Vai al contenuto principale della pagina
| Autore: |
Martin Nazario
|
| Titolo: |
Molecular Nanographenes : Synthesis, Properties, and Applications
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (545 pages) |
| Disciplina: | 620.115 |
| Altri autori: |
NuckollsColin P
|
| Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Aromaticity and Antiaromaticity in Nanographenes: An Overview -- 1.1 Introduction -- 1.2 Global and Local Aromaticity -- 1.3 Methods to Quantify Aromaticity -- 1.3.1 Energetic Descriptors of Aromaticity -- 1.3.2 Electronic Descriptors of Aromaticity -- 1.3.3 Geometric Descriptors of Aromaticity -- 1.3.4 Magnetic Descriptors of Aromaticity -- 1.4 The Analysis of Aromaticity in Nanographene Systems -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Covalent Patterned Functionalization of Graphene -- 2.1 Introduction -- 2.2 Substrate‐Mediated Chemical Patterning -- 2.3 Tip‐Induced Patterned Functionalization -- 2.4 Lithography‐assisted Molecular Engineering -- 2.5 Laser Writing -- 2.6 Conclusion -- References -- Chapter 3 Nanographenes by Bottom‐up Approach: The Scholl Reaction -- 3.1 Introduction -- 3.2 Planar Nanographenes -- 3.3 Heterocyclic Analogs of Planar Nanographenes -- 3.4 Nonplanar, Curved, and Twisted Nanographenes -- 3.5 Heterocyclic Analogs of Nonplanar Nanographenes -- 3.6 Surface‐assisted (cyclo)Dehydration -- 3.7 Summary and Outlook -- Acknowledgment -- References -- Chapter 4 Racemization Barriers in Chiral Molecular Nanographenes -- 4.1 Introduction -- 4.2 Structural Motifs for Chirality in Nanographenes -- 4.2.1 Gaussian Curvature -- 4.2.2 Helicenes -- 4.2.3 Rolling -- 4.2.4 Strain -- 4.3 Classification of Chiral Molecular NGs According to Their Isomerization Barriers -- 4.4 Flexible Nanographenes (< -- 5 kcal mol−1) -- 4.5 Nanographenes with Spectroscopically Detectable Chirality (5-20 kcal mol−1) -- 4.6 Isolable Nanographenes (20-35 kcal mol−1) -- 4.7 Rigid Nanographenes (> -- 35 kcal mol−1) -- 4.8 Enantioselective Synthesis of Rigid Molecular Nanographenes -- 4.9 Conclusion -- References -- Chapter 5 Synthesis of Helicenes. |
| 5.1 Introduction -- 5.2 Characteristics of Helicenes -- 5.3 Synthetic Methodologies -- 5.3.1 Photocyclodehydrogenation of 1,2‐Diaryl Olefins or Arenes -- 5.3.2 Oxidative Aromatic Coupling: Scholl Reaction -- 5.3.3 Transition Metal‐Catalyzed [2 + 2 + 2] Cycloisomerization of π‐Electron Systems -- 5.3.4 Diels-Alder Cycloaddition of Aromatic Vinylethers with p‐Benzoquinone -- 5.3.5 Transition Metal‐Catalyzed Hydroarylation of Alkynes -- 5.3.6 Other Synthetic Approaches -- 5.4 Advanced Helicene Architectures -- 5.5 Summary and Outlook -- Acknowledgment -- References -- Chapter 6 Carbon Nanobelt History and Chemistry -- 6.1 Introduction -- 6.2 Synthetic Attempts to CNBs -- 6.2.1 Some Synthetic Attempts to Cyclacenes -- 6.2.2 CNBs Observed by Mass Spectroscopy -- 6.2.3 Top‐Down Approach to CNBs -- 6.3 Synthesis of CNBs -- 6.4 Synthesis of Related Aromatic Nanobelts -- 6.5 Synthesis of Topological Aromatic Nanobelts -- 6.6 Conclusion -- References -- Chapter 7 Negatively Curved Nanographenes -- 7.1 Introduction -- 7.2 Negatively Curved Nanographenes Containing Seven‐Membered Rings -- 7.2.1 Incorporation of Seven‐Membered Rings at an Early Stage of Synthesis -- 7.2.2 Formation of Seven‐Membered Rings at a Late Stage of the Synthesis -- 7.3 Negatively Curved Nanographenes Containing Eight‐Membered Rings -- 7.3.1 Incorporation of Eight‐Membered Rings at an Early Synthetic Stage -- 7.3.2 Formation of Eight‐Membered Rings at the Final Step of Synthesis -- 7.4 Structures and Stereochemical Dynamics and Properties -- 7.5 Negatively Curved Molecular Nanocarbons Beyond Nanographenes and Bottom‐up Approaches to Carbon Schwarzites -- 7.6 Conclusion and Outlook -- References -- Chapter 8 From PAH‐based Cyclophanes to Nanographenophanes -- 8.1 Introduction -- 8.2 Synthetic Considerations -- 8.3 Pentacenophanes (C22) -- 8.4 Indeno[2,3‐b]triphenylenophanes (C25). | |
| 8.5 Dibenzo[c,l]chrysenophanes (C26) -- 8.6 Dibenzo[f,j]picenophanes (C30) and Tetrabenz[a,c,h,j]anthracenes (C30) -- 8.7 Teropyrenophanes (C36) -- 8.8 A π‐Extended Azacorannulenophane (C36N) -- 8.9 Hexabenzocoronenophanes (C42) -- 8.10 hept‐Hexabenzocoronenophanes (C43) -- 8.11 Summary and Outlook -- References -- Chapter 9 Bilayer and Multilayer Nanographenes: Synthesis and Properties -- 9.1 Introduction -- 9.2 Van der Waals Molecular Nanographenes -- 9.3 Bilayers from Fused Radicals -- 9.4 Covalently Linked Bilayers -- 9.5 Conclusions -- References -- Chapter 10 Large π‐Extended Carbon Nanorings: From Syntheses to Properties -- 10.1 Introduction -- 10.1.1 Carbon Nanorings with Inserted Six‐Membered Ring‐Based PAHs -- 10.1.1.1 With Inserted Naphthalene(s) -- 10.1.1.2 With Inserted Anthracene(s) or Phenanthrene(s) -- 10.1.1.3 With Inserted Pyrene(s) or Perylene(s) -- 10.1.1.4 With Inserted Other PAHs -- 10.1.2 Carbon Nanorings Consisting Solely of PAHs -- 10.1.2.1 Consisting Solely of Naphthalenes -- 10.1.2.2 Consisting Solely of Anthracenes, Pyrenes, or Chrysenes -- 10.1.2.3 Consisting Solely of Other PAHs -- 10.1.3 CPP‐based Oligomers and Polymers -- 10.1.4 Conclusions and Outlook -- References -- Chapter 11 Nanographenes with Multiple Zigzag Edges -- 11.1 Introduction -- 11.2 Peri‐Acenes -- 11.3 Triangular Nanographenes -- 11.4 Peri‐acenoacenes -- 11.5 Circumarenes -- 11.6 Conclusion -- References -- Chapter 12 Synthesis of Graphene Nanoribbons, Nanographenes, and Fused Aromatic Networks Through the Formation of Pyrazine Rings -- 12.1 Introduction -- 12.2 Graphene Nanoribbons and Nanographenes -- 12.3 Fused Aromatic Networks -- 12.4 Conclusions -- References -- Chapter 13 Conjugated Nanohoops: Synthesis, Properties, and Applications -- 13.1 Introduction -- 13.2 Synthetic Strategies to Conjugated Nanohoops. | |
| 13.2.1 Pt‐, Ni‐, or Au‐Mediated Macrocyclizations in the Synthesis of Nanohoops -- 13.2.2 Synthesis of Conjugated Nanohoops via Kinked Precursors to π‐System Panels -- 13.3 Properties of Conjugated Nanohoops -- 13.3.1 Optoelectronic Properties -- 13.3.2 Chirality -- 13.3.3 Host-Guest Chemistry -- 13.3.4 Solid‐State Structures -- 13.4 Applications of Conjugated Nanohoops -- 13.4.1 Organic Electronics -- 13.4.2 Bottom‐up Synthesis of Carbon Nanotubes -- 13.4.3 Biological Fluorophores -- 13.5 Conclusions -- References -- Chapter 14 Chiral Polycyclic Aromatic Compounds with Monkey Saddle Topologies -- 14.1 Introduction -- 14.2 Saddle Mathematics -- 14.3 Synthesis -- 14.4 X‐Ray Crystal Structures of Monkey Saddle PAHs -- 14.5 NICS and ACID Plots -- 14.6 Inversion Barriers and Chiroptical Properties -- 14.7 Other Monkey Saddle PAHs and Related Systems -- 14.8 Summary and Outlook -- References -- Chapter 15 On‐Surface Synthesis of π‐Conjugated Polymers -- 15.1 Introduction -- 15.2 Content -- 15.3 Conclusions -- References -- Chapter 16 Merging Organic Chemistry with Surface Science for the Preparation of Nanographenes -- 16.1 Introduction -- 16.2 Scanning Probe Microscopies for the Characterization of Nanographenes Obtained by Solution‐Phase Chemistry -- 16.3 Combining Solution‐Phase and On‐Surface Chemistry for the Synthesis of Nanographenes -- 16.3.1 Surface‐Assisted Cyclodehydrogenation Reaction -- 16.3.2 Surface‐Assisted Ullmann‐Type Reactions -- 16.3.3 Alternative Reactions Used for the On‐Surface Preparation of Nanographenes -- 16.3.4 Combining On‐Surface Reactions Toward the Preparation of Nanographenes -- 16.4 Concluding Remarks -- References -- Chapter 17 Chiral Materials from Twistacenes and Helicenes -- 17.1 Introduction -- 17.1.1 Background -- 17.1.2 The Building Block -- 17.2 Twistacene‐based Materials -- 17.2.1 Preparation -- 17.2.2 Properties. | |
| 17.2.3 Organic Photovoltaics and Photodetectors -- 17.2.4 Electrochemical Storage Using hPDIs -- 17.3 Helicene‐Based Materials -- 17.3.1 Preparation -- 17.3.2 Chiral Amplification -- 17.4 Future Directions -- References -- Chapter 18 Nanographene Diradicals -- 18.1 Introduction -- 18.2 On the Origin of the Diradical State in Monocyclic Conjugated Hydrocarbons: The Case of Cyclobutadiene -- 18.3 Nanographene Diradical Made from Mixtures of Quinoidal Bonding States and Nonbonding States -- 18.3.1 The Zethrene Family -- 18.3.2 The Bisphenalenylene Family -- 18.3.3 On‐Surface Diradicals -- 18.3.4 Graphene Nanoribbons and Their Diradical (i.e. Polyradical Character) -- 18.4 The Diradical State in All‐Zig‐zag Polycyclic Conjugated Hydrocarbons: On the Reversed Aromatic→Quinoidal Way to Open‐Shell Nanographenes -- 18.4.1 The Acenoacene Family -- 18.4.2 The Oligorylene Family -- 18.5 The Diradical State as a Result of Zig‐zag Versus Arm‐chair Structures with "Mobile" Quinoidal Rings with Quinoidal → Aromatic Transformation in the Diradical State -- 18.5.1 The Peri‐Acene Family -- 18.5.2 The Circumacene Family -- 18.5.3 The Unique Case of Rhombenes -- 18.6 Conclusions -- Acknowledgments -- References -- Chapter 19 Circularly Polarized Luminescence (CPL) in Nanographenes -- 19.1 Introduction -- 19.2 (1 × HBC)‐Based Chiral Nanographenes -- 19.3 (1 × HBC)‐Based Heteroatom‐Doped Chiral Nanographenes -- 19.4 2 × HBC‐Based Chiral Nanographenes -- 19.5 3 × HBC‐based Chiral Nanographenes -- 19.6 4 × HBCs‐based Chiral Nanographenes and Beyond -- 19.7 Summary Table and Outlook -- Acknowledgments -- References -- Chapter 20 Redox Properties of Nanographenes -- 20.1 Introduction -- 20.2 Planar Nanographene Fragments -- 20.3 Contorted Nanographenes with Positive and Negative Curvatures -- 20.3.1 Corannulene‐based Nanographenes. | |
| 20.3.2 Cyclooctatetraene‐based Nanographenes. | |
| Sommario/riassunto: | Explore the world's most powerful materials with nanographene research Graphene, comprised of a single layer of carbon atoms in a honeycomb nanostructural arrangement, is the thinnest and strongest material yet known to science. Despite that this pristine carbon allotrope exhibits a variety of outstanding properties, its zero bandgap prevents its use for some optoelectronic applications. Fragments of graphene, or nanographenes, have shown a great potential to obviate these problems, thus paving the way for the development of chiroptical and optoelectronic properties. Molecular Nanographenes constitutes a comprehensive overview on the synthesis of these materials and their properties. Covering their widely varying morphologies, their potential applications, and their valuable chiroptical and photophysical features, it also analyzes multiple approaches to obtain nanographene by using both top-down and bottom-up methodologies. The result is a one-stop shop for materials scientists and other researchers interested in these emergent and fascinating materials. Molecular Nanographenes readers will also find: A careful distinction between top-down and bottom-up approaches to nanographene synthesis Detailed discussion of nanographene configurations including planar, bilayer, helical, nanobelt, and many other geometries An authorial team with pioneering research experience in the study of nano-sized graphenes and their synthesis Molecular Nanographenes is ideal for materials scientists, polymer chemists, solid state chemists, organic chemists, and any other researchers looking to work with shape and size-controlled flakes of graphenes. |
| Titolo autorizzato: | Molecular Nanographenes ![]() |
| ISBN: | 9783527845002 |
| 3527845003 | |
| 9783527845019 | |
| 3527845011 | |
| 9783527844999 | |
| 3527844996 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911020235303321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |