Vai al contenuto principale della pagina
| Autore: |
Kunar Sandip
|
| Titolo: |
Functional Composites : Role in Modern Engineering
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (229 pages) |
| Disciplina: | 620.118 |
| Altri autori: |
CharkhaPranav
JajuSantosh
TiwariHarish
|
| Nota di contenuto: | Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction to Functional Composite Materials -- 1.1 Introduction -- 1.2 Overview -- 1.3 Characteristics of Composites -- 1.4 A Fundamental Method for Choosing Materials -- 1.5 Polymer Matrix -- 1.6 Reinforcements -- 1.7 Techniques for Producing Composites -- 1.7.1 Molding Using Open Contact -- 1.7.2 Resin Infusion Method -- 1.7.3 Injection Molding -- 1.7.4 Filament Winding -- 1.7.5 Pultrusion Process -- 1.7.6 Additive Manufacturing -- 1.8 Composite Properties -- 1.9 Latest Developments -- 1.10 Applications -- 1.11 Conclusion -- References -- Chapter 2 Shape Memory Alloys as Functional Composites -- 2.1 Introduction -- 2.1.1 Exploration and Attempts at Development -- 2.2 Composition and Microstructure of Shape Memory Alloys' (SMAs') Composition -- 2.2.1 Microstructure -- 2.2.2 Characterization Techniques -- 2.2.3 Shape Memory Effect -- 2.2.4 Super Elasticity -- 2.3 Processing Techniques Used for Shape Memory Alloys -- 2.3.1 Casting -- 2.3.2 Powder Metallurgy -- 2.3.3 Thermomechanical Processing -- 2.4 Characterization Methods Employed to Evaluate the Microstructural and Mechanical Properties of SMAs -- 2.4.1 Microscopy -- 2.4.2 X-Ray Diffraction (XRD) -- 2.4.3 Tests of the Material's Mechanical Characteristics and Behavior -- 2.5 Applications of Shape Memory Alloys as Functional Composites -- 2.5.1 Aerospace -- 2.5.2 Automotive -- 2.5.3 Medical Applications -- 2.5.4 Consumer Electronics -- 2.6 Design Considerations and Challenges in Using SMAs for Specific Applications -- 2.6.1 Compatibility with the Prerequisites of the Application -- 2.6.2 Mechanisms of Actuation and Their Controls -- 2.7 The Choice of Materials and Their Compatibility -- 2.7.1 Fatigue and Durability -- 2.7.2 Manufacturing and Processing. |
| 2.7.3 Expense and the Possibility of Commercialization -- 2.8 Case Studies and Success Stories That Demonstrate the Practical Implementation of SMAs as Functional Composite Structures -- 2.8.1 The Use of Smart Morphing Adaptors in Aerospace -- 2.8.2 Self-Deployable Space Structures -- 2.8.3 Orthopedic Implants and Medical Devices -- 2.8.4 Adaptive Structures in the Automotive Sector -- 2.8.5 Wearable Technologies and Intelligent Textiles -- 2.9 Current State of Research in Shape Memory Alloys and Potential Areas for Future Exploration -- 2.10 Recent Advancements in the Development of Novel SMA Compositions, Processing, and Applications -- 2.10.1 Novel SMA Compositions -- 2.10.2 Advanced Processing Methods -- 2.10.3 SMA Application Advancements -- 2.10.4 Composite Hybrid Structures -- 2.11 Conclusions -- References -- Chapter 3 Characterization and Testing of Smart Functional Composites -- 3.1 Introduction -- 3.1.1 Shape Memory Composites (SMPs) -- 3.1.2 Self-Healing Composites -- 3.1.3 Piezoelectric Composites -- 3.1.4 Magnetostrictive Composites -- 3.1.5 Thermoelectric Composites -- 3.1.6 Conductive Composites -- 3.1.7 Light-Responsive Composites -- 3.1.8 Bio-Inspired Composites -- 3.1.9 Multi-Functional Composites -- 3.2 Mechanical Characterization -- 3.2.1 Overview of Mechanical Testing Methods -- 3.2.2 Discussion of Mechanical Properties -- 3.2.3 Mechanical Characterization of Smart Functional Composites -- 3.2.4 Electrical Characterization of Smart Functional Composites -- 3.2.4.1 Dielectric Strength -- 3.2.4.2 Insulation Resistance -- 3.2.4.3 Volume Resistivity and Surface Resistivity -- 3.2.5 Types of Smart Functional Composites -- 3.2.5.1 Structural Smart Composites -- 3.2.5.2 Composites for Actuation -- 3.2.5.3 Novel Functional Composites -- 3.2.5.4 Nanocomposites for Novel Functions. | |
| 3.3 Thermal Characterization of Smart Functional Composites -- 3.3.1 Thermal Behavior of Smart Functional Composites -- 3.3.1.1 Thermal Characterization Techniques -- 3.3.1.2 Thermal Properties of Key Smart Functional Composites -- 3.3.1.3 Challenges and Future Directions -- 3.4 Environmental and Durability Testing of Functional Smart Materials -- 3.4.1 Thermal Cycling and Temperature Testing -- 3.4.2 Moisture and Humidity Testing -- 3.4.3 UV and Radiation Exposure -- 3.4.4 Mechanical and Vibration Testing -- 3.4.5 Electromagnetic Interference (EMI) Testing -- 3.5 Durability Testing Methodologies for Smart Functional Composites -- 3.5.1 Accelerated Aging Testing -- 3.5.2 Self-Healing and Damage Detection -- 3.5.3 Field Testing and Real-World Simulations -- 3.6 Recent Advances in Smart Functional Composite Testing -- 3.6.1 Integration of Smart Sensors for Real-Time Monitoring -- 3.6.2 Nanomaterial Enhancements -- 3.7 Conclusion -- References -- Chapter 4 Piezoelectric Nanocomposites -- 4.1 Introduction -- 4.1.1 The Piezoelectric Effect -- 4.1.1.1 Direct Piezoelectric Effect -- 4.1.1.2 Reverse Piezoelectric Effect -- 4.2 Variables and Constants That Have an Impact on the Performance of Piezoelectric Materials -- 4.2.1 Electro-Mechanical Coupling Factors (k) -- 4.2.2 Piezoelectric Strain (Charge) Constant (d) -- 4.2.3 Piezoelectric Voltage Constants (g) -- 4.2.4 Mechanical Quality Factor (Qm) -- 4.2.5 Electrical Loss (tand) -- 4.2.6 Dielectric Constant (e) -- 4.3 Piezoelectric Nanocomposites -- 4.3.1 Piezoelectric Nanocomposite Materials-Polymer- Based -- 4.3.2 Poling -- 4.3.3 Preparation of a Nano-Polymeric Piezoelectric Composite -- 4.3.4 Piezoelectric Nanoparticle Polymer Composite Foam (PNPF) -- 4.3.5 Reverse Effect of PNPF -- 4.4 Piezoelectric Polymer Materials -- 4.4.1 Polyvinylidene Fluoride (PVDF). | |
| 4.4.2 Polyvinylidene Fluoride Trifluoro Ethylene (PVDF-TrFE) -- 4.4.3 Polyvinylidene Cyanide-Vinyl Acetate -- 4.4.4 Polyamide 11 (Nylon 11) -- 4.4.5 Cellular Polypropylene (PP) -- 4.4.6 Poly-Organo-Phosphazenes (POPh) -- 4.5 Piezoelectric Nanocomposite Materials-Ceramic-Based -- 4.5.1 Lead Zirconate Titanate (PZT) -- 4.5.2 Potassium Sodium Niobate (KNN) -- 4.5.3 Bismuth Sodium Titanate (BNT) -- 4.5.4 Aluminum Nitride (AlN) -- 4.5.5 Lithium Niobate -- 4.6 Improvements to Piezoelectric Ceramics -- 4.7 Applications of Piezoelectric Nanocomposites -- 4.7.1 Bio-Medical -- 4.7.2 Piezoelectric Tactile Sensors -- 4.7.3 Piezoelectric Vibrational Energy Harvestors Using Polymer Nanocomposite -- 4.7.4 Piezoelectric Nano-Generator (PENG) -- 4.7.4.1 Force Applied Perpendicular to the Nanowire's Axis -- 4.7.4.2 Force Applied Parallel to the Nanowire's Axis -- 4.7.5 Nanocomposite Electrical Generators (NEG) -- References -- Chapter 5 Modulation of Waveform Effect on Ni/Nano-ZrO2-TiO2 Composite Coating on Mild Steel -- 5.1 Introduction -- 5.2 Procedure -- 5.2.1 Materials and Synthesis of Nanocomposites -- 5.2.2 Electrodeposition -- 5.2.3 Characterization -- 5.3 Results and Discussions -- 5.3.1 Microscopic Structure Analysis -- 5.3.2 X-Ray Diffraction -- 5.3.3 Microhardness -- 5.3.4 Pitting Corrosion Studies -- 5.4 Conclusions -- References -- Chapter 6 Smart Composite Materials for Aerospace Applications -- 6.1 Introduction -- 6.1.1 Importance of Composite Materials in Aerospace -- 6.1.1.1 Weight Reduction -- 6.1.1.2 High Strength-to-Weight Ratio -- 6.1.1.3 Corrosion Resistance -- 6.1.1.4 Design Flexibility -- 6.1.1.5 Heat Resistance and Thermal Stability -- 6.1.1.6 Structural Health Monitoring -- 6.1.1.7 Reduction in Production Costs -- 6.1.1.8 Sustainability -- 6.1.2 Overview of Smart Functional Composite Polymer Materials -- 6.1.2.1 Key Characteristics. | |
| 6.1.2.2 Manufacturing Techniques -- 6.1.2.3 Applications -- 6.2 Types of Smart Functional Composite Polymer Materials -- 6.2.1 Polymer Matrix Composites (PMCs) -- 6.2.2 Carbon Fiber Reinforced Polymers (CFRP) -- 6.2.3 Glass Fiber Reinforced Polymers (GFRP) -- 6.2.4 Shape Memory Polymers (SMPs) -- 6.2.5 Self-Healing Polymers (SHPs) -- 6.2.6 Conductive Polymer Composites (CPCs) -- 6.3 Properties and Characteristics -- 6.3.1 Mechanical Properties -- 6.3.1.1 Strength -- 6.3.1.2 Stiffness -- 6.3.1.3 Toughness -- 6.3.2 Thermal Properties -- 6.3.2.1 Thermal Conductivity -- 6.3.2.2 Thermal Stability -- 6.3.3 Electrical Properties -- 6.3.3.1 Conductivity -- 6.3.3.2 Resistivity -- 6.3.4 Multifunctional Properties -- 6.3.4.1 Self-Sensing -- 6.3.4.2 Self-Healing -- 6.4 Aerospace Applications -- 6.4.1 Structural Components -- 6.4.1.1 Wings -- 6.4.1.2 Fuselage -- 6.4.1.3 Control Surfaces -- 6.4.2 Functional Components -- 6.4.2.1 Actuators -- 6.4.2.2 Sensors -- 6.4.2.3 Energy -- 6.4.2.4 Storage -- 6.4.3 Thermal Management Systems -- 6.4.4 Self-Healing Coatings and Materials -- 6.5 Manufacturing Techniques -- 6.5.1 Conventional Methods -- 6.5.1.1 Hand Layup -- 6.5.1.2 Resin Transfer Molding (RTM) -- 6.5.1.3 Compression Molding -- 6.5.2 Advanced Methods -- 6.5.2.1 Additive Manufacturing (AM) -- 6.5.2.2 Electrospinning -- 6.5.2.3 Automated Fiber Placement (AFP) -- 6.5.3 Nanotechnology-Enabled Manufacturing -- 6.6 Challenges -- 6.6.1 Interfacial Properties and Bonding -- 6.6.2 Scalability and Cost-Effectiveness -- 6.6.3 Integration with Existing Aerospace Systems -- 6.6.4 Future Research Directions -- 6.7 Conclusion -- References -- Chapter 7 Behavioral Study of Tribological Coating of Smart Functional Composites for High Wear Applications -- 7.1 Introduction -- 7.2 Principle of Tribology and Mechanisms of Wear -- 7.2.1 Wear Types. | |
| 7.2.2 Significance of Coating in Enhancing Wear Resistance. | |
| Sommario/riassunto: | The book is essential for anyone looking to deepen their understanding of advanced composite materials and their intricate behaviors, offering comprehensive insights into the mechanics, design, and innovative applications of functional composites in today's engineering landscape. Understanding the complicated vibration behavior of composite beams, plates, shells, curved membranes, rings, and other complex structures is crucial for modern-day engineering. Functional Composites: Role in Modern Engineering addresses current progress in the mechanics and design of functional composites and structures. It covers the characterization of properties, analyses, and design of various advanced composite material systems with an emphasis on coupled mechanical and non-mechanical behaviors. The book comprehensively covers analyses of functional materials related to piezoelectric and magnetostrictive nanocomposites, as well as the design of active fiber composites. Techniques and challenges in producing functional composites and identifying their coupled properties are also discussed. The book culminates in a discussion on more advanced uses of functional composites and how these smart structures can be analyzed on a larger scale. The book's comprehensive coverage of the innovative potential of these composites makes it an essential resource for industry professionals and students alike. Readers will find that the book: Explores technologies for improvement in advanced processes and the application of functional composites; Introduces both recently developed and emerging functional composites; Provides comprehensive insight into concepts such as the successful fabrication of multipurpose functional composites, sustainability of functional composites, and future scopes and challenges of functional composites; Serves as a valuable reference for students and researchers working with functional composites. Audience Materials scientists, mechanical, manufacturing, biomedical, and industrial engineers in industry and academia, as well as students, who are working with functional composites. |
| Titolo autorizzato: | Functional Composites ![]() |
| ISBN: | 1-394-24203-4 |
| 1-394-24202-6 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911019313403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |