommended Best Practices for Triggering a Scope -- 7.5 Vertical Scale Adjust -- 7.5.1 Vertical Scale Adjust and Control of the ADC -- 7.5.2 Expanding the Vertical Scale About the Center of the Screen -- 7.5.3 Adjusting the Vertical Scales in Waveforms -- 7.5.4 Rescaling Vertical Axes into Other Units -- 7.6 Horizontal Scale Adjust -- 7.6.1 Horizontal Scale Adjust and Sample Rate -- 7.6.2 Sample Rate and Buffer Size -- 7.7 Aliasing of Signal Bandwidth and Sample Rate -- 7.8 A Strategy for Setting the Scales -- 7.9 Comparing Multiple Traces -- 7.10 Saving and Using Measurements -- 7.10.1 Saving Waveforms to Text Files -- 7.10.2 Importing Scope Waveforms into a Simulation Tool -- 7.11 Quick Start with the FFT Function -- 7.12 Cursors and Measurement Functions -- 7.12.1 Cursors -- 7.12.2 Measurement Functions -- 7.12.3 Zoom Function -- 7.13 A Checklist of Do's and Don'ts -- 7.14 The Bottom Line -- 7.15 Some Experiments to Try -- Chapter 8 The 10x Probe. | |
| 8.1 Why It Is Called a 10x Probe -- 8.2 Second-Order Model of a 10x Probe -- 8.3 Probe Loading and Probe Input Impedance -- 8.4 Compensating a 10x Probe -- 8.5 A Special Coax Cable -- 8.6 Never Use a 10x Probe Other Than from the DUT to the Scope -- 8.7 Rarely Use a 10x Probe on the 1x Setting -- 8.8 The Tip Voltage and the Displayed Voltage -- 8.9 The 10x Probe and Noise -- 8.10 The 10x Probe Only Measures Single-Ended Voltages -- 8.11 Use Color Bands to Reduce Confusion with Multiple Probes -- 8.12 Reduce the Tip Inductance of Your 10x Probe -- 8.13 Recognize 60 Hz Pickup -- 8.14 Summary of the Best Practices Using a 10x Probe -- Chapter 9 How Not to Be Confused by Ground -- 9.1 Types of Ground -- 9.2 Earth-Ground -- 9.3 Floating from Earth-Ground -- 9.4 Chassis-Ground or EMI-Ground -- 9.5 Best Practices for Earth-Ground Connections -- 9.6 Circuit-Ground -- 9.7 Noisy Ground, Return Path, or Circuit-Ground -- 9.8 Ground Bounce and Local-Ground -- 9.9 Single-Ended and Bipolar Power Supplies -- 9.10 Single-Ended, Earth-Ground Referenced Measurements -- 9.11 Differential Probe Measurements -- 9.12 Avoid Common Ground Loop Problems -- 9.12.1 Noise from Ground Connections: Ground Loops -- 9.12.2 Ground Loop Noise When the DUT Floats -- 9.12.3 Ground Loop Noise in AC to DC SMPS -- 9.13 The Bottom Line -- Chapter 10 Basic Scope Measurements of Common Signals -- 10.1 Measure a Signal for Which You Know the Answer -- 10.2 The Seven Most Important Best Measuement Practices -- 10.3 The Default Setup Button -- 10.4 Input Coupling to the Scope -- 10.5 The Compensation Signal -- 10.5.1 Direct Connection with a Coax Cable -- 10.5.2 Adjusting the Scale Settings -- 10.5.3 Adjusting the Trigger -- 10.5.4 Extracting Important Figures of Merit -- 10.5.5 Using Measurement Functions -- 10.6 Measuring the Source Resistance of a Voltage Source. | |
| 10.7 Function Generators -- 10.8 Built-In Waveform Generators in a Scope -- 10.8.1 Using the Internal Function Generator of a Mid-Range Scope -- 10.9 DC Validation of the Scope -- 10.10 The Bottom Line -- Chapter 11 Scopes, Transmission Lines, and Reflections -- 11.1 A Misleading Observation -- 11.2 Five Principles of Signal Propagation -- 11.2.1 Principle #1 -- 11.2.2 Principle #2 -- 11.2.3 Principle #3 -- 11.2.4 Principle #4 -- 11.2.5 Principle #5 -- 11.3 The Origin of Ringing Noise -- 11.3.1 Case 1 -- 11.3.2 Measurement Simulation Correlation -- 11.3.3 Reducing the Ringing Artifact -- 11.3.4 Case 2 -- 11.3.5 Case 3 -- 11.4 Selecting the Right Scope Input Impedance -- 11.5 Resolving the Paradox of the Compensation Signal -- 11.6 The Bottom Line -- Chapter 12 Alternative Probing Options -- 12.1 Simple 10x Probe Alternatives -- 12.2 Probing Low Bandwidth, Low Level, or Differential Signals -- 12.3 Commodity LNA for Higher Bandwidth -- 12.4 Directly Measuring Signals with a BW > -- 20 MHz -- 12.5 Sniffing Signals with a BW > -- 200 MHz -- 12.6 Probing Power Rails -- 12.6.1 AC or DC Coupling In The Scope -- 12.6.2 Active Power Rail Probes -- 12.6.3 Use Coax Connections to Reduce RF Pickup -- 12.6.4 A Low-Cost Passive Rail Probe -- 12.7 The Bottom Line -- Chapter 13 Spectral Analysis of Signals -- 13.1 A Spectrum -- 13.2 Spectrum Analyzer or Real-time Spectrum Analyzer -- 13.3 Principles of FFT Analysis -- 13.3.1 Turn Arbitrary Signals into Periodic Signals -- 13.3.2 The Lowest Frequency -- 13.3.3 The Highest Frequency -- 13.3.4 Number of Points in the FFT Calculation -- 13.3.5 Windowing Functions -- 13.3.6 Summary of FFT Principles -- 13.4 Units for Amplitudes -- 13.4.1 Amplitude and RMS in V -- 13.4.2 Units of dB, dBW, and dBm -- 13.4.3 Using the dBm to Describe Voltage Amplitude -- 13.4.4 Scales of dBV. | |
| 13.5 Quick Start Guide: FFT Function in a Free Sound Card Scope -- 13.6 Spectra of Common Signals -- 13.6.1 Setting Up the Scope -- 13.6.2 A Sine Wave -- 13.6.3 A Square Wave -- 13.6.4 A Modulated Sine Wave -- 13.6.5 Narrow Pulses -- 13.7 RF Pickup Noise -- 13.8 Example: Analyzing a Low-Cost Function Generator -- 13.9 The Bottom Line -- Chapter 14 Scope Measurements of a Microcontroller Board -- 14.1 System-Level Measurement Artifacts -- 14.1.1 Measuring the Scope Noise -- 14.1.2 Measuring RF Pick Up Noise -- 14.1.3 Reducing RF Pickup with a Coaxial Connection -- 14.2 The Microcontroller Board -- 14.3 Power Rail Measurements -- 14.3.1 Output Impedance with an Eload -- 14.3.2 Low-Cost eLoad Circuit -- 14.4 Signal I/O Measurements -- 14.4.1 Measure the Output Resistance of Digital Pin -- 14.4.2 Measuring Rise and Fall Times -- 14.4.3 Clock Edge Noise -- 14.4.4 Cross-Talk Between I/Os -- 14.5 On-Die and On-Board Noise Measurements -- 14.5.1 Quiet LOW and HIGH Measurements -- 14.5.2 Rail Compression -- 14.5.3 On-Board vs On-Die Power Rail Noise -- 14.6 The Bottom Line -- Chapter 15 Parting Thoughts on Measurements -- 15.1 Summary of Some of the Important Terms -- 15.2 The Bottom Line -- About the Author. | |
| Titolo autorizzato: | Bogatin's Practical Guide to Best Measurement Practices for Digital Oscilloscopes ![]() |
| ISBN: | 1-63081-964-6 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911038504003321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |