Vai al contenuto principale della pagina
| Autore: |
Chakraborty Sanjay
|
| Titolo: |
Multi-objective, Multi-class and Multi-label Data Classification with Class Imbalance : Theory and Practices / / by Sanjay Chakraborty, Lopamudra Dey
|
| Pubblicazione: | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Edizione: | 1st ed. 2024. |
| Descrizione fisica: | 1 online resource (177 pages) |
| Disciplina: | 006.3 |
| Soggetto topico: | Computational intelligence |
| Artificial intelligence | |
| Machine learning | |
| Computational Intelligence | |
| Artificial Intelligence | |
| Machine Learning | |
| Altri autori: |
DeyLopamudra
|
| Nota di contenuto: | 1. Introduction to Classification -- 2. Class Imbalance and Data Irregularities in Classification -- 3. Multi-class Classification -- 4. Multi-Objective and Multi-Label Classification -- 5. Deep Learning Inspired Multiclass and Multilabel Classification -- 6. Applications of Multi-objective, Multi-label and Multi-class Classifications. |
| Sommario/riassunto: | This book explores intricate world of data classification with 'Multi-Objective, Multi-Class, and Multi-Label Data Classification.' This book studies sophisticated methods and strategies for working with complicated data sets, tackling the difficulties of various classes, many objectives, and complicated labelling tasks. This resource fosters a deeper grasp of multi-dimensional data analysis in today's data-driven world by providing readers with the skills and insights needed to navigate the subtleties of modern classification jobs, from algorithmic techniques to practical applications. |
| Titolo autorizzato: | Multi-Objective, Multi-class and Multi-label Data Classification with Class Imbalance ![]() |
| ISBN: | 9789819796229 |
| 9789819796212 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910918598403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |