Vai al contenuto principale della pagina

Homomorphic Encryption for Data Science (HE4DS) / / by Allon Adir, Ehud Aharoni, Nir Drucker, Ronen Levy, Hayim Shaul, Omri Soceanu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Adir Allon Visualizza persona
Titolo: Homomorphic Encryption for Data Science (HE4DS) / / by Allon Adir, Ehud Aharoni, Nir Drucker, Ronen Levy, Hayim Shaul, Omri Soceanu Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Edizione: 1st ed. 2024.
Descrizione fisica: 1 online resource (311 pages)
Disciplina: 005.8
323.448
Soggetto topico: Data protection - Law and legislation
Cryptography
Data encryption (Computer science)
Machine learning
Computer networks - Security measures
Privacy
Cryptology
Machine Learning
Mobile and Network Security
Altri autori: AharoniEhud  
DruckerNir  
LevyRonen  
ShaulHayim  
SoceanuOmri  
Nota di contenuto: Part I Introduction and Basic Homomorphic Encryption (HE) Concepts -- Chapter 1 Introduction to Data Science -- Chapter 2 Modern Homomorphic Encryption - Introduction -- Chapter 3 Modern HE - Security Models -- Chapter 4 Approaches for Writing HE Applications -- Part II Approximations -- Chapter 5 Approximation Methods Part I: A General Overview -- Chapter 6 Approximation Methods Part II: Approximations of Standard Functions -- Part III Packing Methods -- Chapter 7 SIMD Packing Part I: Basic Packing Techniques -- Chapter 8 SIMD Packing Part II – Tile Tensor Basics -- Chapter 9 SIMD Packing Part III: Advanced Tile Tensors -- Part IV Use Cases and Other Approaches -- Chapter 10 Privacy-Preserving Machine Learning with HE -- Chapter 11 Case Study: Neural Network.
Sommario/riassunto: This book provides basic knowledge required by an application developer to understand and use the Fully Homomorphic Encryption (FHE) technology for privacy preserving Data-Science applications. The authors present various techniques to leverage the unique features of FHE and to overcome its characteristic limitations. Specifically, this book summarizes polynomial approximation techniques used by FHE applications and various data packing schemes based on a data structure called tile tensors, and demonstrates how to use the studied techniques in several specific privacy preserving applications. Examples and exercises are also included throughout this book. The proliferation of practical FHE technology has triggered a wide interest in the field and a common wish to experience and understand it. This book aims to simplify the FHE world for those who are interested in privacy preserving data science tasks, and for an audience that does not necessarily have a deep cryptographic background, including undergraduate and graduate-level students in computer science, and data scientists who plan to work on private data and models.
Titolo autorizzato: Homomorphic Encryption for Data Science (HE4DS)  Visualizza cluster
ISBN: 9783031654947
3031654943
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910906200703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui